
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,840 |
تعداد دریافت فایل اصل مقاله | 7,656,342 |
بررسی روابط تعیین کننده حرکت گلوله در آسیاها با استفاده از مدلسازی فیزیکی | ||
مدل سازی در مهندسی | ||
مقاله 15، دوره 17، شماره 58، مهر 1398، صفحه 203-214 اصل مقاله (1.79 M) | ||
نوع مقاله: مقاله مهندسی معدن | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.15088.1497 | ||
نویسندگان | ||
مصطفی مالکی مقدم* 1؛ سعید رحمانی2؛ رشاد حسامی2؛ صمد بنیسی3 | ||
1دانشگاه ولی عصر (عج)- دانشکده فنی و مهندسی- گروه مهندسی معدن | ||
2کارشناسی ارشد، مرکز تحقیقات فرآوری مواد کاشیگر، دانشگاه شهید باهنر کرمان | ||
3استاد، گروه مهندسی معدن، دانشگاه شهید باهنر کرمان | ||
تاریخ دریافت: 22 خرداد 1397، تاریخ بازنگری: 23 فروردین 1398، تاریخ پذیرش: 29 خرداد 1398 | ||
چکیده | ||
با توجه به اینکه در نرمافزارهای تعیین مسیر حرکت بار در داخل آسیاهای مورد استفاده در کارخانههای فرآوری مواد معدنی، از روابط ارائه شده توسط پاول (1991) در تعیین مسیر حرکت گلوله استفاده میشود، در این تحقیق صحت استفاده از این روابط مورد بررسی قرار گرفت. بررسیها نشان داد اختلاف بین نقاط برخورد بدست آمده از دو گلولهی با جنسهای متفاوت کمتر از 2 درجه است و تغییر ضریب اصطکاک تأثیر چندانی در نقطه برخورد گلوله به آستر آسیا ندارد. در حالی که در روابط مربوط به پاول، با تغییر 4/0 ضریب اصطکاک با توجه به صفر نبودن مقدار ضریب اصطکاک ایستایی µs، نقطهی برخورد گلوله حدود 15 درجه تغییر میکند. بررسی میزان اختلاف زاویهی برخورد تک گلوله در آسیا، در حالتی که مقدار ضریب اصطکاک ایستایی در نقطهی تعادل صفر در نظر گرفته شود و حالتی که از روابط پاول استفاده شود، نشان داد در شرایطی که ضریب اصطکاک ایستایی مقداری نزدیک به صفر باشد، نتایج حاصل از دو روش نزدیک به هم میباشد ولی اگر مقدار ضریب اصطکاک ایستایی بیش از 1/0 باشد، تفاوتها بارز خواهند شد. | ||
کلیدواژهها | ||
فرآوری مواد معدنی؛ آسیا؛ آستر؛ ضریب اصطکاک ایستایی؛ نقطهی برخورد | ||
عنوان مقاله [English] | ||
An Investigation into the Relationships Determining Ball Trajectory in Mills by Using the Physical Modelling | ||
نویسندگان [English] | ||
Mostafa Maleki Moghaddam1؛ Saeid Rahmani2؛ Reshad Hesami2؛ Samad Banisi43 | ||
1Mineral Processing Group, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran | ||
2Kashigar Mineral Processing Research Center, Shahid Bahonar University of Kerman, Kerman, Iran | ||
3Mineral Processing Group, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
Since software packages, which predict the charge motion of single ball in the mineral processing tumbling mills, use the Powell (1991) relationships, the accuracy of these relationships was investigated in this research. The test results indicated that the difference between the impact points for two balls with different materials was lower than 2o. A change in friction coefficient had no significant effect on the ball impact point, whereas in the Powell relationships changing the friction coefficient to 0.4 increased the impact point difference 15o. The friction coefficient in the Powell relationships considers to be more than zero at the point of equilibrium. The impact point difference between the results from the Powell relationships and the relationships that considers static friction coefficient (µs) equal to zero at the point of equilibrium were compared. The results indicated that the difference is negligible when µs is near to zero and is high when µs is more than 0.1. | ||
کلیدواژهها [English] | ||
Mineral processing, Mill, Liner, Static coefficient of friction, Impact point | ||
مراجع | ||
[1] B. A. Wills, and J. A. Finch, Will's mineral processing technology, 8th ed., Elsevier, 2016. [2] R. S. Ebrahimi-Nejad, and M. Fooladi-Mahani, “Optimizing the Characteristics of the Motion of Steel Balls and their Impact on Shell Liners in SAG Mills”, Iranian Journal of Mechanical Engineering, Vol. 10, No.1, 2009, pp. 5-22. [3] M. Maleki-Moghaddam, M. Yahyaei, and S. Banisi, “A method to predict shape and trajectory of charge in industrial mills”, Minerals Engineering, Vol. 46-47, No.1, 2013, pp. 157-166. [4] D. Royston, “Semi-autogenous grinding (SAG) mill liner design and development”, Minerals & Metallurgical Processing, Vol. 24, No. 3, 2007. [5] J. L. Parks, and D. N. Kjos, “Liner Design, Materials and Operating Practices for Large Primary Mills”, International Autogenous and Semiautogenous Grinding Technology, Vancouve, 1989, pp.565-580. [6] P. Hosseini, S. Martins, T. Martin, P. Radziszewski, and F. R. Boyer, “Acoustic emissions simulation of tumbling mills using charge dynamics”, Minerals Engineering, Vol. 24, Issue 13, 2011, pp. 1440–1447. [7] حسینعلی میرزایی، اکبر فرزانگان، زینب سادات میرزایی، " شبیهسازی و بهینه سازی مدار آسیاکنی شرکت روی تیران"، نشریه علمی و پژوهشی مدلسازی در مهندسی ، دانشگاه سمنان، دوره 15، شماره 50، پاییز 1396، صفحه 19-19. [8] نوشین آزادی، مسعود منجزی، مجید عطائی پور، " بهبود اندازه ناوگان حمل و نقل معدن مس سونگون با استفاده از روش شبیهسازی"، نشریه علمی و پژوهشی مدلسازی در مهندسی ، دانشگاه سمنان، دوره 12، شماره 39، زمستان 1393، صفحه 99-110. [9] فرزام صفاریان، احمدرضا صیادی، علی اصغر خدایاری، " بهینهسازی همزمان عیارحد و ظرفیت کارخانهی فرآوری با لحاظ کردن عدم قطعیت قیمت"، نشریه علمی و پژوهشی مدلسازی در مهندسی ، دانشگاه سمنان، دوره 15، شماره 49، تابستان 1396، صفحه 235-244. [10] T. J. Kalala, M. Breetzke, and M. H. Moys, “Study of the influence of liner wear on the load behavior of an industrial dry tumbling mill using the Discrete Element Method (DEM)”, International Journal of Mineral Processing, Vol. 86, Issues 1–4, 2008, pp. 33-39. [11] C. Pérez-Alonso, and J. A. Delgadillo, “Experimental validation of 2D DEM code by digital image analysis in tumbling mills”, Minerals Engineering, Vol. 25, Issue 1, 2012, pp. 20–27. [12] S. Banisi, and M. Hadizadeh, “3-D liner wear profile measurement and analysis in industrial SAG mills”, Minerals Engineering, Vol. 20, Issue 2, 2007, pp. 132-139. [13] M. S. Powell, “The Effect of Liner Design on the Motion of the Outer Grinding Elements in a Rotary Mill”, International Journal of Mineral Processing, Vol. 31, Issues 3–4, 1991, pp. 163-193. [14] S. Morrell, “The prediction of power draw in wet tumbling mills” Doctorate Thesis, University of Queensland, Australia, 1993. [15] R. Rajamani, A. D. Joshi, and B. K. Mishra, “Simulation of industrial SAG mill charge motion in 3D space”, 2002 SME Annual Meeting, Phoenix, Arizona: SME Publication. 2002. [16] N. Djordjevic, F. N. Shi, and R. Morrison, “Determination of lifter design, speed and filling effects in AG mills by 3D DEM”, Minerals Engineering, Vol. 17, Issues 11–12, 2004, pp. 1135-1142. [17] M. S. Powell, I. Govender, and A. T. McBride, “Applying DEM output to the unified comminution model”, Minerals Engineering, Vol. 21, Issue 11, 2008, pp. 744-750. [18] P. W. Cleary, and J. Franke, “Effect of laser scanned geometry and liner wear on DEM modelling of mill performance for a full scale three-dimensional SAG mill”, International Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada, Paper 104, 2011. [19] X. Bian, G. Wang, H. Wang, S. Wang, and W. Lv, “Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation”, Minerals Engineering, Vol. 105, No.1, 2017, pp. 22–35. [20] P. W. Cleary, and P. Owen, “Development of models relating charge shape and power draw to SAG mill operating parameters and their use in devising mill operating strategies to account for liner wear”, Minerals Engineering, Vol. 117, No.1, 2018, pp. 42–62. [21] F. Pedrayes, J. G. Norniella, M. G.Melero, J. M. Menéndez-Aguado, and J. del Coz-Díaz, “Frequency domain characterization of torque in tumbling ball mills using DEM modelling: Application to filling level monitoring”, Powder Technology, Vol. 323, No.1, 2018, pp. 433–444. [22] L. Xu, K. Luo, and Y. Zhao, “Numerical prediction of wear in SAG mills based on DEM simulations”, Powder Technology, https://doi.org/10.1016/ j.powtec. 2018.02.004, 2018. [23] M. S. Powell, I. Smit, P. Radziszewski, P. Cleary, B. Rattray, K. Eriksson, and L. Schaeffer, “The Selection and Design of Mill Liners”, In Advances in Comminution, Ed. S.K. Kawatra. ISBN-13: 978-0-87335-246-8, Society for Mining, metallurgy, and exploration, Inc., Colorado, USA, 2006, pp. 331-376. [24] M. Yahyaei, and S. Banisi, “Spreadsheet-based modeling of liner wear impact on charge motion in tumbling mills” Minerals Engineering, Vol. 23, Issue 15, 2010, pp. 1213–1219. [25] MB-Ruler – the triangular screen ruler, http://www.markus-bader.de/MB-Ruler/index.php.
| ||
آمار تعداد مشاهده مقاله: 568 تعداد دریافت فایل اصل مقاله: 216 |