
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,786 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
بررسی عملکرد اکسیژن در تبدیل مستقیم پروپان به اکریلیک اسید بر روی کاتالیست Mo1V0.3Te0.23Nb0.12Ox به کمک مدلسازی سینتیکی | ||
مدل سازی در مهندسی | ||
مقاله 5، دوره 17، شماره 57، تیر 1398، صفحه 55-68 اصل مقاله (1.51 M) | ||
نوع مقاله: مقاله شیمی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.16327.1628 | ||
نویسندگان | ||
گلشن مظلوم* ؛ شیدا اسماعیلی | ||
گروه مهندسی شیمی، دانشکده فنی-مهندسی، دانشگاه مازندران | ||
تاریخ دریافت: 23 آبان 1397، تاریخ بازنگری: 18 دی 1397، تاریخ پذیرش: 01 بهمن 1397 | ||
چکیده | ||
به منظور بررسی نحوه عملکرد اکسیژن در تبدیل مستقیم پروپان به اکریلیک اسید بر روی کاتالیست Mo1V0.3Te0.23Nb0.12Ox از مدلسازی سینتیکی استفاده شده است. دادههای آزمایشگاهی در شرایط عملیاتی مختلف در یک راکتور بستر ثابت لولهای جمعآوری شدهاند. یک شبکه واکنشی متشکل از واکنشهای موازی/متوالی با مسیرهای مختلف برای تولید اکسیدهای کربن در نظر گرفته شده است. فرضیاتی که در توسعه این مدلها در نظر گرفته شدهاند عبارتند از: وجود سایتهای کاتالیستی با فعالیتهای مختلف، ارتباط/عدم ارتباط سایتهای کاتالیستی با یکدیگر، ارتباط/عدم ارتباط سایتهای کاتالیستی با اکسیژن فاز گاز و همچنین نوع اکسیژن فعال در واکنشهای مختلف. بر اساس این فرضیات و همچنین با در نظر گرفتن شبکه واکنشی، 5 مدل سینتیکی بر پایه مکانیسم مارس-ون کرولن و مکانیسم الی-ریدل توسعه داده شده و پارامترهای سینتیکی با استفاده از الگوریتم ژنتیک بهینه شدهاند. نتایج نشان میدهد علت اینکه مقدار اکسیژن گازی، تاثیر چندانی بر گزینش پذیری نسبت به اکریلیک اسید ندارد، درحالیکه بر گزینشپذیری نسبت به COx بسیار اثرگذار است این است که اکسیژن فاز گاز به صورت مستقیم نقشی در تولید اکسیژن شبکهای ندارد. درحالیکه اکسیدهای کربن در مسیر جداگانهای از واکنش بین پروپان با سایت غیر گزینشی اکسیژن جذب شده بر سطح کاتالیست تولید میشود که غلظت این سایت وابستگی مستقیم به فشار جزئی اکسیژن گازی دارد. میتوان نتیجه گرفت هر چه پروپان و اکسیژن در این واکنش تماس کمتری با یکدیگر داشته باشند، گزینشپذیری نسبت به محصولات مطلوب افزایش مییابد. بر این اساس راکتورهای بستر سیال دوناحیهای و گردان برای این واکنش پیشنهاد میشود. | ||
کلیدواژهها | ||
اکریلیک اسید؛ پروپان؛ مدلسازی سینتیکی؛ اثر اکسیژن؛ Mo1V0.3Te0.23Nb0.12Ox | ||
عنوان مقاله [English] | ||
Investigation of the oxygen function in the selective oxidation of propane to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox catalyst using kinetic modeling | ||
نویسندگان [English] | ||
Golshan Mazloom؛ Sheida Esmaeili | ||
department of Chemical Engineering, Faculty of Engineering, University of Mazandaran. | ||
چکیده [English] | ||
Kinetic modeling was used to determine the type of the oxygen function in partial oxidation of propane to AA over Mo1V0.3Te0.23Nb0.12Ox catalyst. Experimental data was collected under different operating conditions in a fixed bed tubular reactor. A reaction network consisting of parallel/sequential reactions with various pathways for the production of carbon oxides was considered. Some assumptions were made in the development of models including: the existence of catalytic sites with different activities, connection/non-connection of catalytic sites together, connection/non-connection of catalytic sites with gas phase oxygen and also the type of the active oxygen in different reactions. Based on these assumptions and also with regard to the reaction network 5 models were developed based on the Mars-Van Krevelen and Eley Rideal mechanisms. Kinetic parameters were optimized using genetic algorithm. It can be concluded that gas phase oxygen does not directly play role in the lattice oxygen production. Therefore gas phase oxygen concentration has negligible effect on AA selectivity. While carbon oxides are produced through reaction between propane and non-selective oxygen sites. The concentration of these sites is directly affected by the partial pressure of the gas phase oxygen. It can be concluded if propane and oxygen have less contact with each other, the selectivity to desired products increases. Accordingly two zone fluidized bed and circulating fluidized bed are proposed for this reaction. | ||
کلیدواژهها [English] | ||
Acrylic acid, Propane, Kinetic modeling, Oxygen effect, Mo1V0.3Te0.23Nb0.12Ox | ||
مراجع | ||
[1] B. Silberov, M. Fathi, and A. Holmen, “Oxidative dehydrogenation of ethane and propane at short contact time”, Appl Catal A, 276, 1-2, November2004, pp.17-28. [2] J. Wu, H. Yang, Y. Fan, B. Xu, andY. Chen, “Lattice oxygen properties of BiMo based catalysts for selective oxidation of propane to acrolein”, J Fuel Chem Technol, 35, 6, December 2007, pp. 684-690. [3] H. S. Jiang, X. Mao, S. J. Xie, and B. K. Zhong, “Partially reduced heteropoly compound catalysts for the selective oxidation of propane” J Mol Catal A, 185, 1-2, July 2002, pp. 143-149. [4] F. C. Jentoft, J. Kro¨hnert, J. Melsheimer, T. Ressler, O. Timpe, J. Wienold, and R. Schlo¨gl, “The structure of molybdenum-heteropoly acids under conditions of gas-phase selective oxidation catalysis: a multi-method in situ study” Appl Catal A, 256, 1-2, December 2003, pp. 291-317. [5] Xinlin Tu, Masao Niwa, Akio Arano, Yoshinori Kimata, Eiichi Okazaki and Souichi Nomura, “Controlled silylation of MoVTeNb mixed oxide catalyst for the selective oxidation of propane to acrylic acid”, Applied Catalysis A: General, 549, 5, January 2018, pp. 152-160.
[6] Aixin Xu, Yang Wang, Hanqing Ge, Shu Chen, Yanhua Li and Weimin Lu, “An outstanding Cr-doped catalyst for selective oxidation of propane to acrylic acid”, Chinese Journal of Catalysis, 34, 12, December 2013, pp. 2183–2191. [7] T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, EP 0 608 838 A2(1994). [8] M. M. Lin, “Complex metal oxide catalysts for selective oxidation of propane and derivatives: II. The relationship among catalyst preparation, structure and catalytic properties” Appl Catal A, 250, 2, September 2003, pp. 287-303. [9] Jungwon Woo, Urvi Sanghavi, Anne Vonderheide and Vadim V. Guliants, “A Study of M1/M2 Phase Synergy in the MoVTe(Nb,Ta)O Catalysts for Propane Ammoxidation to Acrylonitrile”, Applied Catalysis A: General, 515, April 2016, pp. 179-189. [10] M. Ai, “Oxidation of propane to acrylic acid on V2O5&-P2O5-based catalysts”, J Catal, 101, 2, October 1986, pp. 389-395. [11] L. Luo, J. A. Labinger, and M. E. Davis, “Comparison of Reaction Pathways for the Partial Oxidation of Propane over Vanadyl Ion-Exchanged Zeolite Beta and Mo1V0.3Te0.23Nb0.12Ox”, J Catal, 200, 2, June 2001, pp. 222-231. [12] B. Zhu, H. Li, W. Yang, and L. Lin, “Effects of reaction conditions on the selective oxidation of propane to acrylic acid on Mo–V–Te–Nb oxides”, Catal Today, 93-95, 1, September 2004, pp. 229-234. [13] E. K. Novakova, J. C. Vedrine, and E. G. Derouane, “Propane Oxidation on Mo–V–Sb–Nb Mixed-Oxide Catalysts: 1. Kinetic and Mechanistic Studies”, J Catal, 211, 1, October 2002, pp. 226-234. [14] G. Landi, L. Lisi, and J.C. Volta, “Role of water in the partial oxidation of propane to acrylic acid” Catal. Today, 91-92, July 2004, pp. 275-279. [15] R. Ramos, M. Men_endez, and J. Santamaria, “Oxidative dehydrogenation of propane in an inert membrane reactor” Catal. Today, 56, 1-3, February 2000, pp. 239–245. [16] D. Stern, and R. K. Grasselli, “Reaction Network and Kinetics of Propane Oxydehydrogenation over Nickel Cobalt Molybdate” J Catal, 167, 2, April 1997, pp. 560-569. [17] R. K. Widi, S. Bee Abd Hamid, and R. Schlogl, “Kinetic investigation of propane oxidation on diluted Mo1–V0.3–Te0.23–Nb0.125–O x mixed-oxide catalysts”, Reac Kinet Mech Cat Lett, 98, 2, December 2009, pp. 273-286. [18] Golshan Mazloom, and Seyed Mehdi Alavi, “Kinetic study of selective propane oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox using the genetic algorithm”, Reaction kinetics, mechanism and catalysis, 110, 2, December 2013, pp. 387-403. [19] گلشن مظلوم و سید مهدی علوی املشی، "مدلسازی سینتیکی تبدیل مستقیم پروپان به اکریلیک اسید بر روی کاتالیست Mo1V0.3Te0.23Nb0.12Ox در حضور و عدم حضور بخار آب با استفاده از الگوریتم ژنتیک"، مجله شیمی کاربردی، شماره 46، سال سیزدهم، بهار 1397، صفحه 122-101 [20] J. L. G. Fierro, M. Olga Guerrero-Perez and M. A. Ba˜nares, “Structural changes occurring at the surface of alumina-supported nanoscaledMo–V–Nb–(Te)–O catalytic system during the selective oxidation of propane toacrylic acid”, Applied Catalysis A: General, 406, 1-2, October 2011, pp. 34– 42. [21] نکیسا یعقوبی، رامین مغربی و سیاوش سید نژادیان، "سینتیک و پدیدههای انتقال در جفت شدن اکسایشی متان: مدلسازی CFD در مقیاس دانهای"، مجله مدلسازی در مهندسی، شماره 39، سال 12، زمستان 1393، صفحه 97-87 [22] D. C. Creaser, B. Andersson, R. R. Hudgins, and P. L. Silveston, “Kinetic Modelling of Oxygen Dependence in Oxidative Dehydrogenation of Propane”, The Canadian journal of chemical engineering, 78, February 2000, pp.182-193. [23]مهدی بابایی و مسعود ملائی، "بهینه سازی چند هدفه قابهای خمشی بتن آرمه با استفاده از الگوریتم ژنتیک و روش جمع وزنی توابع هدف"، مجله مدلسازی در مهندسی، شماره 52، سال 16، بهار 1397، در دست چاپ [24]سامان احمدی و محمد تقی بطحایی، "مدلسازی و شبیهسازی راهبردهای بهینهی مدیریت انرژی در خودروهای هیبرید پیل سوختی"، مجله مدلسازی در مهندسی، شماره 50، سال 15، پاییز 1396، صفحه 16-1. [25] K. Omata, S. Kobayashia, J. Horiguchi, Y. Kobayashi, Y. Yamazaki, and M. Yamada, “Kinetic model of K–Ni/α-Al2O3 catalyst for oxidative reforming of methane determined by genetic algorithm” Appl Catal A, 425-426, May 2012, pp. 170-177. [26] G. Mazloom, and S. M. Alavi, “Role of water in the partial oxidation of propane to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox catalyst”, Iranian Journal of Catalysis, 4, 3, Summer 2014, pp. 149-155. [27] D. Creaser, B. Andersson, R. R. Hudgins, and P. L. Silverston, “Cyclic operation of the oxidative dehydrogenation of propane”, Chem. Eng. Sci., 54, 20, October 1999, pp.4437–4448. [28] J. A. Dalmon, A. C. Lo´pez, D. Farrusseng, N. Guilhaume, E. Iojoiu, J. C. Jalibert, S. Miachon, C. Mirodatos, A. Pantazidis, M. R. Dassonneville, Y. Schuurman, and A. C. van Veen, “Oxidation in catalytic membrane reactors”, Applied Catalysis A: General, 325, 2, June 2007, pp. 198–204. [29] J. Wang, B. Ji, W. Chu, Sh. Zhan, L. Lin, W. Yang, “Bi4Cu0.2V1.8O11_d based electrolyte membrane reactor for selective oxidation of propane to acrylic acid”, Catalysis Today, 149, 1-2, January 2010, pp. 157-162. [30] P. Kölsch, Q. Smejkal, M. Noack, R. Schäfer, and J. Caro, “Partial oxidation of propane to acrolein in a membrane reactor – Experimental data and computer simulation”, Catalysis Communications, 3, 10, October 2002, pp. 465–470. [31] Golshan Mazloom, and Seyyed Mehdi Alavi, “Partial oxidation of propane over Mo1V0.3Te0.23Nb0.12Ox catalyst in a fluidized bed reactor”, Particulate science and technology, 33, 2, September 2015, pp. 204-212. [32] J. L. Dubois, D. Garrait, A. L. Gall, G. Bazin, and S. Serreau, “Method of preparing acrylic acid from propane in the absence of water” US patent 0,139,844 A1, June 2008. [33] J. L. Callahan, and R. K. Grasselli, “A selectivity factor in vapor-phase hydrocarbon oxidation catalysis”, AIChE J, 9, 6, November 1963, pp.755-760. [34] R. K. Grasselli, “Site isolation and phase cooperation: Two important concepts in selective oxidation catalysis: A retrospective”, Catalysis today, 238, December 2014, pp. 10-27.
| ||
آمار تعداد مشاهده مقاله: 911 تعداد دریافت فایل اصل مقاله: 293 |