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Abstract

In this article we consider the system of operator equations TiX = Ui for i = 1, 2, 3, ..., n, between
Hilbert spaces and give necessary and sufficient conditions for the existence of common Hermitian
solutions to this system of operator equations for arbitrary operators without the closedness condition.
Also we study the Moore-Penrose inverse of a n× 1 block operator matrix and then give the general
form of common Hermitian solutions to this system of equations. Cosequently, we give the necessary
and sufficient conditions for the existence of common Hermitian solutions to the system of operator
equations TiXVi = Ui, for i = 1, 2, 3, ..., n and also present the necessary conditions for solvability of
the equation

∑n
i=1 TiXi = U .

Keywords: Operator equation; Hermitian solution; Common solution; Existence of solution;
Moore Penrose inverse.
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1. Introduction

The main goal of this article is to study the system of operator equations

TiX = Ui for i = 1, 2, ..., n ∀n ∈ N, (1.1)

and present the necessary and sufficient conditions for the existence of common Hermitian solution to
this system of equations for arbitrary operators. In fact, Hermitian and positive solutions to matrix
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equations or operator equations has long been a topic of interest because of its multiple applications
in different areas as, for example in theories and applications of stability and control for discrete-
time systems. Also these equations play important roles in system theory, such as, eigenstructure
assignment [11], observer design [5], control of system with inpute constraint [10], and fault detection
[12].
For instance, much progress has been made on the study of matrix and operator equation

TX = U, (1.2)

and the system of matrix and operator equations{
T1X = U1,
T2X = U2,

(1.3)

(see, for example [13, 4, 8, 14, 7, 27]).
Also, Hermitian positive semidefinite solution to the matrix equation

TXV = U, (1.4)

were studied by Khatri and Mitra in 1976 ([13]) and Zhang in 2004 ([28]), respectively. In particular,
in the last few years the system of operator Eq. (1.3) has recieved considerable attention (see, for
example [26, 1, 6, 2]).
Indeed, the necessary and sufficient conditions for the existence of a common solution, and the general
common solution of the equation pair {

T1XV1 = U1,
T2XV2 = U2,

(1.5)

and the solvability of the equation
T1XV1 + T2XV2 = U, (1.6)

were studied by many authours for matrices and for bounded linear operators between Banach or
Hilbert spaces (see, [15, 16, 18, 25, 20, 21, 22, 19, 6]).
The necessary and sufficient conditions for the existence of the general common Hermitian and
positive solution to some system operator equations such as

T1X = U1, XT2 = U2, T3XT3
∗ = U3, T4XT4

∗ = U4,

and
T1X1 = U1, X1T

′

1 = U2, T2X2 = U3, X2T
′
2 = U4, T3X1T3

∗ + T4X2T4
∗ = U5,

for adjointable operators over Hilbert C∗-moduls has been studied by Wang and others in [23, 24],
respectively.

In all above works, it is only considered the case in which Ti, Ui and Vi are matrices or closed range
operators, but in 2010, Arias and Gonzalez ([1]) presented different results regarding the existence
of solution and also the existence of positive solution to operator Eq. (1.4) for arbitrary operators.

In this article, at first we study the system of operator equations

TiX = Ui for i = 1, 2, ..., n ∀n ∈ N,

and present the necessary and sufficient conditions for the existence of common Hermitian solutions
to this equations for arbitrary operators. In fact, we extend the Dajic and Koliha theorem ([7]) for
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arbitrary operators with not necessarily closed range. Also, we present the general form of common
Hermitian solution to this system of equations, by using the Moore-Penrose inverse of a n× 1 block
operator matrix.
Consequently, we present the necessary and sufficient conditions for the existence of common Her-
mitian solutions to the system of operator equations

TiXVi = Ui for i = 1, 2, ..., n ∀n ∈ N, (1.7)

and also present the necessary conditions for the existence of solutions to the equation

n∑
i=1

TiXi = U. (1.8)

2. Preliminary

Along this work H, K and G denote complex Hilbert spaces with inner product 〈., .〉, L(H,K) is the
set of linear operators and B(H,K) is the set of bounded linear operators from H into K.
By B(H)+ we denote the cone of positive operators of B(H), i.e,

B(H)+ = {T ∈ B(H)|〈T (ξ), ξ〉 ≥ 0, ∀ξ ∈ H}.

T ∗ denote the adjoint operator of T , R(T ) stands for the range of T and N(T ) for its null space.
Given a closed subspace S of H, PS denotes the orthogonal projection onto S.
Let T ∈ B(H,K), the inner inverse of T is a linear operator as T− such that T− : D(T−) ⊆ K −→ H
with R(T ) ⊆ D(T−) and TT−T = T . In [3], Ben-Israel show that for every T ∈ B(H,K), there exists
at least an inner inverse T− for T but it is not necessarily bounded. (T− /∈ B(K,H), in general). We
say that the operator T ∈ B(H,K) is regular if there is an inner inverse T− ∈ B(K,H). He proved
that for given T ∈ B(H,K), there exists an inner inverse of T , T−, such that T− ∈ B(K,H) if and
only if T has closed range.
If ,in addition, T− satisfies T−TT− = T−, then T− is called a generalized inverse of T . Note that
T− is not unique, however there exists a unique generalized inverse of T which also satisfies

(TT−)
∗

= TT− and (T−T )
∗

= T−T ,

which is called the Moore-Penrose generalized inverse of T and it will be denoted by T †.
Therefore, T † is the unique generalized inverse of T which satisfying the four following Penrose
equations:

i. TT †T = T ,

ii. T †TT † = T †,

iii. (TT †)
∗

= TT †,

iv. (T †T )
∗

= T †T .

An operator T ∈ B(H,K) has the unique Moore-Penrose inverse T † ∈ B(K,H) if and only if T has
closed range, or equivalently if and only if it is regular, ([17]). The assumption that R(T ) is closed
can be avoided in general, however in that case the Moore-Penrose inverse is not bounded.
Also, if T ∈ B(H,K), then we have the following properties, ([27]):

1. (T †)
∗

= (T ∗)†,

2. If T ≥ 0 then T † = T †TT † = (T 1/2T †)
∗
(T 1/2T †) ≥ 0,
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3. T †T and TT † both are projection and T †T = PR(T ∗) and TT † = PR(T )|R(T )⊕R(T )⊥ ,

4. (TT ∗)† = (T ∗)†T † and (T ∗T )† = T †(T †)
∗
,

5. R(T †T ) = R(T †) = R(T ∗) so that T †TT ∗ = T ∗,

6. R(TT †) = R(T ) so that T ∗TT † = (TT †T )
∗

= T ∗.

Throughout this work the next well-known theorem due to Douglas ([9]) about range inclusions
of operators will be crucial.

Theorem 2.1. (Douglas) Let T ∈ B(H,K) and U ∈ B(G,K). The following conditions are equiva-
lent:

i. There exists V ∈ B(G,H) such that TV = U . (This means that the equation TX = U has a
solution)

ii. R(U) ⊆ R(T ).

iii. There exists a positive number λ such that UU∗ ≤ λTT ∗.

As a consequence of Dauglas Theorem, Arias and Gonzalez proved the next lemma. This fact
will be used frequently along this work.

Lemma 2.2. ([1]; lemma 2.1) If T ∈ B(H,K) and U ∈ B(G,K) such that R(U) ⊆ R(T ), Then
T †U ∈ B(G,H), even though T † /∈ B(K,H).

The following theorems proved by Dajic and Koliha ([7]) in 2007. They presented conditions
for the existence of Hermitian solutions of Eq. (1.2) and common Hermitian solution of Eq. (1.3)
for closed range operators. Also they obtained the formula for the general form of these equations.
In the next section, we will extend these theorems to a system of operator Eqs. (1.1) without the
closedness condition.

Theorem 2.3. ([7]; Theorem 3.1) Let T, U ∈ B(H,K) and let T be a closed range operator. Then
the equation TX = U has a Hermitian solution X ∈ B(H) if and only if TT−U = U and UT ∗ is
Hermitian. The general form of Hermitian solution to Eq. (1.2) is

X = T−U + (I − T−T )(T−U)
∗

+ (I − T−T )S(I − T−T )
∗
, (2.1)

where S ∈ B(H) is Hermitian.

Theorem 2.4. ([7]; Theorem 4.2) Let T1, U1 ∈ B(H,K), T2, U2 ∈ B(G,H) and let the operators T1
and T2 have closed range. Let M = T2

∗(I − T1−T1) has closed range, and let T1
−, T2

− and M− be
inner inverses of T1, T2 and M , respectively. Then the equations{

T1X = U1,
XT2 = U2,

(2.2)

have a common hermitian solution X ∈ B(H) if and only if T1T1
−U1 = U1, U2T2

−T2 = U2, T1U2 =
U1T2 and T1U1

∗, T ∗2U2 are Hermitian.

The next theorem is proved by Arias and Gonzalez in [1]. They gave the necessary and sufficient
conditions about the existence of solutions of Eq. (1.4) that will be crucial to prove our main results.
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Theorem 2.5. ([1]; Proposition 3.3) Let T ∈ B(H,K), V ∈ B(G,H) and U ∈ B(G,K). Then the
following conditions are equivalent:

i. The equation TXV = U is solvable.

ii. R(U) ⊆ R(T ) and R((T †U)
∗
) ⊆ R(V ∗).

iii. R(U) ⊆ R(T ) and there exists Ỹ ∈ B(H) such that Ỹ V = T †U .

Moreover, if one of the previous conditions holds then every solution of XV = T †U is also a solution
of TXV = U . Also, for X̃ ∈ B(H) such that TX̃V = U , we have that PR(T ∗)X̃ is a solution of

XV = T †U .

3. The main results.

In this section, at first we prove the following lemmas about Hermitian solution of Eq. (1.2) and the

Moore-Penrose inverse of a n × 1 block operator matrix
[
T1 T2 · · · Tn

]t
, (where At denote the

transpose of A). Then we extend the Dajic and Koliha theorem (theorem 2.3) to give the necessary
and sufficient conditions for the existence of common Hermitian solutions to the system of operator
Eqs. (1.1) for arbitrary operators which has not necessarily closed range.

Lemma 3.1. Let T, U ∈ B(H,K) and suppose the equation TX = U has a solution X ∈ B(H), then
the general form solution of Eq. (1.2) is

X = T †U + (I − T †T )S, ∀S ∈ B(H). (3.1)

Proof . Suppose, Eq. (1.2) has a solution, so by Douglas theorem we have R(U) ⊆ R(T ), hence
T †U ∈ B(H) and TT †U = U . So X0 = T †U is a particular solution of equation TX = U and
therefore the general form of solution of Eq. (1.2) is, X = T †U + (I − T †T )S, ∀S ∈ B(H). �

Lemma 3.2. Let T, U ∈ B(H,K), then the equation TX = U has a Hermitian solution X ∈ B(H)
if and only if R(U) ⊆ R(T ) and UT ∗ is Hermitian. Then the general form of Hermitian solution to
Eq. (1.2) is

X = T †U + (I − T †T )(T †U)
∗

+ (I − T †T )S(I − T †T ), (3.2)

where S ∈ B(H) is Hermitian.

Proof . If R(U) ⊆ R(T ), then by Douglas theorem T †U ∈ B(H) and the equation TX = U has a
solution. Besides, since UT ∗ is Hermitian, X0 = T †U + (I − T †T )(T †U)

∗
is a particular Hermitian

solution of Eq. (1.2).
Converesly, suppose X ∈ B(H) be a Hermitian solution of Eq. (1.2), then R(U) ⊆ R(T ). Indeed,
since TU∗ = T (TX)∗ = TX∗T ∗ = TXT ∗, so TU∗ and similary UT ∗ is Hermitian.
To find the general form of Hermitian solution of Eq. (1.2), suppose Eq. (1.2) has a Hermitian
solution, then X0 = T †U + (I − T †T )(T †U)

∗
is a particular Hermitian solution of this equation. If

X ∈ B(H) be an arbitrary Hermitian solution of Eq. (1.2), then X −X0 is a Hermitian solution of
equation TZ = 0. But by ([29], lemma 2.4), Z has the form (I − T †T )S(I − T †T ), where S ∈ B(H)
and Hermitian, so X has the form of Eq. (3.2).
Converesly, if X = T †U + (I − T †T )(T †U)

∗
+ (I − T †T )S(I − T †T ) , where S ∈ B(H) be Hermitian,

then it is obvious that X is a Hermitian solution of equation TX = U . �
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Lemma 3.3. Suppose H, Ki be Hilbert spaces and Ti ∈ B(H,Ki) such that R(Ti
∗) ∩ R(Tj

∗) = {0}

for all 1 ≤ i 6= j ≤ n. Then


T1
T2
...
Tn


†

=
[
T1
† T2

† · · · Tn
†].

Note that


T1
T2
...
Tn


†

exits uniquely but is not necessarily bounded.

Proof . At first, since R(Ti
∗) ∩R(Tj

∗) = {0}, then

N(Ti) = R(Ti
∗)⊥ ⊇ R(Tj

∗) = R(Tj
†).

So we have TiTj
† = 0 ∀i 6= j and 1 ≤ i, j ≤ n and hence

TT † =


T1T1

† 0 · · · 0
0 T2T2

† · · · 0
... 0

. . .
...

0 0 · · · TnTn
†

 . (3.3)

Now, we prove that
[
T †1 T †2 · · · T †n

]
satisfies the Moore penrose conditions.

i.


T1
T2
...
Tn



T1
T2
...
Tn


† 
T1
T2
...
Tn

 =


T1T1

† 0 · · · 0
0 T2T2

† · · · 0
... 0

. . .
...

0 0 · · · TnTn
†



T1
T2
...
Tn

 =


T1
T2
...
Tn

,

ii.


T1
T2
...
Tn


†
T1
T2
...
Tn



T1
T2
...
Tn


†

=
[
T1
† · · · Tn

†]

T1T1

† 0 · · · 0
0 T2T2

† · · · 0
... 0

. . .
...

0 0 · · · TnTn
†

 =
[
T1
† · · · Tn

†] =


T1
T2
...
Tn


†

,

iii. (


T1
T2
...
Tn



T1
T2
...
Tn


†

)

∗

=


(T1T1

†) 0 · · · 0
0 (T2T2

†) · · · 0
... 0

. . .
...

0 0 · · · (TnTn
†)


∗

=


T1
T2
...
Tn



T1
T2
...
Tn


†

,

iv. (


T1
T2
...
Tn


†
T1
T2
...
Tn

)

∗

= (T1
†T1 + T2

†T2 + · · ·+ Tn
†Tn)

∗
=


T1
T2
...
Tn


†
T1
T2
...
Tn

.
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Example 3.4. Suppose M =

[
T1
T2

]
be a block matrix such that T1 =

[
1 0
0 0

]
and T2 =

[
0 2
0 0

]
.

Obviously T1 and T2 are not invertible, but there are uniquely Moore-Penrose inverse for them,

T1
† =

[
1 0
0 0

]
and T2

† =

[
0 0

1/2 0

]
.

Moreover, M is not invertible but by simple calculation, M † =

[
1 0 0 0
0 0 1

2
0

]
. It means M † =[

T1
† T2

†].
(It is obvious that R(T1

∗) ∩R(T2
∗) = {0}).

Example 3.5. Suppose M =

T1T2
T3

 be a block matrix such that T1 =

[
1 0 0
0 0 0

]
, T2 =

[
0 2 0

]
and

T3 =

[
0 0 0
0 0 3

]
. Obviously T1, T2 and T3 are not invertible, but there are uniquely Moore-Penrose

inverse for them, T1
† =

1 0
0 0
0 0

, T2† =

0
1
2

0

 and T3
† =

0 0
0 0
0 1

3

. By simple calculation we have,

M † =

1 0 0 0 0
0 0 1

2
0 0

0 0 0 0 1
3

. It means M † =
[
T1
† T2

† T3
†].

(It is obvious that R(Ti
∗) ∩R(Tj

∗) = {0}, for i, j = 1, 2, 3).

Example 3.6. Suppose T =

T1T2
T3

 be a block operator matrix such that

T1 : R4 −→ R2 s.t T1(x, y, z, w) = (x, 0),

T2 : R4 −→ R s.t T2(x, y, z, w) = 2y,

T3 : R4 −→ R3 s.t T3(x, y, z, w) = (0, 0, z + w).

Obviously T1, T2 and T3 are not invertible, but there are uniquely Moore-Penrose inverse for them as
follow:

T1
† : R2 −→ R4 s.t T1

†(x, y) = (x, 0, 0, 0),

T2
† : R −→ R4 s.t T2

†(x) = (0, 0.5x, 0, 0),

T3
† : R3 −→ R4 s.t T3

†(x, y, z) = (0, 0, 0.5z, 0.5z).

Moreover, we know that T † is a block operator matrix such that:

T † : R2 ⊕ R⊕ R3 −→ R4 s.t. T †(x1, x2, x3, x4, x5, x6) = (x1, 0.5x3, 0.5x6, 0.5x6). (3.4)

Indeed, [
T †1 T †2 T †3

]
(

XY
Z

) = T †1 (X) + T †2 (Y ) + T †3 (Z), (3.5)
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where X ∈ R2, Y ∈ R and Z ∈ R3.
By comparing Eqs. (3.4) and (3.5), we have T † =

[
T †1 T †2 T †3

]
.

(Easily we can see that R(Ti
∗) ∩R(Tj

∗) = {0}, for i, j = 1, 2, 3).

Theorem 3.7. Suppose H and Ki be Hilbert spaces and Ti, Ui ∈ B(H,Ki), for i = 1, 2, ..., n ∀n ∈
N, such that R(Ti

∗) ∩ R(Tj
∗) = {0}, ∀1 ≤ i 6= j ≤ n. The system operator equations TiX = Ui

have a common Hermitian solution if and only if

i. R(Ui) ⊆ R(Ti), ∀1 ≤ i ≤ n.

ii. UiTi
∗ is Hermitian, ∀1 ≤ i ≤ n.

iii. TiUj
∗ = UiTj

∗, ∀1 ≤ i, j ≤ n.

Then the general form of Hermitian solution to Eq. (1.1) is

X =
n∑

i=1

Ti
†Ui + (I −

n∑
i=1

Ti
†Ti)(

n∑
i=1

(Ti
†Ui)

∗
) + (I −

n∑
i=1

Ti
†Ti)S(I −

n∑
i=1

Ti
†Ti), (3.6)

where S ∈ B(H) is Hermitian.

Proof . Let

T =


T1
T2
...
Tn

 : H → ⊕n
i=1Ki s.t


T1
T2
...
Tn

 (h) =


T1(h)
T2(h)

...
Tn(h)

 ,

U =


U1

U2
...
Un

 : H → ⊕n
i=1Ki s.t


U1

U2
...
Un

 (h) =


U1(h)
U2(h)

...
Un(h)

 ,
It is obvious that the system Eqs. (1.1) have a common Hermitian solution if and only if the equation
TX = U has a Hermitian solution. Clearly by lemma 3.2, the equation TX = U has a Hermitian
solution if and only if R(U) ⊂ R(T) and TU∗ is Hermitian.
Also, R(U) ⊂ R(T) if and only if TT†U = U. Now by assumption R(Ti

∗) ∩ R(Tj
∗) = {0}, lemma

3.3 and condition (i), we have:
T1
T2
...
Tn

 [T1† T2
† · · · Tn

†]

U1

U2
...
Un

 =


T1T1

† 0 · · · 0
0 T2T2

† · · · 0
... 0

. . .
...

0 0 · · · TnTn
†



U1

U2
...
Un



=


T1T1

†U1

T2T2
†U2

...
TnTn

†Un

 =


U1

U2
...
Un


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hence TT†U = U.
Besides, from

TU∗ =


T1U1

∗ T1U2
∗ · · · T1Un

∗

T2U1
∗ T2U2

∗ · · · T2Un
∗

...
TnU1

∗ TnU2
∗ · · · TnUn

∗


and conditions (ii) and (iii), we have

(TU∗)∗ =


T1U1

∗ T1U2
∗ · · · T1Un

∗

T2U1
∗ T2U2

∗ · · · T2Un
∗

...
TnU1

∗ TnU2
∗ · · · TnUn

∗


∗

=


(T1U1

∗)∗ (T2U1
∗)∗ · · · (TnU1

∗)∗

(T1U2
∗)∗ (T2U2

∗)∗ · · · (TnU2
∗)∗

...
(T1Un

∗)∗ (T2Un
∗)∗ · · · (TnUn

∗)∗

 = TU∗.

So, TU∗ is Hermitian and then by Lemma (3.2), the equation TX = U has a Hermitian solution.
To prove the converse, suppose the system Eqs. (1.1) have a common Hermitian solution, then the
equation TiX = Ui for every i = 1, 2, · · · , n have a Hermitian solution, so by lemma 3.2, the condition
(i) and (ii) is verified. Indeed, for proving the condition (iii), if X0 ∈ B(H) be a common Hermitian
solution of the system Eqs. (1.1), then we have for every i = 1, 2, · · · , n, TiX0 = Ui and X0Ti

∗ = Ui
∗.

So,
TiUj

∗ = TiX0Tj
∗ = UiTj

∗, ∀i, j = 1, 2, · · · , n.

Now, we present the general form of common Hermitiam solution of Eq. (1.1). By the result of
Douglas, since R(Ui) ⊂ R(Ti), so Ti

†Ui ∈ B(H) and consequently T†U ∈ B(H). Then by lemma 3.2,
the general form of Hermitian solution to equation TX = U is:

X = T†U + (I −T†T)(T†U)
∗

+ (I −T†T)S(I −T†T)
∗
, (3.7)

where S ∈ B(H) is Hermitian. Simple calculation shows that X has the form of Eq. (3.6). �

Now, we give an example about the Theorem 3.7:
suppose,
T1 : l2(N) −→ l2(N) s.t. T1(x1, x2, · · · ) −→ (x1,

1
2
x4,

1
3
x7, · · · ),

U1 : l2(N) −→ l2(N) s.t. U1(x1, x2, · · · ) −→ (1
2
x1, 0, 0, · · · ),

T2 : l2(N) −→ l2(N) s.t. T2(x1, x2, · · · ) −→ (x2,
1
2
x5,

1
3
x8, · · · ),

U2 : l2(N) −→ l2(N) s.t. U2(x1, x2, · · · ) −→ (1
3
x2, 0, 0, · · · ),

T3 : l2(N) −→ l2(N) s.t. T3(x1, x2, · · · ) −→ (x3,
1
2
x6,

1
3
x9, · · · ),

U3 : l2(N) −→ l2(N) s.t. U3(x1, x2, · · · ) −→ (1
5
x3, 0, 0, · · · ).

By some calculaton we can check the theorem.

As a corollary of above theorem, we prove the theorem 2.4, ([7]), about the common Hermitian
solution of system operator Eqs. (2.2), under some easier condition and without the closedness
conditions of range of operators.
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Corollary 3.8. Let T1, U1 ∈ B(H,K), T2, U2 ∈ B(G,H) and let R(T2) ⊆ N(T1). Then the system
operator equations {

T1X = U1,
XT2 = U2,

(3.8)

have a common Hermitian solution X ∈ B(H) if and only if T1T1
−U1 = U1, U2T2

−T2 = U2, T1U2 =
U1T2 and T1U1

∗, T ∗2U2 are Hermitian.

Proof . Since, N(T1) = R(T ∗1 )⊥, so R(T2) ⊆ N(T1) if and only if R(T2) ⊆ R(T ∗1 )⊥ if and only if
R(T2) ∩R(T ∗1 ) = {0}.
Besides, if T1T1

−U1 = U1 then R(U1) ⊆ R(T1) and T1T1
†U1 = U1. Conversly, if R(U1) ⊆ R(T1) then

T1T1
†U1 = U1 and so T1T1

−U1 = T1T1
−T1T1

†U1 = T1T1
†U1 = U1. Hence R(U1) ⊆ R(T1) is equivalent

to T1T1
−U1 = U1 and by same way, R(U∗2 ) ⊆ R(T ∗2 ) is equivalent to U2T2

−T2 = U2.
so by theorem 3.7, the proof is obvious. �

As a corollary of theorem 2.5, lemma 3.2 and theorem 3.7, we present the necessary and sufficient
conditions for the existence of common Hermitian solution to system operator Eqs.(1.7). For this
purpose, at first, we present the general form of solution of Eq. (1.4) without the closedness condition.
Subsequently, we characterize the Hermitian solution of Eq. (1.4) and then extend our results to the
system of operator Eqs (1.7).

Lemma 3.9. Let T ∈ B(H,K) , V ∈ B(G,H), U ∈ B(G,K). If the operator equation TXV = U is
solvable then the general form solution of this equation is:

X = T †UV † + S − T †TSV V †, ∀S ∈ B(H). (3.9)

Proof . Suppose that the equation TXV = U is solvable.Then by theorem 2.5, R((T †U)
∗
) ⊆ R(V ∗)

and the equation XV = T †U is solvable and every solution of equation XV = T †U is a solution of
equation TXV = U .
Now, suppose X0 = T †UV †. Since R((T †U)

∗
) ⊆ R(V ∗) then V ∗V ∗†(T †U)

∗
= (T †U)

∗
and also

T †UV †V = T †U . Therefore X0 = T †UV † is a special solution of TXV = U .
Now, let X be a solution of equation TXV = U , then X −X0 is a solution of equation TZV = 0.
So, Z = S − T †TSV V †, for S ∈ B(H) and so X is the form of Eq. (3.9).
Converesly if

X = T †UV † + S − T †TSV V †, S ∈ B(H),

So,

TXV = TX0V + (TSV − TT †TSV V †V )

= TX0V = U,

and hence X = T †UV † + S − T †TSV V †, S ∈ B(H) is general solution of TXV = U . �

Theorem 3.10. Let T ∈ B(H,K), V ∈ B(G,H), U ∈ B(G,K) be such that R(V ) ⊆ R(T ∗), then the
following are equivalent:

1. The equation TXV = U has a Hermitian solution X ∈ B(H).

2. R(U) ⊆ R(T ) and the equation XV = T †U has a Hermitian solution.

3. R(U) ⊆ R(T ), R((T †U)
∗
) ⊆ R(V ∗) and V ∗T †U is Hermitian.
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The general form of common Hermitian solution of this equation is:

X = T †UV † + (T †UV †)
∗
(I − V V †) + (I − TT †)S(I − TT †) + (I − V V †)S ′(I − V V †), (3.10)

where S, S
′ ∈ B(H) are Hermitian.

Proof . (1 −→ 2), Suppose X0 ∈ B(H) be a Hermitian solution of the equation TXV = U , then
TX0V = U and R(U) ⊆ R(T ). Furthermore, as R(V ) ⊆ R(T ∗), T †TV = V and T †TX0T

†TV =
T †TX0V = T †U . Hence Y0 = T †TX0T

†T is a Hermitian solution of the equation XV = T †U .
(2 −→ 1), Suppose Y0 ∈ B(H) be the Hermitian solution of the equationXV = T †U , then Y0V = T †U
and since R(U) ⊆ R(T ) we have TY0V = TT †U = U .
(2←→ 3), By lemma 3.2, obviously 2 and 3 are equivalent.
Now, we find the general form of Hermitian solution of this equation.
Suppose the equation TXV = U has a Hermitian solution, then the equation XV = T †U and
consequently the equation V ∗X = (T †U)

∗
has a Hermitian solution. So every particular Hermitian

solution of the equation V ∗X = (T †U)
∗

is a particular Hermitian solution of the equation TXV =
U . So by lemma 3.2, X0 = T †UV † + (T †UV †)

∗
(I − V V †) is a particular Hermitian solution of the

equation XV = (T †U) and TXV = U .
Now, suppose X be a Hermitian solution of the equation TXV = U , then X − X0 is a Hermitian
solution of the equation TZV = 0. So

X −X0 = (I − TT †)S(I − TT †) + (I − V V †)S ′(I − V V †), where

S ,S
′ ∈ B(H) are Hermitian.

Hence X is the form of Eq. (3.10).
�

Theorem 3.11. Let Ti ∈ B(H,Ki) , Vi ∈ B(Gi,H), Ui ∈ B(Gi,Ki), ∀i = 1, 2, · · · , n be such that
R(Ti

∗) ∩ R(Tj
∗) = {0} and R(Vi) ⊆ R(Ti

∗), ∀1 ≤ i 6= j ≤ n. If ∀i = 1, 2, · · · , n, the equation
TiXVi = Ui be solvable, then the system operator equations TiXVi = Ui have a common Hermitian
solution if and only if

1. Vi
∗Ti
†Ui is Hermitian, ∀1 ≤ i ≤ n,

2. Vi
∗Vi
∗†(Ti

†Ui)
∗

= (Ti
†Ui)

∗
, ∀1 ≤ i ≤ n,

3. Vi
∗Tj
†Uj = (Vj

∗Ti
†Ui)

∗
, ∀1 ≤ i 6= j ≤ n,

Proof . Let T =


T1
T2
...
Tn

, V =
[
V1 V2 · · · Vn

]
and U =


U1 W12 · · · W1n

W21 U2 · · · W2n
...

. . .

Wn1 Wn2 · · · Un

,

for some Wij ∈ B(Gj,Ki), ∀ 1 ≤ i 6= j ≤ n.
Obviously the system operator Eqs. (1.7) have a common Hermitian solution if and only if the
equation TXV = U has a Hermitian solution. Moreover, suppose h ∈ R(V), then

∃


g1
g2
...
gn

 ∈ ⊕n
i=1Gi s.t V (


g1
g2
...
gn

) = ⊕n
i=1Vi(gi) = h,
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so,
h ∈ ⊕n

i=1R(Vi) and R(V) ⊆ ⊕n
i=1R(Vi),

and
since R(Vi) ⊆ R(Ti

∗), then R(V) ⊆ ⊕n
i=1R(Ti

∗). (3.11)

Indeed, if h ∈ ⊕n
i=1R(Ti

∗), then exits hi ∈ R(Ti
∗) such that h = ⊕n

i=1hi. Furthermore, as hi ∈ R(Ti
∗),

then exits ki ∈ Ki such that Ti
∗(ki) = hi and T∗(


k1
k2
...
kn

) = ⊕n
i=1Ti

∗(ki) = h. So, h ∈ R(T∗) and then

⊕n
i=1R(Ti

∗) ⊆ R(T∗). Therefore, from Eq. (3.11), R(V) ⊆ R(T∗).
So by theorem 3.10, the equation TXV = U has a Hermitian solution if and only if TT†U = U,
V∗V∗†(T†U)

∗
= (T†U)

∗
and V∗T†U is Hermitian.

Suppose Wij = TiVj for every 1 ≤ i 6= j ≤ n.
We have TT†U = U if and only if

T1
T2
...
Tn

 [T1† · · · Tn
†]

U1 W12 · · · W1n

W21 U2 · · · W2n

...
. . .

Wn1 Wn2 · · · Un

 =


U1 W12 · · · W1n

W21 U2 · · · W2n

...
. . .

Wn1 Wn2 · · · Un



⇐⇒


T1T1

†U1 T1T1
†W12 · · · T1T1

†W1n

T2T2
†W21 T2T2

†U2 · · · T2T2
†W2n

...
. . .

TnTn
†Wn1 TnTn

†Wn2 · · · T1T1
†Un

 =


U1 W12 · · · W1n

W21 U2 · · · W2n

...
. . .

Wn1 Wn2 · · · Un


and it is equivalent to R(Ui) ⊆ R(Ti) and R(Wij) ⊆ R(Ti), for all 1 ≤ i 6= j ≤ n. So TT†U = U.

Indeed, by some calculation we have V∗V∗†(T†U)
∗

= (T†U)
∗

if and only if
V ∗1 V

∗
1
† 0 · · · 0

0 V ∗2 V
∗
2
† · · · 0

... 0
. . .

...
0 0 · · · V ∗n V

∗
n
†




(T †1U1 +
∑n

j=1,j 6=1 Tj
†Wj1)

∗

(T †2U2 +
∑n

j=1,j 6=2 Tj
†Wj2)

∗

...

(T †nUn +
∑n

j=1,j 6=n Tj
†Wjn)

∗



=


(T †1U1 +

∑n
j=1,j 6=1 Tj

†Wj1)
∗

(T †2U2 +
∑n

j=1,j 6=2 Tj
†Wj2)

∗

...

(T †nUn +
∑n

j=1,j 6=n Tj
†Wjn)

∗


and it is equivalent to

V ∗i V
∗
i
†((T †i Ui)

∗
+

n∑
j=1,j 6=i

(Tj
†Wji)

∗
) = (T †i Ui)

∗
+

n∑
j=1,j 6=i

(Tj
†Wji)

∗
. (3.12)



Hermitian solutions to the system of operator equations . . . (10) No. 1, 139–152 151

Since every equation TiXVi = Ui is solvable and has Hermitian solution, then for i = 1, 2, · · · , n,
V ∗i V

∗
i
†(T †i Ui)

∗
= (T †i Ui)

∗
. So the Eq. (3.12) is eqivalent to condition (2) and R(

∑n
j=1,j 6=i (Tj

†Wji)
∗
) ⊆

R(Vi
∗) for every 1 ≤ i, j ≤ n. So by Wij = TiVj and simple calculation we have V∗V∗†(T†U)

∗
=

(T†U)
∗
.

Moreover,

V∗T†U =


V ∗1 T1

† V ∗1 T2
† · · · V ∗1 Tn

†

V ∗2 T1
† V ∗2 T2

† · · · V ∗2 Tn
†

...
. . .

...
V ∗n T1

† V ∗n T2
† · · · V ∗n Tn

†



U1 W12 · · · W1n

W21 U2 · · · W2n

...
. . .

Wn1 Wn2 · · · Un



=


V ∗1 T1

†U1 + V ∗1
∑n

j=1,j 6=1 Tj
†Wj1 · · · V ∗1 Tn

†Un + V ∗1
∑n

j=1,j 6=n Tj
†Wjn

V ∗2 T1
†U1 + V ∗2

∑n
j=1,j 6=1 Tj

†Wj1 · · · V ∗2 Tn
†Un + V ∗2

∑n
j=1,j 6=n Tj

†Wjn

...
...

V ∗n T1
†U1 + V ∗n

∑n
j=1,j 6=1 Tj

†Wj1 · · · V ∗n Tn
†Un + V ∗n

∑n
j=1,j 6=n Tj

†Wjn

 , (3.13)

so V∗T†U is Hermitian if and only if the conditions (1) and (3) are verified and Vi
∗Tj
†Wji is Hermitian

for all 1 ≤ i 6= j ≤ n, and we have for all 1 ≤ i 6= k, j ≤ n,

(Vi
∗

n∑
j=1,j 6=k

(Tj
†Wjk))

∗

= Vk
∗

n∑
j=1,j 6=i

(Tj
†Wji).

So by Wij = TiVj and simple calculation, V∗T†U is Hermitian.
To prove converse, suppose X0 ∈ B(H) be a common Hermitian solution of Eq. (1.1), then by
theorem 3.10, the conditions (1) and (2) are verified. Moreover, if suppose Wij = TiX0Vj, then
X0 is a Hermitian solution of equation TXV = U. So V∗T†U is Hermitian and by Eq. (3.13), the
condition (3) is verified. �

Theorem 3.12. Suppose U, Ti ∈ B(H,K), ∀i = 1, 2, · · · , n. If R(U) ⊆ R(Tn) then the equation∑n
i=1 TiXi = U is solvable.

Proof . Let KT = (I − TT †) and suppose K
(1)
T := KT , K

(n)
T := K

K
(n−1)
T

. By Dauglas theorem, the

equation TX = U has a solution if and only if R(U) ⊆ R(T ) or equivalently KTU = 0.
Indeed, the equation T1X1 + T2X2 = U is solvable if and only if the equation KT1(U − T2X2) = 0 is
solvable and it is equivalent to R(KT1U) ⊆ R(KT1T2).
Moreover, the equation T1X1 + T2X2 + T3X3 = U is solvable if and only if the equation KT1(U −
T2X2 − T3X3) = 0 is solvable and it is equivalent to R(KKT1

T2KT1U) ⊆ R(KKT1
T2KT1T3).

So by induction, the equation T1X1 + T2X2 + T3X3 + · · · + TnXn = U is solvable if and only if the
equation

KT1(U − T2X2 − T3X3 − · · · − TnXn) = 0

is solvable and it is equivalent to

R(K
(n−2)
KT1

T2KT1
T3···KT1

Tn−1
K

(n−3)
KT1

T2KT1
T3···KT1

Tn−2
· · ·KT1U)

⊆ R(K
(n−2)
KT1

T2KT1
T3···KT1

Tn−1
K

(n−3)
KT1

T2KT1
T3···KT1

Tn−2
· · ·KT1Tn).

(3.14)

So, if R(U) ⊆ R(Tn) then the Eq. (3.14) is verified. Hence the equation T1X1 + T2X2 + T3X3 +
· · ·+ TnXn = U is solvable. �
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