
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,855 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
روش بهینهسازی استوار-امکانی در طراحی شبکه زنجیره تأمین دارو در حالت عدم قطعیت و ارائه تخفیف در خرید مواد اولیه | ||
مدل سازی در مهندسی | ||
مقاله 18، دوره 17، شماره 58، مهر 1398، صفحه 249-266 اصل مقاله (1.74 M) | ||
نوع مقاله: مقاله صنایع | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.13798.1358 | ||
نویسندگان | ||
فرامرز نوری1؛ جاوید قهرمانی نهر* 2 | ||
1عضو هیئت عملی پژوهشکده توسعه و برنامه ریزی، گروه مدیریت توسعه، جهاد دانشگاهی استان آذربایجان شرقی، تبریز، ایران | ||
2عضو هیئت علمی پژوهشکده توسعه و برنامه ریزی، گروه مدیریت توسعه، جهاد دانشگاهی استان آذربایجان شرقی، تبریز، ایران | ||
تاریخ دریافت: 08 بهمن 1396، تاریخ بازنگری: 22 اردیبهشت 1398، تاریخ پذیرش: 08 خرداد 1398 | ||
چکیده | ||
در این مقاله یک شبکه زنجیره تأمین دارو 5 سطحی تحت عدم قطعیت مدلسازی شده است. سطوح این شبکه زنجیره تامین شامل تامین کنندگان مواد اولیه، مراکز تولیدی، مراکز توزیع کننده، مراکز درمانی و مشتریان است. همچنین، اهداف این مقاله شامل کمینهسازی هزینههای کل شبکه زنجیره تأمین، کمینه کردن حداکثر تقاضای برآورده نشده و بیشینهسازی قابلیت اطمینان در تحویل بهموقع داروها با در نظر گرفتن زمان فسادپذیری دارو و تخفیف کلی در خرید مواد اولیه است. متغیرهای تصمیم گیری مسئله به دو دسته استراتژیکی و تاکتیکی تقسیم شده و به ترتیب شامل تعیین تعداد و مکان بهینه تسهیلات بالقوه و تعیین مقدار بهینه جریان دارو بین تسهیلات انتخاب شده است. برای کنترل پارامترهای غیرقطعی از روش بهینهسازی استوار-امکانی بهره گرفتهشده و از روش ترکیبی معیار جامع و شبیهسازی مونت کارلو برای حل مدل چندهدفه استفادهشده است. درنهایت با ارائه یک مثال عددی، خروجیهای بهدستآمده از حل مدل موردبحث قرارگرفته است. | ||
کلیدواژهها | ||
روش بهینه سازی استوار امکانی؛ شبکه زنجیره تامین دارو؛ شبیه سازی مونت کارلو | ||
عنوان مقاله [English] | ||
Robust-possibilistic optimization method at design of a pharmaceutical supply chain network under uncertainty and discount on purchase the raw material | ||
نویسندگان [English] | ||
faramarz Nory1؛ javid ghahremani nahr2 | ||
1Faculty member of Development & Planning institute, Academic Center for Education, Culture and Research (ACECR), Tabriz, Iran | ||
2Researcher of Development & Planning Institute, Academic Center for Education, Culture and Research (ACECR), Tabriz, Iran | ||
چکیده [English] | ||
In this paper, a five-level pharmaceutical supply chain network is modeled under uncertainty. Levels of this pharmaceutical supply chain network include raw material supplier, production center, distribution center, Health centers and customers. Also, the objectives of this paper include minimizing the costs of the total supply chain network, minimizing the maximum unmet demand, and maximizing reliability in timely delivery of drugs, by considering the perishable time and the discount on the purchase of raw materials. Decision-making variables are divided into two strategic and tactical categories and, include determining the optimal number and location of potential facilities and determining the optimal amount of drug flow between the selected facilities, respectively. A robust-possibilistic optimization method has been used to control the uncertain parameters, and the hybrid LP-metric method and Monte Carlo simulation approaches have been used to solve the multi-objective model. Finally, by providing a numerical example, the outputs obtained from the solution of the model have been discussed. | ||
کلیدواژهها [English] | ||
Robust-possibilistic optimization method, pharmaceutical supply chain network, Monte-Calro simulation | ||
مراجع | ||
[1]. Hajibabaee, F., Joolaee, S., Peyravi, H., & Haghani, H. (2011). “The relationship of medication errors among nurses with some organizational and demographic characteristics”, pp. 83-92. [2]. فلاح، ح؛ اسکندری، ح؛ ذگردی، س ح و چهارسوقی س (1396)، ارائه مدل دوسطحی طراحی شبکه زنجیره تأمین حلقه بسته در شرایط عدم قطعیت و رقابت بین زنجیرهای: حل با رویکرد تجزیه بندرز، مجله مدلسازی در مهندسی، دوره 15، شماره 49. [3]. Mahallati, V. (2012). “Management of Drug Supply Chain at 2025”. [4]. Mehralian, G., Rajabzadeh, A., Reza Sadeh, M., & Reza Rasekh, H. (2012). “Intellectual capital and corporate performance in Iranian pharmaceutical industry”. Journal of Intellectual Capital, Vol. 13. No. 1, pp.138-158. [5]. شفیعی نیک آبادی و عظیمی، س ع (1394)، پیش بینی تقاضا در زنجیره تأمین با استفاده از الگوریتم های یادگیری ماشین (مورد مطالعه: زنجیره تأمین شرکت ایران خودرو). مجله مدلسازی در مهندسی، دوره 13، شماره 41، صص 136-127. [6]. فضلی خلف، م؛ چهارسوقی، س و پیشوایی، م س (1393)، طراحی پایای شبکه زنجیره تأمین حلقه بسته تحت عدم قطعیت: مطالعه موردی یک تولیدکننده باتری اسیدی. مجله مدلسازی در مهندسی، دوره 12، شماره 39، صص 60-45. [7]. Gatica, G., Papageorgiou, L. G., & Shah, N. (2003). “Capacity planning under uncertainty for the pharmaceutical industry”. Chemical Engineering Research and Design, Vol. 81, No. 6, pp. 665-678. [8]. Levis, A. A., & Papageorgiou, L. G. (2004). “A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry”. Computers & Chemical Engineering, Vol. 28, No. 5, pp. 707-725. [9]. Üster, H., Easwaran, G., Akçali, E., & Çetinkaya, S. (2007). “Benders decomposition with alternative multiple cuts for a multi‐product closed‐loop supply chain network design model”. Naval Research Logistics (NRL), Vol. 54, No. 8, pp. 890-907. [10]. Amaro, A. C. S., & Barbosa-Póvoa, A. P. F. (2008). “Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study”. Computers & Chemical Engineering, Vol. 32, No. 11, pp. 2606-2625. [11]. Rossetti, C. L., Handfield, R., & Dooley, K. J. (2011). “Forces, trends, and decisions in pharmaceutical supply chain management”. International Journal of Physical Distribution & Logistics Management, Vol. 41, No. 6, pp. 601-622. [12]. Sousa, R. T., Liu, S., Papageorgiou, L. G., & Shah, N. (2011). “Global supply chain planning for pharmaceuticals”. Chemical Engineering Research and Design, Vol. 89, No. 11, pp. 2396-2409. [13]. Susarla, N., & Karimi, I. A. (2012). “Integrated supply chain planning for multinational pharmaceutical enterprises”. Computers & Chemical Engineering, Vol. 42, pp. 168-177. [14]. Jetly, G., Rossetti, C. L., & Handfield, R. (2012). “A multi-agent simulation of the pharmaceutical supply chain”. Journal of Simulation, Vol. 6, No. 4, pp. 215-226. [15]. Zhang, Z. H., & Jiang, H. (2014). “A robust counterpart approach to the bi-objective emergency medical service design problem”. Applied Mathematical Modelling, Vol. 38, No. 3, pp. 1033-1040. [16]. Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M., & Jula, P. (2014). “Multi-objective design of an organ transplant network under uncertainty”. Transportation Research Part E: Logistics and Transportation Review, Vol. 72, pp. 101-124. [17]. Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). “Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application”. Transportation Research Part E: Logistics and Transportation Review, Vol. 70, pp. 225-244. [18]. Mousazadeh, M., Torabi, S. A., & Pishvaee, M. S. (2014). “Green and reverse logistics management under fuzziness”. In Supply Chain Management under Fuzziness, pp. 607-637. [19]. Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). “A robust possibilistic programming approach for pharmaceutical supply chain network design”. Computers & Chemical Engineering, Vol. 82, pp. 115-128. [20]. Salsabil, M., Shafia, M. A., Pishvaee, M. S., & Shahanaghi, K. (2015). “Tactical Planning of Three-Level Supply Chain considering Sanction Disruption and Shelf Life: A case Study of ATRA Drug Supply Chain”. Industrial Management, Vol.7, No. 2, pp. 305-332. [21]. Yousefi sarmad, M., & Pishvaee, M. S. (2016). “The Tactical Planning Model of a robust-possibilistic supply chain for drug disorder under conditions of disorder with transient transmissions and corruption”. 2nd International Conference on Industrial and Systems. Fersowsi University of Mashhad: 14-15 September 2016 [22]. Kalantari, M., & Pishvaee, M. S. (2016), “A Robust Possibilistic Programming Approach to Drug Supply Chain Master Planning”. Industrial Engineering Research in Production Systems, Vol. 4, No. 7, pp. 49-67. [23]. Hosseinifard, Z., & Abbasi, B. (2016). “The inventory centralization impacts on sustainability of the blood supply chain”. Computers & Operations Research. Article in [24]. Zahiri, B., & Pishvaee, M. S. (2017). “Blood supply chain network design considering blood group compatibility under uncertainty”. International Journal of Production Research, Vol. 55, No. 7, pp. 2013-2033. [25]. Martins, S., Amorim, P., Figueira, G., & Almada-Lobo, B. (2017). “An optimization-simulation approach to the network redesign problem of pharmaceutical wholesalers”. Computers & Industrial Engineering, Vol. 106, pp. 315-328. [26]. Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018). “Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products”. Information Sciences, Vol. 423, pp. 257-283. [27]. Habibi-Kouchaksaraei, M., Paydar, M. M., & Asadi-Gangraj, E. (2018). “Designing a bi-objective multi-echelon robust blood supply chain in a disaster”. Applied Mathematical Modelling, Vol. 55, pp. 583-599. [28]. Pishvaee, M. S., & Torabi, S. A. (2010). “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”. Fuzzy sets and systems, Vol. 161, No. 20, pp. 2668-2683. | ||
آمار تعداد مشاهده مقاله: 1,546 تعداد دریافت فایل اصل مقاله: 898 |