
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,912 |
تعداد دریافت فایل اصل مقاله | 7,656,367 |
مدلسازی مدیریت منابع انرژی پراکنده در ریزشبکه با استفاده از روش توزیع شده | ||
مدل سازی در مهندسی | ||
مقاله 17، دوره 17، شماره 57، تیر 1398، صفحه 241-252 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.13739.1345 | ||
نویسندگان | ||
قاسم میربابایی رکنی1؛ مسعود رادمهر* 2؛ علیرضا ذکریازاده3 | ||
1دانشگاه علی آباد | ||
2دانشگاه علی اباد | ||
3دانشگاه علم و فناوری مازندران | ||
تاریخ دریافت: 08 بهمن 1396، تاریخ بازنگری: 11 اسفند 1397، تاریخ پذیرش: 14 اسفند 1397 | ||
چکیده | ||
سیستم مدیریت انرژی هوشمند به عنوان ابزاری قدرتمند برای مدیریت انرژی در سمت تقاضا و واحد های تولید بکار برده میشود. مدیریت بهینه انرژی در ریزشبکهها معمولا بهعنوان یک مساله بهینهسازی غیرخطی فرمول بندی میشود. بعلت ماهیت غیرخطی و گسسته مساله، حل آن به شیوه متمرکز نیازمند حجم بالای محاسبات در کنترل کننده مرکزی ریزشبکه دارد. در این مقاله، استراتژی مدیریت انرژی توزیع شده در ریزشبکه با دو روش ADMM و PCM پیشنهاد شده است بطوریکه کنترلکننده مرکزی و کنترل کنندههای محلی بطور مشترک، برنامه واحدی را بهینه میکنند. الگوریتمهای توزیع شده پیشنهادی بر روی ریزشبکه نمونه، مورد بررسی قرار گرفته است و عملکرد الگوریتمها از طریق مطالعه موردی، مقایسه شده است. نتایج نشان میدهد که روشهای توزیع شده پیشنهادی، هزینه بهرهبرداری را کاهش میدهد. نتایج شبیه سازی کارآیی بهتر و همگرایی سریع تر روشهای توزیع شده نسبت به روش متمرکز را نشان داده است. همچنین روش ADMM با تعداد تکرار کمتر و با هزینه بهره برداری کمتری نسبت به روش PCPM مساله اصلی را بهینه نمودهاست. | ||
کلیدواژهها | ||
مدیریت بهینه انرژی؛ الگوریتم توزیع شده؛ بهینه سازی محدب؛ ریزشبکه؛ پخش بار بهینه | ||
عنوان مقاله [English] | ||
Modelling of Distributed Energy Resources Management in Microgird using Distributed Algorithm | ||
نویسندگان [English] | ||
Ghasem Mirbabaee1؛ Masoud Radmehr2؛ Alireza Zakariazadeh3 | ||
1Aliabad University | ||
2Aliabad | ||
3University of Science and Technology of Mazandaran | ||
چکیده [English] | ||
The smart energy management system as a powerful tool is implemented to manage both demands and generation units. The energy management problem in a Microgrid is usually formulated as a nonlinear optimization problem. According to nonlinear and discreet nature of the problem, solving it by a centralized method requires high computational capabilities. In this paper, two distributed energy management system called Alternating Direction Method of multiplier Predictor (ADMM) and Corrector Proximal Multiplier (PCPM) have been investigated in order to jointly schedule the central controller as well as local controllers. The algorithms consider optimal power flow equations within the distributed energy management problem. The proposed distributed algorithms have been investigated on a typical MG and the efficiency of the algorithm has been evidenced through case studies. Simulation results show that the proposed method decreases the operational cost of MG. Also, the results evidenced that the ADMM has been converged faster and provided a lower operation cost if compared to the PCPM. | ||
کلیدواژهها [English] | ||
Distributed algorithms, Micro-grid, convex optimization, Energy Management system, energy scheduling | ||
مراجع | ||
[1] W. Shi, X. Xie, C.-C. Chu, and R. Gadh. (2015), “A distributed optimal energy management strategy for microgrids,” IEEE Trans.Smart Grid, vol. 6, no. 3, pp. 1810–1820. [2] Y. Zhang, N. Rahbari-Asr, J. Duan and M. Y. Chow. (2016), "Day-Ahead Smart Grid Cooperative Distributed Energy Scheduling With Renewable and Storage Integration," in IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1739-1748. [3] S. Choi, S. Park, D.-J.Kang, S.-J.Han, and H.-M. Kim. (2011), “A microgrid energy management system for inducing optimal demand response,” in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Brussels, Belgium, pp. 19–24. [4] C. Cecati, C. Citro, and P. Siano. (2011), “Combined operations of renewable energy systems and responsive demand in a smart grid,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 468–476. [5] S. Pourmousavi, M. Nehrir, C. Colson, and C. Wang. (2010), “Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization,” IEEE Trans. Sustain. Energy, vol. 1, no. 3, pp. 193–201. [6] P. Siano, C. Cecati, H. Yu, and J. Kolbusz. (2012), “Real time operation of smart grids via FCN networks and optimal power flow,” IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 944–952. [7] A. Dimeas and N. Hatziargyriou. (2005), “Operation of a multiagent system for microgrid control,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1447–1455. [8] Z. Wang, K. Yang, and X. Wang. (2013), “Privacy-preserving energy scheduling in microgrid systems,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1810–1820. [9] A. Dominguez-Garcia and C. Hadjicostis. (2011), “Distributed algorithms for control of demand response and distributed energy resources,” in Proc. IEEE Conf. Decis. Control Eur. Control (CDC), Orlando, FL, USA, pp. 27–32. [10] Y. Zhang, N. Gatsis, and G. Giannakis. (2013), “Robust energy management for microgrids with high-penetration renewables,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 944–953. [11] E. Crisostomi, M. Liu, M. Raugi, and R. Shorten. (2014), “Plug-and-play distributed algorithms for optimized power generation in a microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2145–2154. [12] W. Shi, N. Li, X. Xie, C.-C. Chu, and R. Gadh. (2014), “Optimal residential demand response in distribution networks,” IEEE J. Sel. Areas Commun, vol. 32, no. 7, pp. 1441–1450. [13] S. H. Low. (2014), “Convex relaxation of optimal power flow—Part I: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27. [14] S. H. Low. (2014), “Convex relaxation of optimal power flow—Part II: Exactness,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177–189. [15] N. Li, L. Chen, and S. H. Low. (2012), “Exact convex relaxation of OPF for radial networks using branch flow model,” in Proc. IEEE Int. Conf Smart Grid Commun. (SmartGridComm), Tainan, Taiwan, pp. 7–12. [16] L. Gan, N. Li, U. Topcu, and S. H. Low. (2012), “On the exactness of convex relaxation for optimal power flow in tree networks,” in Proc. IEEE Conf. Decis. Control Eur. Control (CDC), Maui, HI, USA, pp. 465–471. [17] L. Gan, N. Li, U. Topcu, and S. H. Low. (2014), “Optimal power flow in tree networks,” in Proc. IEEE Conf. Decis. Control Eur. [18] L. Gan, N. Li, U. Topcu, and S. H. Low. (2015) “Exact convex relaxation of optimal power flow in radial networks,” IEEE Trans. Autom.Control. [Online]. [19] Y. Zhang and G. B. Giannakis. (2014), "Efficient Decentralized Economic Dispatch for Microgrids with Wind Power Integration," 2014 Sixth Annual IEEE Green Technologies Conference, Corpus Christi, TX, pp. 7-12. [20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2010), “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning, vol. 3, no. 1, pp. 1–122. [21] X. Shen, L. Chen, Y. Gu and H. C. So. (2016), "Square-Root Lasso with Non convex Regularization: An ADMM Approach," in IEEE Signal Processing Letters, vol. 23, no. 7, pp. 934-938. [22] T. H. Chang. (2016), "A Proximal Dual Consensus ADMM Method for Multi-Agent Constrained Optimization," in IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3719-3734. [23] J. Cai, J. E. Braun, D. Kim and J. Hu. (2016), "A multi-agent control based demand response strategy for multi-zone buildings," 2016 American Control Conference (ACC), Boston, MA, pp. 2365-2372. [24] http://www.energyonline.com/Data/Generic. (2016), Data.aspx? Data ID=22&CAISO_Day-Ahead_Price.
] 25 [غلامی فرد، م.، امجدی، ن.، شریف زاده، ح. (1396)، پخش بار بهینه احتمالاتی به منظور تعیین قیمتهای حاشیهای محلی در حضور تولید بادی، مجله علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، سال 16، شماره 48. ] 26 [ارمغانی، ص.، امجدی، ن. (1393)، توزیع بار اقتصادی با در نظر گرفتن آلودگی در سیستم های قدرت چندناحیه ای با استفاده از الگوریتم بهینه سازی فاخته، مجله علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، سال 12، شماره 37. ] 27[امجدی، ن.، انصاری، م.ر. (1391)، برنامه ریزی کوتاه مدت نیروگاه های آبی و حرارتی در سیستم قدرت با در نظر گرفتن محدودیت های ایمنی سیستم و مسئله پایداری ولتاژ ، مجله علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، سال 10، شماره 28.
| ||
آمار تعداد مشاهده مقاله: 1,921 تعداد دریافت فایل اصل مقاله: 1,371 |