
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,369 |
محاسبات برگشتی غیرخطی روسازیهای مقطع معکوس با روش ترکیبی شبکه عصبی مصنوعی و الگوریتم بهینهسازی برخورد اجسام | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 7، دوره 5، شماره 4 - شماره پیاپی 20، دی 1398، صفحه 111-132 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2019.17678.1382 | ||
نویسندگان | ||
علیرضا غنیزاده* 1؛ مهرداد پاداش2 | ||
1دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان | ||
2دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان | ||
تاریخ دریافت: 03 اردیبهشت 1398، تاریخ بازنگری: 02 تیر 1398، تاریخ پذیرش: 03 تیر 1398 | ||
چکیده | ||
یکی از روشهای متداول برای تعیین ظرفیت باربری روسازی، بهرهگیری از نتایج آزمایش افتوخیزسنج ضربهای (FWD) است. سیستم روسازیهای مقطع معکوس در سال 1970 میلادی در آفریقای جنوبی توسعهیافته است. این روسازی بهصورت یک ساختار ساندویچی اجرا میشود. بهطوریکه یک لایه اساس سنگدانهای بین دولایه با مدول برجهندگی بالا (لایه بتن آسفالتی و لایه اساس تثبیت شده با سیمان) قرار میگیرد. هدف از این تحقیق، توسعه روشی بهمنظور پیشبینی مدول برجهندگی لایههای روسازی بر پایه افتوخیزهای اندازهگیری شده با دستگاه افتوخیزسنج ضربهای است. با توجه به اینکه مدلسازی غیرخطی مصالح اساس سنگدانهای در روسازیهای مقطع معکوس بسیار حائز اهمیت است، برای ایجاد پایگاه داده افتوخیز از تحلیل غیرخطی حدود 38000 مقطع روسازی معکوس توسط برنامه المان محدود غیرخطی MICH-PAVE استفاده شده است. سپس، با بهرهگیری از روش ترکیبی شبکه عصبی مصنوعی و الگوریتم بهینهسازی برخورد اجسام، روشی به منظور انجام محاسبات معکوس روسازیهای مقطع معکوس با فرض رفتار غیرخطی اساس سنگدانهای توسعه داده شده است. نتایج نشاندهنده انطباق بسیار خوب افتوخیزهای حاصل از برنامه MICH-PAVE با نتایج حاصل از برنامه KENLAYER و دادههای میدانی است. همچنین، شبکه عصبی مصنوعی با دقت بسیار زیاد (ضریب رگرسیون بیش از 99/99 درصد) امکان پیشبینی کاسه نشست سطح روسازیهای مقطع معکوس با توجه به اطلاعات مدول برجهندگی و ضخامت لایهها را فراهم میسازد. بهعلاوه، مدل ترکیبی شبکه عصبی و الگوریتم برخورد اجسام در مقایسه با مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم ژنتیک دقت و سرعت بالاتری برای پیشبینی مدولهای برجهندگی لایههای روسازی مقطع معکوس دارد. | ||
کلیدواژهها | ||
ظرفیت باربری؛ مدلسازی غیرخطی؛ روسازی مقطع معکوس؛ افت و خیزسنج ضربهای؛ مدول برجهندگی | ||
عنوان مقاله [English] | ||
Nonlinear Backcalculations of Inverted Pavements Using Hybrid Artificial Neural Network and Colliding Body Optimization Algorithm | ||
نویسندگان [English] | ||
Ali Reza Ghanizadeh1؛ Mehrdad Padash2 | ||
1Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran | ||
2Department of Civil Engineering, Sirjan University of Technology | ||
چکیده [English] | ||
Falling Weight Deflectometer (FWD) is one of the common methods for determining the bearing capacity of pavement. The inverted pavement system developed in 1970 in South Africa. This type of pavement is constructed as a sandwich structure, so that a crashed stone base layer is placed between two layers with high stiffness (asphalt concrete layer and cement treated base layer). The main purpose of this research is developing a method for predicting the moduli of the inverted pavements based on the measured deflection bowl using the FWD. Since, the nonlinear modeling of aggregate base is very important in case of inverted pavements, to stablish a dataset, about 38,000 inverted pavement sections have been analyzed by the non-linear finite element program, MICHPAVE. Then, using a hybrid artificial neural network and the colliding body optimization algorithms (ANN-CBO) method, a procedure was developed for backcalculation of inverted pavements assuming nonlinear behavior of aggregate base. The results of this study indicate that the results of MICHPAVE program are very close to the results of the KENLAYER program as well as field data. This study also showed that the artificial neural network is able to predicted the surface deflection bowl of the inverted pavements accurately (R2> 99.99%). In addition, it was found that the hybrid ANN-CBO has superior accuracy and speed in comparison with the hybrid ANN-GA for nonlinear backcalculation of inverted pavements. | ||
کلیدواژهها [English] | ||
Nonlinear Backcalculations, Inverted Pavement, Artificial Neural Networks, Colliding Body Algorithm, Genetic algorithm | ||
مراجع | ||
Alkasawneh, W. M. 2007. “Backcalculation of pavement moduli using genetic algorithms”. MSc. Thesis, University of Akron, Ohio, USA. Ceylan, H., Guclu, A., Tutumluer, E. and Thompson, M. R. 2005. “Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior”. Int. J. Pavement Eng., 6(3): 171-182. Cortes, D. D., Shin, H. and Santamarina, J. C. 2012. “Numerical simulation of inverted pavement systems”. J. Transport. Eng., 138(12): 1507-1519. Fwa, T., Tan, C. and Chan, W. 1997. “Backcalculation analysis of pavement-layer moduli using genetic algorithms”. Transport. Res. Record: J. Transport. Res. Board, 1570: 134-142. Goktepe, A. B., Agar, E. and Lav, A. H. 2006. “Advances in backcalculating the mechanical properties of flexible pavements”. Adv. Eng. Softw., 37(7): 421-431. Gopalakrishnan, K. 2009. “Neural network–swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation”. J. Transport. Eng., 136(6): 528-536. Gopalakrishnan, K. and Thompson, M. R. 2004. “Backcalculation of airport flexible pavement non-linear moduli using artificial neural networks”. PhD Dissertation, University of Illinois at Urbana, Champaign. Harvey, R. L. 1994. “Neural Network Principles”. Prentice-Hall, Inc. Hicks, R. G. and Monismith, C. L. 1971. “Factors influencing the resilient response of granular materials”. Highway Res. Record, 345: 15-31. Kaveh, A. and Mahdavi, V. 2014. “Colliding bodies optimization: a novel meta-heuristic method”. Comput. Struct., 139: 18-27. Levenberg, K. 1944. “A method for the solution of certain non-linear problems in least squares”. Quart. Appl. Math., 2(2): 164-168. Li, M. and Wang, H. 2017. “Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters”. Int. J. Pavement Eng., 20(4): 490-498. Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters”. J. Soc. Indus. Appl. Math., 11(2): 431-441. Meier, R. W. 1995. “Backcalculation of Flexible Pavement Moduli from Falling Weight Deflectometer Data Using Artificial Neural Networks”. U.S. Army Corps of Engineers, Washington, DC. Ocal, A. 2014. “Backcalculation of pavement layer properties using artificial neural network based gravitational search algorithm”. Middle East Technical University. Papadopoulos, E. and Santamarina, J. C. 2017. “Inverted base pavements: Construction and performance”. Int. J. Pavement Eng., 20(6): 697-703. Park, S. W., Park, H. M. and Hwang, J. J. 2010. “Application of genetic algorithm and finite element method for backcalculating layer moduli of flexible pavements”. KSCE J. Civ. Eng., 14(2): 183-190. Pekcan, O., Tutumluer, E. and Thompson, M. 2006. “Nondestructive flexible pavement evaluation using ILLI-PAVE based artificial neural network models”. In GeoCongress 2006: Geotechnical Engineering in the Information Technology. Rada, G., Richter, C. and Stephanos, P. 1992. “Layer moduli from deflection measurements: software selection and development of strategic highway research program's procedure for flexible pavements”. Transport. Res. Record, 1377: 77-87. Rakesh, N., Jain, A., Reddy, M. A. and Reddy, K. S. 2006. “Artificial neural networks - genetic algorithm based model for backcalculation of pavement layer moduli”. Int. J. Pavement Eng., 7(3): 221-230. Saltan, M. and Terzi, S. 2008. “Modeling deflection basin using artificial neural networks with cross-validation technique in backcalculating flexible pavement layer moduli”. Adv. Eng. Softw., 39(7): 588-592. Saltan, M., Uz, V. E. and Aktas, B. 2013. “Artificial neural networks–based backcalculation of the structural properties of a typical flexible pavement”. Neur. Comput. Appl., 23(6): 1703-1710. Schalkoff, R. J. 1997. “Artificial Neural Networks”. McGraw-Hill, New York. Scimemi, G. F., Turetta, T. and Celauro, C. 2016. Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm”. Constr. Build. Mater., 119: 288-295. Tsai, B. W., Kannekanti, V. N. and Harvey, J. T. 2004. “Application of genetic algorithm in asphalt pavement design”. Transport. Res. Record: J. Transport. Res. Board, 1891: 112-120. Varma, S. and Emin Kutay, M. 2016. “Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections”. Int. J. Pavement Eng., 17(5): 388-402. Wang, H., Xie, P., Ji, R. and Gagnon, J. 2019. “Prediction of airfield pavement responses from surface deflections: Comparison between soft computing model and traditional backcalculation approach”. 98 Annual Metting of Transportation Research Board (TRB), Washington DC, USA. | ||
آمار تعداد مشاهده مقاله: 1,047 تعداد دریافت فایل اصل مقاله: 414 |