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Analytical solutions have been obtained for both conservative and non-conservative forms of 
one-dimensional transport and transport-dispersion equations applicable for pollution as a 
result of a non-conservative pollutant-disposal in an open channel with linear spatially 
varying transport velocity and nonlinear spatially varying dispersion coefficient on account 
of a steady unpolluted lateral inflow in accordance to the channel. A logarithmic 
transformation in the space variable has been applied in order to derive a general solution of 
the transport equation for spatially variable initial pollutant distribution and upstream time-
dependent pollutant concentration. The logarithmic transformation reduces both 
conservative and non-conservative forms of transport-dispersion equation to a form with 
constant coefficients that is solvable by analytical methods. An analysis of these solutions 
indicates that only the solution of a conservative form of the governing equation yields 
appropriate results that are conceptually acceptable in a real physical situation. 

The solution lends to analyze the damping effect of such transport on the pollutant with an 
initial Gaussian profile, in contrast with that of the initial quasi-Gaussian profile available in 
the literature. It is noteworthy to mention that the solution of conservative form of the 
transport equation implies that mass of the non-conservative pollutant in the channel 
decreases with an increase in time, and finally reaches to a constant value that is a ratio of 
product of the transport velocity coefficient and upstream concentration to the coefficient of 
decay of the pollutant. 
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1. Introduction    

Rapid industrialization and urbanization have started to 

grow to number and levels of chemical pollutants, which  

find their  way in the water bodies and move 

accompanying the water  current downstream  of their 

discharge point. The spread of pollutants is governed   by 

the transport and dispersion   processes for conservative 

substances and solutions of the same have been employed 

by many authors (van Genucheten and Alves [1], 

Chrysikopoulos and Sim [2], Singh et al. [3-4], Kumar et 

al. [5]) in connection with ground water flow pollution. 

Moreover, first-order decay of   the pollutant is 

contemplated for non-conservative pollutants in river 

streamflow pollution as well (van Genuchten et al. [6]). 

The decay of organic matter induced from the urban and 
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domestic wastes is one such example which is interpreted 

by the first-order decay of Biological Oxygen Demand 

(Streeter and Phelps [7]).  Proper  prediction  of  

concentration  of   the pollutants in accordance with the 

channel at different times can be made  with the  help  of  

accurate  computation of the solution  of  the  basic 

transport-dispersion equation. Such a prediction is 

essential for water quality management in open channels 

from the viewpoint of locating   the waste outfalls for 

disposal of   industrial effluents so that they can produce 

the least detrimental effect on the downstream reach of the 

channel. 

Analytical solutions to the above-mentioned problem 

are generally   available   for constant transport velocity   

and dispersion coefficient with constant upstream and 
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downstream boundary conditions. Some efforts have been 

made in order to acquire analytical solutions for time-

dependent and variable diffusion coefficients (Basha and 

El-Habel [8]; Philip [9]; Zoppou and Knight [10-11]; 

Pérez and Skaggs [12]). Such solutions have been 

introduced by Shukla [13] for transport-dispersion of non-

conservative pollutants in rivers under time-dependent 

periodic waste disposal at the upstream end. The solutions 

of transport and transport-dispersion problems of 

conservative pollutants for spatially variable dispersion 

coefficient have been presented by Zoppou and Knight [11] 

and Pérez and Skaggs [12]. The former derived the 

solution  when  the flow  velocity  is  a  linear function   of   

distance  and  the  dispersion   coefficient  is proportional  

to  the square of the velocity as applicable  for  a channel 

flow being augmented by steady unpolluted lateral  inflow 

of groundwater and the solution may be applied for flows 

in circular tubes and between parallel plates due to an 

existence of similar relationship between flow velocity and 

dispersion coefficient as well.  Pérez and Skaggs [12] 

developed a solution in a finite spatial domain for linearly 

increasing dispersion coefficient in groundwater transport-

dispersion. 

  Nevertheless, these solutions are not beneficial for the 

computation of variation  of  water  quality constituents as 

BOD (Biochemical Oxygen Demand) concentration  as a 

result of the release of an organic pollutant in open 

channels or any other non-conservative pollutant because  

of  the first-order  decay  term  being  ignored in the 

equation.  Consequently, in this paper, solutions have been 

obtained for transport-dispersion of non-conservative 

pollutants for linear   transport velocity in distance and   

dispersion coefficient proportional to the square of the 

distance.  Both conservative and non-conservative forms 

of transport-dispersion problem applicable for unsteady 

variation of BOD in open channels have been solved 

analytically and compared with the results of Zoppou and 

Knight [11] when BOD decay rate is negligible. 

 

2. TRANSPORT EQUATION 

Although the transport equation studied here is 

applicable for the non-conservative pollutant, both 

conservative and non-conservative forms of the transport 

equation would be deliberated in order to interpret the role 

of convection. Moreover, since the upstream boundary 

condition and initial condition would greatly affect the 

movement of pollutant front as a result of spatially variable 

convective velocity, the investigation of all these would be 

in the line of the present study. 

 

2.1 Conservative form 

Firstly, we contemplate the conservative form of the 

transport equation for non-conservative pollutant which is 

transported with spatially variable transport velocity u(x) 

as  

𝜕𝐶

𝜕𝑡
+
𝜕

𝜕𝑥
[𝐶𝑢(𝑥)] = −𝑘𝐶, 0 < 𝑥 < ∞ (1) 

 
Figure 1. Comparison of Analytical Solutions of Transport Equation 

having Constant Velocity, Eq. (9) with the Non-conservative, Eq. (12) 
and the Conservative, Eq. (6) both having Spatially Variable Velocity. 

 

where 𝐶(𝑥, 𝑡)  is the cross-sectional averaged 

concentration of the pollutant at time 𝑡  and distance 𝑥 

from the upstream boundary; k= first-order decay rate of 

the pollutant; 𝑢(𝑥)  is cross-sectional averaged flow 

velocity, here taken to be a linear function of distance as 

𝑢(𝑥) = 𝑢0 𝑥, where  𝑢0 is a constant. (2) 

The initial and boundary conditions for (1) are 

prescribed as below: 

𝐶(𝑥, 0) =  𝑓(𝑥), 𝑥 > 𝑥0 (3) 

𝐶(𝑥0, 𝑡) =  𝑔(𝑡), 𝑡 > 0 (4) 

where 𝑓(𝑥) is the initial distribution of the pollutant in 

the channel and 𝑔(𝑡) is time-dependent pollution variation 

at upstream of the channel.  

Since equation (1) differs from that of Zoppou and 

Knight [11] in that it includes also the decay term   −𝑘𝐶 

on the right-hand side, a substitution of 𝑥 =  𝑒𝑦 in (1) can 

transform it into a transport equation with constant 

coefficients, which can be solved for transformed initial 

and upstream conditions (Appendix A). Moreover, 

substituting  𝑦 =  𝑙𝑛 𝑥  in such a solution, it yields the 

solution of conservative form (1) under conditions (3) and 

(4) as  

𝐶(𝑥, 𝑡) =

{
 
 

 
 𝑒−(𝑘+𝑢0)𝑡𝑓(𝑥𝑒−𝑢0𝑡), 𝑙𝑛 (

𝑥

𝑥0
) > 𝑢0𝑡

(
𝑥0
𝑥
)
1+

𝑘

𝑢0
𝑔(𝑡 −

ln (
𝑥

𝑥0
)

𝑢0
) , 𝑙𝑛 (

𝑥

𝑥0
) ≤ 𝑢0𝑡

 (5) 

In order to deduce some results as the effects of the 

variable velocity field on step profile-concentration 

introduced upstream of the channel and initial Gaussian 

distribution, in the following are discussed briefly two 

solutions derived as particular cases from (5). 

Upstream boundary condition: step profile 

Taking 𝑓(𝑥) = 0, 𝑔(𝑡) = 𝐶0 the solution (5) for non-

conservative pollutant is written as 

𝐶(𝑥, 𝑡) = 𝐶0(
𝑥0
𝑥
)
1+

𝑘

𝑢0  𝐻[𝑢0𝑡 − 𝑙𝑛(𝑥/𝑥0]           (6) 

where Heaviside unit step function is such that 

𝐻 [𝑢0𝑡 − 𝑙𝑛 (
𝑥

𝑥𝑜
)] = 1 for 𝑥 ≤ 𝑥0 𝑒

𝑢0𝑡, and 0 otherwise. 

By setting 𝑥0 = 1 and 𝑘 =  0, (6) can be reduced to the 

solution introduced by Zoppou and Knight [11] under 

similar conditions for the conservative pollutant.  
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Figure 1 reveals the concentration profile using (6) for 

𝑢0 =  1, 𝑥0  =  1, 𝐶0  =  100 and 𝑡 =  2, which decreases 

along the channel. The concentration front is found to 

reach a maximum distance of   𝑥 =  𝑥0 𝑒
𝑢0𝑡 . A rapid 

decrease in the concentration is attributed to unpolluted 

lateral inflow to the channel as well as the first-order decay 

of the non-conservative pollutant. 

Taking 𝑥0  =  1 where the pollutant enters the channel, 

the total mass of pollutant say 𝑀1 in the channel at time 

𝑡 is given by: 

𝑀1 = ∫ 𝐶(𝑥, 𝑡)𝑑𝑥 =
∞

1
∫ 𝐶0𝑥

−1−
𝑘

𝑢0𝑑𝑥 =
𝑒𝑢0𝑡

1

−
𝐶0𝑢0

𝑘
[𝑥
−
𝑘

𝑢0]
𝑥=1

𝑒𝑢0𝑡

  

𝑀1 =
𝐶0𝑢0
𝑘

(1 − 𝑒−𝑘𝑡)   

(7) 

For a conservative substance, 𝑘 is negligibly small and 

therefore, total mass, in this case, becomes as follows: 

𝑀1  = 𝐶0𝑢0  𝑙𝑖𝑚
𝑘→0

1 − 𝑒−𝑘𝑡

𝑘
= 𝐶0𝑢0𝑡  

which is also the mass of pollutants entering the 

channel at  any time  t.  This  indicates that the  

conservative  form  of  transport equation  for  conservative 

pollutant conserves the mass  of  the pollutant,  a  result 

also deduced by Zoppou and Knight [11] for the 

conservative pollutant.  It is observed from (7) that the 

mass of non-conservative pollutants is not conserved even 

in the conservative form of the transport-equation as is also 

expected physically for a non-conservative pollutant. The 

mass, in this case, keeps on decreasing as time advances 

and reduces finally to 
𝐶0𝑢0

𝑘
  as time becomes infinitely 

large.  

Moreover, the transport equation with constant 

transport velocity for a non-conservative pollutant is given 

by: 

𝜕𝐶

𝜕𝑡
+ 𝑢0

𝜕𝐶

𝜕𝑥
= −𝑘𝐶, 0 < 𝑥 < ∞ , 𝑡 > 0 

 

which has the general solution as follows: 

 

𝐶(𝑥, 𝑡) = {

𝑒−𝑘𝑡𝑓(𝑥 − 𝑢0𝑡), 𝑥 − 𝑥0 > 𝑢0𝑡

𝑒
−𝑘(𝑥−𝑥0)

𝑢0 𝑔 (𝑡 −
𝑥 − 𝑥0
𝑢0

) , 𝑥 − 𝑥0 ≤ 𝑢0𝑡
 

(8) 

For constant step profile condition 𝐶(𝑥0, 𝑡) = 𝐶0 and 

initial condition  𝐶(𝑥, 0)=0, the solution (8) reduces to  

 

𝐶(𝑥, 𝑡) = 𝐶0 𝑒
−𝑘(𝑥−𝑥0)

𝑢0  𝐻(𝑢0𝑡 − 𝑥 + 𝑥0) 
(9) 

where 𝐻(𝑢0𝑡 − 𝑥 + 𝑥0) = 1 for 𝑥 < 𝑥0 + 𝑢0𝑡,  and 0 

otherwise. 

The solution profile  (9), as plotted in Fig. 1 reveals that 

the step profile introduced at upstream of the channel 

decreases exponentially as it advances with transport 

velocity 𝑢0, and travels a distance 𝑥 =  𝑥0  +  𝑢0𝑡  in time 

𝑡. The decrease in the concentration with an increase in the 

distance is caused by the first-order decay of the pollutant. 

As it is reported from Fig. 1 that the concentration obtained 

from the solution of transport equation in conservative 

form decreases much faster with its front also traveling 

faster than that of the concentration predicted by transport 

equation with constant velocity. 

2.2 Non-conservative form 

The   non-conservative form of the transport equation 

for non-conservative pollutant with transport velocity 

increases linearly with distance is given by: 

𝜕𝐶

𝜕𝑡
+ 𝑢0𝑥

𝜕𝐶

𝜕𝑥
= −𝑘𝐶, 0 < 𝑥 < ∞ (10) 

Proceeding on the same lines as for the conservative 

form of the transport equation, the solution of non-

conservative form (10) under conditions (3) and (4) is 

derived as follows: 

𝐶(𝑥, 𝑡) =

{
 
 

 
 𝑒−𝑘𝑡𝑓(𝑥𝑒−𝑢0𝑡), 𝑙𝑛 (

𝑥

𝑥0
) > 𝑢0𝑡

(
𝑥0
𝑥
)

𝑘

𝑢0
𝑔(𝑡 −

ln (
𝑥

𝑥0
)

𝑢0
) , 𝑙𝑛 (

𝑥

𝑥0
) ≤ 𝑢0𝑡

 (11) 

Upstream boundary condition: step profile 
For the step profile condition 𝐶0 at upstream boundary 

and initially unpolluted situation, Eq. (11) gives the 

solution as follows: 

𝐶(𝑥, 𝑡) = 𝐶 (
𝑥0
𝑥
)

𝑘

𝑢0
 𝐻 [𝑢0𝑡 − 𝑙𝑛 (

𝑥

𝑥0
)] (12) 

from which one can also get the solution of Zoppou and 

Knight (1997) by setting 𝑘 = 0. 
The solution profile for (12) is manifested in Fig. 1. It 

decreases with an increase in distance, and its front is 

located at  𝑥 =  𝑥0 𝑒
𝑢0𝑡 . The decrease being only as a 

result of the first-order decay is not as pronounced as that 

of the conservative form. 

The mass of pollutants say 𝑀2 in the channel for this 

case at time 𝑡 is obtained as follows: 

𝑀2 = ∫ 𝐶(𝑥, 𝑡)𝑑𝑥

∞

1

= ∫ 𝐶0𝑥
−𝑘/𝑢0𝑑𝑥

𝑒𝑢0𝑡

1

=
𝐶0

1 −
𝑘

𝑢0

𝑥
1−

𝑘

𝑢0|
1

𝑒𝑢0𝑡

 

= 
𝐶0𝑢0

𝑘−𝑢0
[1 − 𝑒−(𝑘−𝑢0)𝑡]   𝐶0𝑢0𝑡, for  𝑘𝑢0. 

(13) 

 

which displays that mass is not conserved. However, if 

𝑘 = 𝑢0, it can be verified that 𝑀2 = 𝐶0𝑢0𝑡, i.e., mass is 

conserved. In case  𝑢0 > 𝑘, it is seen from (13) that mass  

𝑀2   keeps on increasing exponentially with time. Since 

𝑘 = 0 for conservative substance and 𝑢0 > 0, we note that 

this case is not physically feasible for conservative 

pollutants. Furthermore, the value of  𝑘  is generally small 

for most of the decaying pollutants; consequently it is most 

unlikely that  𝑢0 < 𝑘. This indicates that even for a non-

conservative pollutant, the non-conservative form of 

transport equation cannot give physically plausible 

solutions.  

Having analyzed the effect of the upstream step profile 

on the propagation of pollution front, in the following, we 

inspected the effect of convective velocity on the initial 

Gaussian profile for both conservative and non-

conservative form of the transport equation. 

 

2.3 Initial condition: Gaussian Profile  

In the absence of any pollutant concentration at 

upstream, now we analyze the effect of transport-
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dispersion on the initial condition taken as a Gaussian 

profile.  

𝐶(𝑥, 0) = 𝑓(𝑥) =
𝑀0

𝜎√2𝜋
𝑒
[−
(𝑥−𝑥0)

2

2𝜎2
]
 (14) 

in the 𝑥 − 𝑡 plane with a peak concentration located at 

𝑥 = 𝑥0. Then, the solution given by (5) takes the form: 

𝐶(𝑥, 𝑡) =
𝑀0

𝜎√2𝜋
𝑒
[−
(𝑘+𝑢0)𝑡+(𝑥𝑒

−𝑢0𝑡−𝑥0)
2

2𝜎2
]
   (15) 

This equation indicates that peak concentration 

𝐶(𝑥𝑝, 𝑡) occurs at 𝑥𝑝 = 𝑥0 𝑒
𝑢0𝑡 and is given by  

𝐶(𝑥, 𝑡) =
𝑀0

𝜎√2𝜋
𝑒−(𝑘+𝑢0)𝑡   (16) 

This also indicates that the peak concentration decays 

exponentially with an increase in time even for 

conservative pollutants (𝑘 = 𝑜).  

Total mass under profile (15) is given by  

𝑀 = ∫ 𝐶(𝑥, 𝑡)
∞

0
𝑑𝑥 =

𝑀0𝑒
−(𝑘+𝑢0)𝑡

𝜎√2𝜋
∫ 𝑒

[−
(𝑥𝑒−𝑢0𝑡−𝑥0)

2

2𝜎2
]
𝑑𝑥

∞

−∞
=𝑀0𝑒

−𝑘𝑡 

Since for 𝑘 = 0 , this becomes a constant  𝑀0 , it 

persuades that the mass remains conserved for the 

conservative pollutant. The same is not true for the non-

conservative pollutant ( 𝑘 ≠ 0 ) as the mass keeps on 

decreasing as time advances. 

The first moment of the profile is given by  

𝑀3 = ∫ 𝑥𝐶(𝑥, 𝑡)

∞

0

𝑑𝑥

=
𝑀0𝑒

−(𝑘+𝑢0)𝑡

𝜎√2𝜋
∫ 𝑥𝑒

[−
(𝑥𝑒−𝑢0𝑡−𝑥0)

2

2𝜎2
]
𝑑𝑥

∞

−∞

 

=𝑀0𝑥0𝑒
−(𝑢0−𝑘)𝑡 . 

Thus, the centroid of the concentration profile is given 

by  

𝑥 =
∫ 𝑥𝐶(𝑥, 𝑡)
∞

0
𝑑𝑥

∫ 𝐶(𝑥, 𝑡)
∞

0
𝑑𝑥

= 𝑥0𝑒
𝑢0𝑡 

The above expression indicates that the centroid moves 

faster than the peak concentration (given by Eq. (16)) of 

the profile for both conservative and non-conservative 

pollutants. The centroid has the same location as the peak 

concentration for a Gaussian profile, as a similar result 

derived by Zoppou and Knight (1997) for a quasi-

Gaussian profile in case of the conservative pollutant. 

The concentration profiles at  𝑡 =  2, 4, 6, 8, and  10  
as computed by applying Eq. (15) with 𝑢0  =  0.2, 𝑥0  =
 1, 𝐶0  =  20  and 𝜎 =  0.2  for an initial Gaussian 

distribution are compared in Fig.2 which indicates that the 

profiles and corresponding mass decay exponentially as 

time increases, as mentioned in (15) and the expression for 

mass M given above as well. Here, the decay of the 

profiles is more pronounced as a result of both transport 

velocity and the first-order decay playing their roles 

simultaneously than the decay of pollutant-mass that is 

attributed only to the first-order decay of the pollutant. 

Moreover, for the Gaussian type initial condition (14), 

the solution (11) of the non-conservative form of transport 

equation (10) is written as follows: 

𝐶(𝑥, 𝑡) =
𝑀0

𝜎√2𝜋
𝑒
[−
𝑘𝑡+(𝑥𝑒−𝑢0𝑡−𝑥0)

2

2𝜎2
]
    (17) 

The concentration profile for Eq. (17) has a peak 

concentration say 𝐶′(𝑥𝑝, 𝑡) at 𝑥𝑝  =  𝑥0𝑒
𝑢0𝑡   given by: 

   𝐶′(𝑥, 𝑡) =
𝑀0

𝜎√2𝜋
𝑒−𝑘𝑡  (18) 

 

Figure 2. Concentration Profiles for Transport of a Gaussian Profile 

in a spatially variable flow field using Conservative form of Transport 

Eq. (1). 

 

Figure 3. Concentration Profiles obtained by Eq. (17) for Transport 

of an Initial Gaussian Profile in a spatially variable flow field using 

non-conservative form of Transport Equation (10). 

 

This peak concentration is attenuated (exponentially 

due to  𝑒−𝑘𝑡  ) with the advancement in time for non-

conservative substances, but it is not affected by 

conservative substances (k=0). 

Total mass under the profile (17) obtained by 

integrating the whole profile with respect to x is  

∫ 𝐶(𝑥, 𝑡)
∞

0
𝑑𝑥 =

𝑀0𝑒
−𝑘𝑡

𝜎√2𝜋
∫ 𝑒

[−
(𝑥𝑒−𝑢0𝑡−𝑥0)

2

2𝜎2
]
𝑑𝑥

∞

−∞
 = 

𝑀0𝑒
(𝑢0−𝑘𝑡). 

The expression indicates that although the mass is 

conserved initially, generally, it is not conserved even for 

conservative pollutants.  Furthermore, for most of the non-

conservative substances we have 𝑢0 > 𝑘,  due  to which 

total mass will keep on rising exponentially with time, thus 

demonstrating that non-conservative  form does  not  yield 

physically feasible results for non-conservative pollutants 

as well.  

  The solution profiles obtained by applying Eq. (17) 

with 𝑢0 =  0.2,     𝑥0 = 1,  𝐶0 = 20  and 𝜎 = 0.2  at  𝑡 =
 0, 2, 4, 6, 8 and 10 are plotted as Fig. 3. The profiles are 

observed decreasing, and the mass is increasing 

exponentially with an increase in time, as is evident from 

(17) and the discussion above about mass as well. 
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3. TRANSPORT-DISPERSION QUATION 

The unsteady state transport-dispersion equation for 

non-conservative pollutants such as BOD uniformly 

distributed across the cross-section and varying along the 

longitudinal direction 𝑥 > 𝑜  in open channel is given by:  
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2

𝜕𝑥2
− 𝑘𝐶, 0 < 𝑥 < ∞   (19) 

where  𝑢  = cross-sectional averaged velocity; 𝐷 = 

dispersion constant and  𝐶(𝑥, 𝑡)  = cross-sectional  

averaged  concentration  of a pollutant at  time  𝑡  and 

distance 𝑥 from the upstream boundary. 

In case, there exists a lateral entry of steady unpolluted 

flow distributed in accordance with the entire length of the 

channel (e.g., a steady inflow of an aquifer), the 

conservation of the mass of the non-conservative pollutant 

can be expressed in both conservative and non-

conservative forms of transport-dispersion equation as 

given below. 

 

3.1 Conservative form of transport-dispersion 
equation 

The conservative form of transport-dispersion equation 

is given by  
𝜕𝐶

𝜕𝑡
+
𝜕

𝜕𝑥
[𝐶𝑢(𝑥)] =  

𝜕

𝜕𝑥
[𝐷(𝑥)

𝜕

𝜕𝑥
𝐶] –  𝑘 𝐶, 𝑥0𝑥∞  (20) 

where  𝑢(𝑥)  and  𝐷(𝑥)  for lateral inflow into the 

prismatic channel are given by 

 𝑢(𝑥) =  𝑢0𝑥, 𝐷(𝑥)  =  𝐷0 𝑥
2 (21) 

both  𝑢0  and 𝐷0  being the positive constants having 

dimension 𝑇−1.  

Deliberating that a slug of pollutant is released at the 

upstream end such that a constant length (say 𝑥0) of the 

channel from the upstream end has always a constant 

concentration say Co in an initially unpolluted river, the 

following initial and boundary conditions are prescribed 

for Eq.(20). 

𝐶(𝑥, 0) =  0  for  𝑥 > 𝑥0 (22) 

𝐶(𝑥0, 𝑡) =  𝐶0 for 𝑡 >  0 (23) 

𝐶(𝑥, 𝑡)  =  0 as 𝑥  ∞ for 𝑡 0 (24) 

A substitution 𝑥 = 𝑒𝑦 into (20) with 𝑢(𝑥) and 𝐷(𝑥) as 

given by (21) transforms it into a transport-dispersion 

equation with constant coefficients (Zoppou and Knight, 

[11]) that can be solved by Fourier transform method 

(Sneddon [15]), and a back substitution 𝑦 = 𝑙𝑛 𝑥  in it  

(Appendix B) gives the solution of equation (20) under 

conditions (22)-(24)  as follows: 

𝐶(𝑥, 𝑡)  =

 
𝐶0

2
{(

𝑥0

𝑥
)
𝜇1
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
−𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
]  

                        

+(
𝑥

𝑥0
)
𝜇2
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
+𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
]} 

(25) 

where 𝜇1, 𝜇2 = −
−√(𝑢0+𝐷0)

2+4𝐷0𝑘±(𝑢0−𝐷0)

2𝐷0
  (26) 

It is observed that for 𝑘 = 0 that  𝜇1 = 1,  𝜇2 =
𝑢0

𝐷0
  and 

that the solution (25) reduces to the solution for transport-

dispersion of conservative contaminants. 

The concentration profile obtained by applying (25) 

with 𝑢0 = 1,  𝐷0 = 0.02, 𝑥0 = 1, 𝐶0 = 100 and 𝑡 = 2 is 

plotted in Fig. 4 that exhibits a continuous decrease of 

concentration in conformity with the direction of the flow 

in the channel. The decrease is more pronounced here than 

that of the corresponding case of no dispersion (compare 

with equation 6 in Fig.1). This implies that the variable 

dispersion field plays a significant role in the fast spread 

and reduction of the pollutant level. 

The analytical solution for corresponding transport-

dispersion equation (19) for non-conservative pollutant 

with constant transport velocity 𝑢 = 𝑢0  and dispersion 

coefficient 𝐷 = 𝐷0  is given by: 

𝐶(𝑥, 𝑡) =  
𝐶0

2
{𝑒𝜆1(−𝑥+𝑥0)𝑒𝑟𝑓𝑐 [

𝑥−𝑥0−𝑡√𝑢0
2+4𝐷0𝑘

√4𝐷0𝑡
] 

+𝑒𝜆2(𝑥−𝑥0)𝑒𝑟𝑓𝑐 [
𝑥−𝑥0+𝑡√𝑢0

2+4𝐷0𝑘

√4𝐷0𝑡
]} 

(27) 

where 𝜆1, 𝜆2 = −
−√𝑢0

2+4𝐷0𝑘±𝑢0

2𝐷0
 (28) 

For 𝑘 =  0 as applicable to conservative pollutants, Eq. 

(27) yields the same solution as achieved by Zoppou and 

Knight [11] and de Marsily [4], The concentration profile 

using Eq. (27) with 𝑢0 = 1, 𝑥0 = 1, 𝐶0 = 100 and  𝑡 = 2 

is also plotted in Fig 4, which indicates a rapid decrease of 

the concentration and farther spread of the pollutant 

accompanying channel than that of the case when no 

dispersion is contemplated (see the profile for equation 9 

in Fig. 1). 

 

3.2 Non-conservative form of transport-
dispersion equation  

The non-conservative form of transport- dispersion 

equation  for non-conservative pollutant can be written as 

follows: 

𝜕𝐶

𝜕𝑡
+ 𝑢0𝑥

𝜕𝐶

𝜕𝑥
= 𝐷0𝑥

2  
𝜕2𝐶

𝜕𝑥2
–  𝑘 𝐶, < 𝑥0 𝑥 ∞, 𝑡 > 0 (29) 

Substituting 𝑥 = 𝑒𝑦 in (29), we get  
𝜕𝐶

𝜕𝑡
+ (𝑢0 + 𝐷0)

𝜕𝐶

𝜕𝑦
= 𝐷0  

𝜕2𝐶

𝜕𝑦2
–  𝑘 𝐶, 0 < 𝑥0 𝑥 ∞, 𝑡 > 0      (30) 

This equation is in contrast with that of Zoppou and 

Knight ([11]) who computed the  second term as 𝑢0
𝜕𝐶

𝜕𝑦
 

only probably by missing the term 𝐷0
𝜕𝐶

𝜕𝑦
 while substituting 

𝑦 = 𝑙𝑛 𝑥  in 𝐷0𝑥
2  
𝜕2𝐶

𝜕𝑥2
  to get 𝐷0  

𝜕2𝐶

𝜕𝑦2
−𝐷0

𝜕𝐶

𝜕𝑦
 . Thus, 

proceeding in the same way as previously, the  solution of  

(30)  under transformed initial and boundary conditions  

corresponding to (23) and (24)  is derived as follows:  

 
Figure 4. Comparison of Analytical Solutions of Transport-dispersion 

Equation having Constant Velocity and Dispersion Coefficient, Eq. (27) 
with the Non-conservative, Eq. (33); and the Conservative, Eq. (25) 

both having Spatially Variable Velocity and Dispersion Coefficient. 
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𝐶(𝑥, 𝑡)  =

 
𝐶0

2
{𝑒𝜈1(−𝑦+𝑦0)𝑒𝑟𝑓𝑐 [

𝑦−𝑦0−𝑡√(𝑢0+𝐷0)
2+4𝐷0𝑘

√4𝐷0𝑡
]     

+𝑒𝜐2(𝑦−𝑦0)𝑒𝑟𝑓𝑐 [
𝑦−𝑦0+𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
]} 

(31) 

𝑤ℎ𝑒𝑟𝑒 𝜈1, 𝜈2

= −
−√(𝑢0 + 𝐷0)

2 + 4𝐷0𝑘 ± (𝑢0 + 𝐷0)

2𝐷0
 

(32) 

On substituting   𝑦 =  𝑙𝑛 𝑥 , we get the analytical 

solution of (29) under conditions (22)-(24) as follows: 

𝐶(𝑥, 𝑡)

=  
𝐶0
2
{(
𝑥0
𝑥
)
𝜐1
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
− 𝑡√(𝑢0 +𝐷0)

2 + 4𝐷0𝑘

√4𝐷0𝑡
] 

 +(
𝑥

𝑥0
)
𝜐2
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
+𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
]} 

(33) 

 

For 𝑘 = 0, we get 𝜐1 and 𝜐2 =
𝑢0+𝐷0

𝐷0
 for which Eq. (33) 

reduces to the solution for conservative pollutants (as 

given by Eq. (21) in Zoppou and Knight [11] with the 

correction that 𝑢0  in their solution is to be replaced by 

𝑢0+𝐷0). 

The concentration profile using Eq. (33) is exhibited in 

Fig. 4, which displays a faster spread of pollutants than 

observed from the profiles for conservative form and the 

one having constant coefficients. However, the mass of 

pollutants in the channel is not conserved, as well as it 

noticed from (13) for the case of no dispersion. 

  

4. CONCLUSIONS 

Analytical solutions have been given for the problem of 

spatially variable transport and transport-dispersion of 

non-conservative pollutants, which include and generalize 

the solutions derived by Zoppou and Knight ([11]) for the 

conservative pollutant. The solution for the transport 

equation accepts spatially variable initial and time-

dependent boundary conditions. 

By observing the solution of conservative form of the 

transport equation for non-conservative pollutant entering 

the channel with constant upstream concentration, it is 

noted that mass of the pollutant in the channel decreases 

with an increase in time; and finally reaches to a constant 

value that is a ratio of product of the transport velocity 

coefficient and upstream concentration to the coefficient 

of decay of the pollutant. For the case of an initial Gaussian 

distribution of the pollutant and no upstream discharge of 

the pollutant, it is observed that the mass decreases as time 

advances and tends to zero as time tends to become 

infinitely large. This concurs with the similar result 

introduced by Zoppou and Knight ([11]) from the solution 

of a conservative form of transport-equation for quasi-

Gaussian distribution of a conservative pollutant. The 

results for non-conservative form of  transport equation 

manifest that although the pollutant intrusion length is the 

same as in the case of conservative form, mostly the mass 

of the pollutant would keep on rising with time; 

accordingly implying that the non-conservative  form of  

the basic equation does not govern a physically plausible 

situation even for the non-conservative pollutant. 

   The solutions of the transport-dispersion equation for 

some particular cases tend to those obtained by Zoppou 

and Knight [11] for negligibly small decay coefficient, and 

reiterate the same qualitative results regarding application 

of  the appropriate form viz. conservative form of the 

governing equation for non-conservative pollutants as well. 

However, by considering the solution, it is likely to be 

concluded that variable dispersion field in conservative 

form plays a dominant role in the fast-spreading of the 

pollutant and reduction of the concentration of non-

conservative pollutants along the channel. 

 

APPENDIX A.   SOLUTION OF TRANSPORT 
EQUATION 

  In view of 𝑢(𝑥) = 𝑢0𝑥, a substitution of 𝑥 = 𝑒𝑦  in Eq. 

(1) transforms it to the following  form: 

𝜕𝐶

𝜕𝑡
+ 𝑢0

𝜕𝐶

𝜕𝑦
= −(𝑘 + 𝑢0)𝐶, 0 < 𝑦 < ∞ (34) 

This is well-known as Lagrange's equation, and 

can be written in the form of subsidiary equations as 

follows: 

𝑑𝑡 =  
𝑑𝑦

𝑢0
= −

 𝑑𝐶

(𝑘 + 𝑢0)𝐶
 (35) 

From the first two terms in (35), the following 

formula is obtained: 

𝑦 − 𝑦0  =  𝑢0𝑡 + 𝐾 (36) 

where 𝐾 is an arbitrary constant to be obtained with the 

help of  the transformed initial and boundary conditions as 

given as below: 

𝐶(𝑦, 0) =  𝑓(𝑒𝑦), 𝑦 > 𝑦0 = ln 𝑥0 (37) 

𝐶(𝑦0, 𝑡) =  𝑔(𝑡), 𝑡 > 𝑜 (38) 

depending on whether  𝑦 > 𝑢0𝑡 or 𝑦 < 𝑢0𝑡. 
Case 1: When 𝑦 − 𝑦0 > 𝑢0𝑡. 
In this case,   𝐾 > 0 for 𝑦 > 𝑦0 and 𝑡 > 0 . Then, the 

following equation is derived from (35),  

𝑑𝐶(𝑦, 𝑡)

𝑑𝑡
 =  −(𝑘 + 𝑢0)𝐶(𝑦, 𝑡) 

Using Eq. (36), y in the above equation can be replaced 

with 𝑦0 + 𝑢0𝑡 + 𝐾. Then the equation takes the form: 
𝑑𝐶(𝑦0 + 𝑢0𝑡 + 𝐾, 𝑡)

𝑑𝑡
 =  −(𝑘 + 𝑢0)𝐶(𝑦0 + 𝑢0𝑡 + 𝐾, 𝑡) 

The above ordinary differential equation has the 

solution as follows: 

𝐶(𝑦0 + 𝑢0𝑡 + 𝐾, 𝑡) = 𝐶(𝑦0 +𝐾, 0)𝑒
−(𝑘+𝑢0)𝑡 

Now using Eqns. (36) and (37), the above equation can 

be written as below: 

𝐶(𝑦, 𝑡)  =  𝑓(𝑒𝑦−𝑢0𝑡)𝑒−(𝑘+𝑢0)𝑡. 

Case 2: When 𝑦 − 𝑦0 < 𝑢0𝑡. 
Here 𝐾 < 0 for 𝑦 > 𝑦0, 𝑡 > 𝑜. Considering the second 

equality in the subsidiary equation (35), the following is 

computed:     

𝑑

𝑑𝑦
𝐶(𝑦, 𝑡)  =  −(1 + 𝑘/𝑢0)𝐶(𝑦, 𝑡) 

which in this case is rewritten as follows: 

𝑑

𝑑𝑦
𝐶 (𝑦,

 𝑦 − 𝑦0 − 𝐾

𝑢0
) =  −(1 +

𝑘

𝑢0
)𝐶 (𝑦,

 𝑦 − 𝑦0 − 𝐾

𝑢0
) 

has the solution 

𝐶 (𝑦,
 𝑦 − 𝑦0 −𝐾

𝑢0
) = 𝐶 (𝑦0,

−𝐾

   𝑢0
) 𝑒

−(1+
𝑘

𝑢0
)(𝑦−𝑦0)

 

that can be written (after using equations (36) and (38) 

as below: 

𝐶(𝑦, 𝑡)  =  𝑔(𝑡 −
𝑦 − 𝑦0
𝑢0

)𝑒
−(1+

𝑘

𝑢0
)(𝑦−𝑦0). 

This shows that the solution of (34) under conditions 

(37) and (38) is: 
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𝐶(𝑥, 𝑡)

= {

𝑒−(𝑘+𝑢0)𝑡𝑓(𝑒𝑦−𝑢0𝑡), 𝑦 − 𝑦0 > 𝑢0𝑡

𝑒
−(1+

𝑘

𝑢0
)(𝑦−𝑦0)𝑔 (𝑡 −

𝑦 − 𝑦0
𝑢0

) , 𝑦 − 𝑦0 ≤ 𝑢0𝑡
 

(39) 

 

Substituting 𝑦 =  𝑙𝑛 𝑥 in (39), we get the solution of (1) 

under conditions (3) and (4) as: 

𝐶(𝑥, 𝑡) =

{
 
 

 
 𝑒−(𝑘+𝑢0)𝑡𝑓(𝑥𝑒−𝑢0𝑡), 𝑙𝑛 (

𝑥

𝑥0
) > 𝑢0𝑡

(
𝑥0
𝑥
)
1+

𝑘

𝑢0
𝑔(𝑡 −

𝑙𝑛 (
𝑥

𝑥0
)

𝑢0
) , 𝑙𝑛 (

𝑥

𝑥0
) ≤ 𝑢0𝑡

 

 

APPENDIX B. SOLUTION FOR 
TRANSPORT-DISPERSION EQUATION 

Substituting 𝑥 = 𝑒𝑦  in (20) with 𝑢(𝑥)  and 𝐷(𝑥)  as 

given by Eq. (21) and simplifying, we get 
𝜕𝐶

𝜕𝑡
+ (𝑢0 − 𝐷0)

𝜕𝐶

𝜕𝑦
= 𝐷0

𝜕2𝐶

𝜕𝑥2
– (𝑘 + 𝑢0) 𝐶,  𝑦0𝑦∞   (40) 

with the initial and boundary conditions as 

𝐶(𝑦, 0) =  0  for  𝑦 > 𝑦0 (41) 

𝐶(𝑦0, 𝑡) =  𝐶0 for 𝑡 > 𝑡 (42) 

𝐶(𝑦, 𝑡)  =  0 as 𝑦  ∞ for 𝑡 0 (43) 

Substituting 

𝐶(𝑦, 𝑡)  =  𝑐(𝑦, 𝑡) 𝑒
(𝑢0−𝐷0)𝑦

𝐷0
−𝜆𝑡

 (44) 

where 𝜆 = 𝑢0 + 𝑘 +
(𝑢0−𝐷0)

2

4𝐷0
 (45) 

in (40)-(43),  we obtain the diffusion equation 

𝜕𝑐

𝜕𝑡
 =  𝐷0

𝜕2𝑐

𝜕𝑦2
, 𝑦0 < 𝑦 < ∞ (46) 

𝑐(𝑦, 0) = 0 𝑓𝑜𝑟 𝑦 > 𝑦0 (47) 

𝑐(𝑦0, 𝑡) =  𝐶0𝑒
−
(𝑢0−𝐷0)𝑦

2𝐷0
−𝜆𝑡
, 𝑡 > 𝑜 (48) 

𝑐(𝑦, 𝑡) =  𝑜 as 𝑦  ∞, 𝑡 > 𝑜 (49) 

Applying semi-infinite Fourier sine transform 

(Sneddon, [15]) with respect to y on Eq. (46), the 

following is computed: 

𝑑

𝑑𝑡
𝑐𝐹(𝑠, 𝑡) = −𝑠

2𝐷0𝑐𝐹(𝑠, 𝑡) + 𝑠𝐷0𝑐(𝑦0, 𝑡) (50) 

where  𝑐𝐹(𝑠, 𝑡) = ∫ 𝑐(𝑦, 𝑡) sin(𝑠𝑌) 𝑑𝑌, 𝑌 = 𝑦 − 𝑦0
∞

0
 (51) 

and 𝑠 is the Fourier sine transform parameter.                                                         

The solution of (50) with transformed initial condition 

𝑐𝐹(𝑠, 𝑡) = 0  is given by:  

𝑐𝐹(𝑠, 𝑡) = 𝑐0 𝑒
− 
(𝑢0−𝐷0)𝑦0

2𝐷0
𝑠𝑒𝜆𝑡

𝑠2 +
𝜆

𝐷0

−
𝑠𝑒−𝑠

2𝐷0𝑡

𝑠2 +
𝜆

𝐷0

 (52) 

Taking inverse Fourier sine transform with respect to s, 

the solution  𝑐(𝑦, 𝑡) of Eq. (46) is obtained as follows: 

𝑐(𝑦, 𝑡) =

2𝐶0

𝜋
𝑒
− 
(𝑢0−𝐷0)𝑦0

2𝐷0 {𝑒𝜆𝑡 ∫
𝑠 sin[𝑠(𝑦−𝑦0)]

𝑠2+
𝜆

𝐷0

𝑑𝑠
∞

0
} −

∫
𝑠𝑒−𝐷0𝑡𝑠

2
sin [𝑠(𝑦−𝑦0)]

𝑠2+
𝜆

𝐷0

 ds
∞

0
             

(53) 

which on applying  Eq.(44)  and  simplifying  gives  the  

solution  of Eq.(40) under conditions (41) and (42) as 

below: 

  𝐶(𝑥, 𝑡)  =

 
𝐶0

2
{𝑒𝜇1(−𝑦+𝑦0)𝑒𝑟𝑓𝑐 [

𝑦−𝑦0−𝑡√(𝑢0+𝐷0)
2+4𝐷0𝑘

√4𝐷0𝑡
]           

(54) 

where 𝜇1, 𝜇2 = −
−√(𝑢0 +𝐷0)

2 + 4𝐷0𝑘 ± (𝑢0 − 𝐷0)

2𝐷0
 

Substituting back  𝑦 =  𝑙𝑛 𝑥  in Eq. (54), the analytical 

solution of Eq. (20) with Eq. (21) under initial and 

boundary conditions (22)-(24) is obtained as below: 

𝐶(𝑥, 𝑡)  =  
𝐶0

2
{(

𝑥0

𝑥
)
𝜇1
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
−𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
] 

+(
𝑥

𝑥0
)
𝜇2
𝑒𝑟𝑓𝑐 [

𝑙𝑛
𝑥

𝑥0
+𝑡√(𝑢0+𝐷0)

2+4𝐷0𝑘

√4𝐷0𝑡
]}           

(55) 
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