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In this study, the buckling behavior of moderately thick Carbon Nano-Tube (CNT)-reinforced 

spherical composite panels subjected to both uniaxial and biaxial loads is examined. The uniform 

and various kinds of functionally graded distributions of the CNT are considered. The mechanical 

properties of the nanocomposite panels are estimated using the modified rule of mixture. Based 

on the first-order shear deformation theory and the von Karman-type of kinematic nonlinearity, 

the governing differential equations are derived and the solutions are determined using Ga-

lerkin’s method. The suggested model is justified by a good agreement between the present re-

sults and those reportedin the literature. The numerical results are performed to elucidate the 

influences of volume fraction, aspect ratio, thickness ratio and side-to-radius ratio on the critical 

buckling loads of the spherical nanocomposite panels. One of the main contributions of the cur-

rent study is to investigate the effectiveness of functionally graded distributions.The effectiveness 

of functionally graded distributions with respect to various parameters are also investigated. 
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1. Introduction    

In recent decades, the composite materials have 
found numerous applications in various weight sen-
sitive industries such as aviation, automobile and 
marine industries. Fiber reinforced composite, a 
widespread kind of composite material, is constitut-
ed by fibers as reinforcement and a polymer matrix 
as a load transfer medium. As a result of low costs, 
tailorable characteristics, high strength and stiffness 
to weight ratios, fiber reinforced composites have 
attracted great attentions. In 1991, Iijima [1] dis-
covered Carbon Nano-Tube (CNT) as a novel 
nanostructure with outstanding mechanical, ther-
mal and electrical properties. The emergence of car-
bon nanotubes has received relatively great consid-
eration and consequently they were introduced as a 
novel candidate for reinforcing polymer matrices 
replacing the conventional reinforcements [2–5]. 
Researches on the properties of composites rein-
forced by CNT demonstrate that adding only 

1%weight fraction of CNTs results in a 36-42 per-
cent increase inelastic modulus, 150 percent in-
crease in strain energy density and25percent in-
crease in tensile strength [6, 7]. Therefore, adding 
CNTs into the matrix reveals significant improve-
ment in their mechanical properties. Hence, sub-
stantial investigations have been carried out topre-
dict the physical properties and to investigate me-
chanical behaviorof Carbon Nanotube-Reinforced 
Composites (CNTRC) [8-11].  

Since the critical buckling load is a key factor in 
designing of shell structural elements, the static in-
stability of nanocomposite panels becomes the sub-
ject of primary interest in recent studies [12-19]. 
Shen [12-14, 17] investigated the static stabilities of 
CNTRC cylindrical shells in thermal environments. 
The higher-order shear deformation theory with 
thevon Karman-type of kinematic nonlinearity was 
used to derive differential governing equations of 
Functionally Graded Carbon Nanotube-Reinforced 
Composites (FG-CNTRC). In his works, the buckling, 
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postbuckling and thermal buckling of CNTRC cylin-
drical shells subjected to axial compression load, 
pressure and torsion loads were analyzed. In addi-
tion, perfect and imperfect CNTRC cylindrical shells 
were taken into consideration. Using meshless ap-
proach, Liew et al. [16] examined the postbuckling 
of theFG-CNTRC cylindrical panels under axial com-
pression. Furthermore, applying a two-step pertur-
bation approach, the postbuckling of temperature-
dependent CNTRC cylindrical panel resting on 
theelastic foundations and subjected to axial com-
pression was investigated by Shen and Xiang [18]. 
Jam and Kiani [19] analysed the buckling of the FG-
CNTRC conical shells subjected to lateral pressure. 
The numerical results were obtained using the trig-
onometric functions in circumferential direction and 
using the generalized differential quadrature meth-
od in axial direction.Recently, Rabani Bidgoliet al. 
[20] investigated the nonlinear vibration and insta-
bility of CNT reinforced cylindrical shell conveying 
viscous fluid. The nanocomposite is resting on or-
thotropic Pasternak medium and the material prop-
erties of nanocomposites are predicted using the 
rule of mixture. 

As a result of the potential applications of nano-
composites in Nano-Electro-Mechanical Systems 
(NEMS) and Micro-Electro-Mechanical Systems 
(MEMS), the instability of CNT reinforced micro-
plate has been analyzed recently [21-24]. Moham-
madimehr et al. [22] studied the biaxial buckling 
and bending of the double-coupled plates reinforced 
by boron nitride nanotubes and CNT using the 
modified strain gradient. The buckling, bending and 
free vibration of CNT reinforced microplate subject-
ed to hydro-thermal environments were examined 
using differential quadrature method [23]. Ghor-
banpour Arani et al. [24] investigated the wave 
propagation of CNT reinforced piezoelectric micro-
plates under the longitudinal magnetic and three-
dimensional electric fields.  

Despite the considerable number of investiga-
tions in the area of stability of the CNTRC panels, the 
buckling analysis of CNTRC spherical panel is not 
investigated. The main purpose of this research is to 
predict the critical uniaxial and biaxial buckling load 
of the moderately thick CNTRC spherical panel. In 
addition, new parameter percent change of buckling 
load is defined to examine the effectiveness of func-
tionally graded distributions of CNTs on the critical 
buckling loads.  

The effective material properties of nanocompo-
site panelsare estimated based on the modified rule 
of mixture.  

 
 
 

The differential governing equations of CNTRC 
are derived on the basis of the first-order shear de-
formation theory and the von Karman-type of kine-
matic nonlinearity. Moreover, the non-dimensional 
uniaxial and biaxial buckling loads are obtained uti-
lizing Galerkin’s method. The accuracy of the pre-
sented results is validated with those found in the 
literature. Furthermore, the effects of aspect ratio, 
volume fraction of CNTs, thickness ratio and side-to-
radius ratio are elucidated and the effectiveness of 
functionally graded distributions in buckling behav-
ior of CNTRC is investigated. 

 

2. Theory and Formulations 

A CNTRC spherical panel with the length a, width 
b, thickness h and radius of curvature Ris shown in 
Fig. 1. An orthogonal curvilinear coordinate system 
(x,y,z) is established on the middle surface of the 
panel. The carbon nanotube-reinforced composite is 
made of a mixture of a polymer matrix and single-
walled CNTs as reinforcements. The reinforcements 
can be randomly distributed or uniaxially aligned in 
the matrix. Due tothe dispersion and agglomeration 
challenges, the volume fraction of the CNTsis re-
stricted. As a result ofthis limitation, the distribu-
tions of the CNTs can be functionally graded in 
thickness of panels [25].  

In this study, CNTs are assumed to be uniaxially 
aligned in x direction. Furthermore, the uniform 
distributions (UDs) of the CNTs in the thickness of 
the panel and four types of functionally graded dis-
tributions well-knownas FG-A, FG-V, FG-O and FG-X 
are considered (Fig. 2). In the case of FG-A contrary 
to FG-V, the bottom surface of panel is CNT-rich. In 
addition, in FG-X case, the bottom and top surfaces 
of panel are CNT-rich, contrary to FG-O.  
 

 
Figure 1. The geometrical dimensions of spherical panels 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 2. The configurations of the UD and FG-CNTRC panels (a) 

UD; (b) FG-V; (c) FG-A; (d) FG-X; (e) FG-O 
 
The CNT volume fraction of these five types are 

defined as what follows [26]: 

UD:  CNTCNTV V   

(1) 

FG-A:      1 2 CNTCNT z z hV V   

FG-V:      1 2 CNTCNT z z hV V  

FG-X:      4 CNTCNT z z hV V  

FG-O:      2 1 2 CNTCNT z z hV V  

where 
CNTV indicates the overall CNT volume frac-

tions and is defined as follows: 

 

 
 ( / )(1 )

CNT
CNT CNT m

CNT CNT

w
V

w w
 (2) 

where wCNT is the mass fraction of the CNTs. ρm and 
ρCNT denote the densities of the matrix and CNTs, 
respectively. To predict the effective material prop-
erties of CNTRC, the modified rule of mixture can be 
expressed as what follows [27]: 

     11 1 11
CNT m

CNT mE z V z E V z E   

(3) 
 

   2

22 22

CNT m

CNT m
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E z E E


    

 
   3

12 12

CNT m

CNT m

V z V z

G z G G


    

-    12 12 (1 )CNT m
CNT CNTV V   

where E11, E22 and G12 are the mechanical properties 
of the CNTRCs. Em and Gm represent Young’s moduli 
and shear moduli of the matrix, respectively. In ad-

dition, 11
CNTE , 22

CNTE and 12
CNTG represent Young’s and 

shear moduli of the CNTs. Furthermore, VCNT and Vm 
are the volume fractions of the CNTs and matrix, 
respectively.  

It is well known that the load transfer between 
the nanotubes and the matrix is not perfect. There-
fore, several effects including size and surface ef-
fects must be considered. In order to incorporate 
these effects, the modified rule of mixture is usually 
used and so CNT efficiency parameters (η1, η2 and 
η3) are introduced. According to this point, applica-
tion of the size dependent continuum theories such 
as the modified couple stress theory, strain gradient 
theory etc. is not necessary [20]. To calculate the 
value of the CNT efficiency parameters, the elastic 
modulus of the CNTRCs predicted by the molecular 
dynamics simulations should be matched with those 
determined from the rule of mixture. 

Here, the CNTRC spherical panels are assumed to 
be moderately thick and they are modelled by the 
first-order shear deformation theory [28]. In this 
study, z/R in comparison with unityis neglectedand 
the von Karman-type of kinematic nonlinearity is 
considered.  

For spherical nanocompositepanels, strain-
displacement relations are expressed as what fol-
lows [28]: 




  
     
   

2
1

2
x

xx
u w w

z
x R x x

 

(4) 


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2

y
yy

v w w
z

y R y y
 




    
     
       

yx
xy

u v w w
z

y x y x x y
 

 


  


xz x
w u

x R
 

 


  


yz y
w v

y R
 

where ε and γ are the normal and shear strains, re-
spectively. In addition, u, v and w indicate displace-
ments of the mid-surface along x, y and z directions, 
respectively. Also, φx and φy are rotations of normal 
to the mid-surface about the y and x axes, respec-

tively. The terms   
21

2
w x ,   

21
2

w y and 

 
 

w w
x y

 are the von Karman terms.  

Applying the Hamilton’s principle, one can ob-
tain the equilibrium equations of the CNTRC spheri-
cal panels as follows [28]: 

0
xyxx xz

x

NN Q

x y R


  

 
 (5) 
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where Nxx, Nyy and Nxyarethe in-plane stress result-
ants and Mxx, Myy and Mxy are the stress couple re-
sultants. Furthermore, Qxz and Qyz are the transverse 
shear stress resultants.  

Furthermore, ˆ
xN  and ˆ

yN  are thein-plane dis-

tributed forces in the x and y directions, respective-
ly. The stress resultants can be defined as what fol-
lows [25]: 

  


 
2

2

{ , , } { , , }

h

xx yy xy xx yy xyhN N N dz  

(6)   

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2

2

{ , , } { , , }

h

xx yy xy xx yy xyhM M M z z z dz  

 

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2

2

{ , } { , }

h

xz yz s xz yzhQ Q k dz  

where ks is the shear correction factor and is equal 
to 5/6 [29].  

It is shown that uniaxially aligned CNTRCs reveal 
orthotropic characteristics [13, 16].Thus, the stress–
strain relations are defined as what follows [26]: 


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    
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E E

E E
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G
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(7) 

Substituting Eq. (4), (6) and (7) into Eq. (5), the 
governing differential equations as functions of the 
mid-surface displacements and rotations can be ob-
tained as what follows: 



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where Sy is denoted as ˆ ˆ
y xN N and,Ai, Bi, Ci, D1 and F1 

(i=1, 2, 3) are defined by the following equations: 
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Here, amovable simply supported boundary 
condition is considered. To solve the complex and 
highly-coupled governing differential equations, the 
displacement field is estimated utilizing sets of trig-
onometric expansions, as follows: 
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where qu, qv, qw, qx and qy are the vectors of gener-
alized coordinates and Φu, Φv, Φw, Φx and Φy are the 
shape functions. Moreover, m  and n  are the num-
ber of modes.Hence, applying the Galerkin’s method, 
the governing equations can be simplified as the 
following equations: 

  ˆ 0xNK L q  (15) 

Where q is the overall vector of the generalized co-
ordinates defined as follows: 

   
T

T T T T T
u v w x yq q q q q q  (16) 

Thus, determining the eigenvalue problem of Eq. 
(15), the critical buckling loadof the CNTRC spheri-
cal panels can be computed. For parametric studies, 
the non-dimensional critical buckling load is defined 
as what follows: 


2

3

ˆ
x

cr m

N a
N

E h
 (17) 

To assess the effectiveness of the functionally 
graded distributions in comparison with the uni-
form distribution of CNTson the critical buckling 
loads, a new parameter entitled percentage change 
of critical buckling loads, PCB, is defined as follow  

 
PCB *100

FG UD
cr cr

UD
cr

N N

N

 
 

 
 
 

 (18) 

Where FG
crN  and UD

crN  are the non-dimensional criti-

cal loads ofthe functionally graded and uniformly 
distributed nanocomposite, respectively. 
 

3. Results and Discussion 

In order to confirm the accuracy of the present 
results, the non-dimensional critical loads of func-
tionally graded square spherical shell and plate are 
compared with those available in the literature [30]. 
The material properties used to validate the results 
are what follow [30]: 
Metal (Aluminium, Al): 

9 2 370 10 N m , 0.3, 2702kg mm mE       

Ceramic (Alumina, Al2O3): 
10 2 338 10 N m , 0.3, 3800kg mc cE       

 
 

The results are presented in Table 1 and the pre-
cision of the current procedure is verified. In this 
study, poly {(m-phenylenevinylene)-co-[(2,5-
dioctoxy-p-phenylene) vinyl-ene]} well-known as 
PmPV and (10, 10) single-walled CNTsare consid-
ered as the polymer matrix and reinforcements, re-
spectively. The mechanical properties of the matrix 
andthe CNTs are listedin Table 2. TheCNTs efficien-
cy parametersare taken as η1 = 0.149 and η2 = 0.934 
for V*

CNT = 0.11, η1 = 0.150 and η2 = 0.941 for V*
CNT = 

0.14. Furthermore, η1 = 0.149 and η2 = 1.381 for 
V*

CNT = 0.17, additionally, η3 = η2 [25]. 
To reveal the effect of volume fraction, non-

dimensional critical buckling loads for various vol-
ume fractions are computed and givenin Table 3. It 
is shown that with the increase in the CNT volume 
fraction, the stiffness of CNTRC spherical panel in-
creases and consequently, the non-dimensional crit-
ical uniaxial and biaxial loads increase. Further-
more, the influence of volume fraction on the uniax-
ial buckling loads of FG-X nanocomposite panel with 
respect to aspect ratio, a/b, is depicted in Fig. 3. 
Here, it takes h/a = 0.05 and a/R = 0.5. It demon-
strates the same physical phenomena as presented 
in Table 3 and the uniaxial buckling loads increase 
by increasing the aspect ratio.  

Figs. 4 and 5 reveal the influence of the aspect 
ratio on the non-dimensional critical uniaxial and 
biaxial loads, respectively. Here, it takes V*CNT = 
0.11, h/a = 0.05 and a/R = 0.5. It is shown that by 
increasing the aspect ratio, the uniaxial buckling 
load increases extremely. It is noticed that the simi-
lar trend for buckling of nanocomposite plate is 
mentioned in Ref. [31]. However, the non-
dimensional critical biaxial loads vary non-
monotonically with the increase of the aspect ratio. 
As it is expected, the CNTRC spherical panels under 
the uniaxial loads are more stable than the CNTRC 
panels subjected to biaxial loads. 

 
Table 1. The comparisons of the critical loads of functionally 

graded sphericalpanel and plate ( ˆ
cr x cN N E h ) 

a

R
 

 Power law index 

 
k = 0 k = 0.5 k = 4 k = ∞ 

0 
Ref. [30] 0.03381 0.02214 0.01131 0.00623 
Present 

study 
0.03422 0.02231 0.01160 0.00638 

0.5 
Ref. [30] 0.05720 0.03952 0.01973 0.01054 
Present 

study 
0.05440 0.03599 0.01830 0.01013 

 
 

Table 2. The mechanical properties of the PmPV and CNTs [25] 

CNTs 
E11 E22 G12 ν12 

5.6466 TPa 7.0800 TPa 1.9445 TPa 0.175 

PmPV 
E ν   

2.1 GPa 0.34   
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Table 3. The variation of the uniaxial and biaxial buckling loads 
of FG-CNTRC spherical panel with respect to the volume fraction 

  a

R
 Type 

V*CNT 

  0.11 0.14 0.17 

U
n

ia
xi

al
 (

Sy
 =

 0
) 0.5 

UD 43.9742 50.6659 68.2309 
FG-A 35.5999 41.0839 55.3723 
FG-V 37.1185 42.5009 57.6141 
FG-X 54.0226 62.2129 84.5242 
FG-O 31.5429 36.0554 48.9213 

     

1 

UD 74.8983 82.1657 117.3679 
FG-A 67.1783 73.6256 106.1113 
FG-V 68.7046 76.28927 107.1090 
FG-X 83.6466 92.3473 132.0993 
FG-O 60.6915 69.3809 94.2660 

      

B
ia

xi
al

 (
Sy

 =
 1

) 0.5 

UD 14.4921 16.0402 22.6410 
FG-A 12.3794 13.7310 19.5096 
FG-V 13.7663 15.0657 21.5414 
FG-X 16.6725 18.3550 26.4913 
FG-O 11.9128 12.9863 18.4832 

     

1 

UD 26.8439 28.5004 42.2729 
FG-A 24.4204 26.3322 38.8705 
FG-V 26.9896 28.8049 42.6349 
FG-X 28.2086 30.2548 45.3212 
FG-O 24.7161 26.3545 38.9797 

 

 
Figure 3.The influence of the volume fraction on the uniaxial 

buckling loads of FG-X spherical panel with respect to the aspect 
ratio 

 
Furthermore, the analysis of static stability of UD 

and FG-CNTRC spherical panels reveals that FG-X 
and FG-O cases have the highest and lowest uniaxial 
and biaxial critical loads, respectively. 

Fig. 6 illustratesthe effect of the aspect ratio on 
the percent change of the uniaxial buckling load for 
V*CNT = 0.11, h/a = 0.05 and a/R = 0.5. It is shown 
that for FG-X spherical panel, with a decrease in the 
aspect ratio, the effectiveness of functionally graded 
distribution increases up to about 25 percent. In 
addition, it can be seen that for specific high aspect 
ratio FG-X panel with length to width ratio equal to 
5, the effectiveness of functionally graded distribu-
tion has negligible value (about 3 percent). Fur-
thermore, unlike the FG-X spherical panel, the other 
FG-CNTRC panels (FG-A, FG-V and FG-O) represent 

negative values for the percent change of buckling 
load. It physically means that the UD- CNTRC panel 
is more stable than FG-A, FG-V and FG-O nanocom-
posites. Hence, for the case of negative value, using 
the FG-distributions is not effective. 

The influence of the side-to-radius ratio, a/R, on 
the non-dimensional uniaxial buckling load of the 
spherical nanocomposite panels is illustrated in Fig. 
7. Here, we take V*CNT = 0.11, a/b = 1, h/a = 0.05 and 
Sy = 0. It reveals that the critical buckling load in-
creases monotonically with the increase in the side-
to-radius ratio. It should be noted that the similar 
trends for buckling of isotropic and functionally 
graded shallow spherical shells are presented in Ref. 
[30, 32]. Furthermore, it shows that FG-X and FG-O 
spherical panels are the most and the least stable 
nanocomposite panels among various kinds of the 
CNTRC spherical panels, respectively. It should be 
noticed that zero value of the side-to-radius ratio 
reveals the critical loads of CNTRC plate. 
 

 
Figure 4. The variation of the uniaxial critical loads of the CNTRC 

spherical panel with respect to the aspect ratio 
 

 
Figure 5. The effects of the aspect ratio on the biaxial buck-

ling loads of the CNTRC spherical panel 
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Figure 6. The influence of the aspect ratio on the percent change 

of uniaxial buckling load of FG-CNTRC spherical panel 
 

 
Figure 7. The effect of the side-to-radius ratio on the uniaxial 

critical loads of the CNTRC spherical panel 
 
Uniaxial and biaxial buckling loads of the CNTRC 

spherical panels are compared with respect to the 
side-to-radius ratio in Fig. 8. For numerical calcula-
tionin this case, the same physical and geometrical 
properties, used in Fig. 7, are considered. Based on 
the anticipation, biaxial buckling loads of the CNTRC 
spherical panels are higher than uniaxial critical 
loads, for all values of side-to-radius ratio. Addition-
ally, the distinction between uniaxial and biaxial 
critical compressive loads decreases with the de-
crease in the side-to-radius ratio. 

The variations of uniaxial and biaxial buckling 
loads of UD-CNTRC with respect to aspect ratio and 
side-to-radius ratio are illustrated in Figs. 9 and 10, 
respectively. Here, we take V*CNT = 0.11 and h/a = 
0.05. It is shown that with the increase in the aspect 
ratio and side-to-radius ratio, non-dimensional uni-
axial buckling loads of the CNTRC panels increase.  

 
 

In addition, for high aspect ratio CNTRC panels, 
negligible variation of the uniaxial buckling load 
with respect to the side-to-radius ratio is revealed. 
Furthermore, with the increase in the side-to-radius 
ratio, the non-dimensional biaxial buckling loads of 
CNTRC panels increase. However, according to the 
aforementioned results, the non-monotonic varia-
tion of the biaxial buckling load with respect to the 
aspect ratio is shown. 

Figs. 11 and 12 reveal the variation of uniaxial 
and biaxial critical loads of UD and FG-CNTRC 
spherical panels with respect to the thickness ratio, 
h/a, respectively. In this study, we take V*CNT = 0.11 
a/R = 0.5 and a/b = 1. Here, to study the influences 
ofthe thickness ratio, the non-dimensional buckling 
load is redefined as what follows: 

 ˆ m
cr xN N E a  (19) 

 

 
Figure 8. The variation of the uniaxial and biaxial critical loads of 

the CNTRC spherical panel with respect to the side-to-radius 
ratio 

 

Figure 9. The contour plots of uniaxial critical loads of UD-
CNTRC spherical panel with respect to the aspect ratio and side-

to-radius ratio 
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Figure 10. The contour plots of biaxial buckling loads of UD-
CNTRC panel against the aspect ratio and side-to-radius ratio 

 
In Figs. 11 and 12, it is revealed that with the in-

crease in the thickness ratio, the stiffness of CNTRC 
panel increases and consequently, the uniaxial and 
biaxial critical loads increase. Note that the similar 
trend for buckling of nanocomposite plate is illus-
trated in Ref. [27]. Furthermore, the FG-X has the 
highest critical loads among various kinds of FG-
CNTRC spherical panels. In addition, the static in-
stability of CNTRC panels subjected to uniaxial 
buckling load occurs at higher compressive load 
than those subjected to biaxial buckling loads. 

Additionally, the effect of the thickness ratio on 
the PCB of CNTRC panels is presented in Fig. 13. 
With the variation of the thickness ratio, PCB of FG-
CNTRC spherical panels vary non-monotonically. 
For both thin and moderately thick FG-CNTRC 
spherical panels, the case of functionally graded dis-
tribution, FG-X, is effective enough in comparison 
with the uniform distribution. 

 

 
Figure 11. The variation of the uniaxial critical buckling load of 

CNTRC spherical panel with respect to the thickness ratio 
 

 
Figure 12. The change of the biaxial buckling load of CNTRC 

panel against the thickness ratio 

 

 
Figure 13. The effect of the thickness ratio on the percent change 

of the uniaxial buckling load 

 

4. Conclusion 

In this study, the first attempt to predict the crit-
ical biaxial and uniaxial compressive loads of uni-
form and functionally graded carbon nanotube-
reinforced spherical composite panels was investi-
gated. Utilizing the modified rule of mixture, the 
effective mechanical properties of theCNTRC panels 
were determined. Using first-order shear defor-
mation theory, five complex and highly-coupled dif-
ferential governing equations were derived. The 
present relations and procedure have been success-
fully verified by comparing the obtained results with 
those available in the literature. To study the buck-
ling behavior of the CNTRC, the influences of volume 
fraction of CNTs, aspect ratio, thickness ratio and 
side-to-radius ratio were examined. Based on the 
numerical results, it is found that the non-
dimensional uniaxial and biaxial critical buckling 
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loads increase with the increase in the volume frac-
tion. By increasing thickness ratio and side-to-
radius ratio, the uniaxial and biaxial critical loads 
increase. However, the non-dimensional biaxial 
buckling load changes non-monotonically versus the 
aspect ratio. Additionally, theFG-X and FG-O nano-
composites have the highest and lowest non-
dimensional biaxial and uniaxialcritical loads, re-
spectively. It is seen that the static instability of the 
CNTRC subjected to uniaxial critical load occurs at 
higher compressive load than those subjected to the 
biaxial buckling loads. Furthermore, the effective-
ness of functionally graded distribution decreased, 
with the increase in the aspect ratio. For the thin FG-
CNTRC spherical panelsas well as the moderately 
thick panels, the distribution of CNT in FG-X panel is 
effective enough in comparison with the uniform 
distribution. 

Finally, it should be noted that the thermal effect 
can be included in the buckling of the FG-CNTRC 
panels. This would be an interesting issue for future 
studies. 
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