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Abstract

Word embeddings (WE) have received much attention recently as word to numeric vectors architec-
ture for all text processing approaches and has been a great asset for a large variety of NLP tasks.
Most of text processing task tried to convert text components like sentences to numeric matrix to
apply their processing algorithms. But the most important problems in all word vector-based text
processing approaches are different sentences size and as a result, different dimension of sentences
matrices. In this paper, we suggest an efficient but simple statistical method to convert text sen-
tences into equal dimension and normalized matrices Proposed method aims to combines three most
efficient methods (averaging based, most likely n-grams, and words mover distance) to use their
advantages and reduce their constraints. The unique size resulting matrix does not depend on lan-
guage, Subject and scope of the text and words semantic concepts. Our results demonstrate that
normalized matrices capture complementary aspects of most text processing tasks such as coherence
evaluation, text summarization, text classification, automatic essay scoring, and question answering.

Keywords: Text Preprocessing, Sentence Normalization, Word Embedding, Word Vector,
Sentence Vector.
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1. Introduction

Representing textual sequences such as words is a fundamental component of all text processing
systems. Some of previous works uses words as the smallest units in man-made or machine generated
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documents [1] [2]. There are some other studies which have used character-based models and convert
sequences of characters into vectors [3] [4] [5]. But most researchers have been carried out on
sentence as smallest meaningful unit of text [6]. Sentences are the smallest coherent text unit and
having meaningful message. As result converting sentences into numeric vectors is one of the most
important proposed approaches. The study of automatic methods to represent words as numerical
vectors has proposed by G.E.Hinton (1986) [7]. According to the first authors opinion of vector-
based text processing, there are some important advantages of these methods that it is not possible
by classical n-grams based methods [8]. Classic methods focus on contextual discrete units and
they have no inherent relationship together. But in word vector-based models similar words in a
one-concept class have very similar vectors.

The purpose of this investigation is to provide and explore a combined method which incorporates
benefits of Google word2vec word vectors, text processing text processing and language models to
convert sentences text to normalized and equal size vectors. This approach has results in covering all
other approach shortcomings such as ignoring the feature of sentence length, different dimensional
matrix size or generated sentences vectors with low difference. In the proposed method, the text
processing preprocessing approaches are applied to input text and each sentences converted to unique
lists. Then the sentences lists are developed to numerical matrices using word2vec algorithm and
words mover distance (WMD) [9]. WMD applies words travel to convert sentences numerical
matrices into similarity vectors. Finally, using most likely local n-grams, generated similarity vectors
converted to equal and normal size. The unique size vectors are the best suitable data structure for
most statistical linguistic technique and text processing algorithms.

The rest of this paper is organized as follows. Section 2 describes most important previous works
on word embeddings and word2vec word converting method to vectors. Section 3 describes our
proposed model including our best text preprocessing and converting sentences into normal vectors
and finally conclusion is given in section 4.

2. Related works

The majority meaning of every text processing comes from word choice and the remaining comes
from words order [10]. Word order is a crucial matter of capturing all the semantic information in
sentence. Words can be mapped to vectors in a vector space. The mapping is called word embeddings
and it is one of the most interesting areas in most of text processing approaches. Word embeddings
specifies the meaning of each word in relation to other texts words. The idea of using other words
in a text to understand the real meaning of each word was originally introduced by Ferret (1957)
[11]. Fultz et al. introduced a vector-based model to calculate successive sentences semantic relation
[12]. They used their vector-based model to evaluate text coherence. Connectionist approaches are
one of the leading methods and proposing for developing distributed representations to encode the
structural relationships between words [7] [13] [14]. There are some other proposed methods that
employ word embedding to recognize document similarity [15]. Combining traditional method of
corpus-based features and word embedding features are proposed by some other researchers like J.
Tian and M. Lan [16]. They used some traditional NLP feature engineering of string-based similarity
such as sentences length features, syntactic POS tagging features, longest common sequence, n-
grams overlapping features and named entities features, machine translation similarity features, and
combined with some new corpus-based features like wordnet rank features, vector space sentence
similarity, global alignment and specific alignment features and word embedding feature engineering.
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3. Word embeddings

Recent NLP approaches started with some methods based on just pure symbolic language anal-
ysis. Statistical methods on NLP task were introduced in 1980s and made NLP fields more popular.
Most, current NLP techniques assumed words as atomic units. Word level analysis lead to some
advantages of simplicity, robustness and the observation of simple training models on huge amounts
of data. However, traditional statistical simple techniques are at their limits in many tasks. For
example:

Most of them were totally language dependent

Difficulty in detecting related and synonyms words
Difficulty in considering different writing forms of a word
No way to considering words location

In last decade other steps have been taken for mentioned shortcoming. They were proposing to
represent and analyze words in vector spaces. Vector space representations have been successfully
used in different syntactic and semantics NLP fields. In these approaches words could be mapped
into vectors in a vector-space called word embeddings. Word embedding is tried to represent the
usage, semantic and syntactic similarities, relatedness and position of words in sentence. On the
other hand, word embeddings represent the meaning of words relative to other text words. The first
work in which addressed word embeddings evaluation was the proposed method by Griffiths et al.
(2007) [17]. In 2010 Turney and Pantel presented a comprehensive survey on word embedding [18].
Their proposed method used distributional semantics models which could be considered as a measure
of word embeddings performance. A year after, D. S. McNamara was published the first comparison
of performance on various DSMs [19]. He exemplifies that how statistical models of semantics play
an important role in understanding of cognition and contribute to the field of cognitive science. In
2013, the popular word2vec tool was released by Mikolov et al. [8]. Word2vec is training on very
large datasets and allows the model to learn complex word relationships such as:

vector(Berlin) — vector(Germany) + vector(France) ~ vector(Paris) (3.1)

Vector space representations can be performed on two very close sentences or in a similar class
[16]. Figure 1 presents the experimental words relation on two distinct sentences:

Storm will spread snow over Shanghai.

The earthquakes have shaken parts of Oklahoma.

In 2014, Baroni et al. proposed an extensive overview of approaches to word embeddings evalu-
ation [20]. They presented the first systematic comparative evaluation of count and predict vectors.
Faruqui et al. (2016) identified problems associated with word similarity evaluation of word vector
models, and reviewed existing solutions wherever possible [21]. They suggest that the use of word
similarity tasks for evaluation of word vectors can lead to incorrect inferences and calls for further
research on evaluation methods.

4. Word2vec

Representing a text as numerically vectors and matrices, takes some advantage of vectors and
matrix operators and lead to much more speed and accuracy. One of most famous and common
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Figure 1: An Illustration of Word Embeddings [16]

vector-based text processing is Google word2vec algorithm [8]. The popular method generates el-
ements vectors between -1 to 1 that are distributed numerical representations of the context of
individual word features without human intervention (Equation 1). Where nb(t) is the set of neigh-
boring words and p(wi|wt) is the maximum likelihood of travel cost of word wi to word wt . It makes
highly accurate guesses about a words meaning based on its past appearances.

%Z > log p(wluw) (4.1)

i=1 jenb(t)

Word2vec can be used in many text processing approaches such as sentiment analysis [22], text
classification [23], automatic essay scoring [24], text simplification [25], text summarization [26], text
generation [27], pattern matching [28] text coherence evaluation [29] natural language ambiguity [30]
[31], email classification [32], searching similar texts [33], news offer [34] and similar goods. The algo-
rithm uses neural networks and billions of words within several million web documents and generates
a fixed size vector for each word in document. Each column in the vectors just shows a number
and does not indicate a specific property. M. T. Abdl and M. Mohd examined the prototypical
word representation method and found that word2vec can be successfully used for Bio-Named En-
tity Recognition [35]. They show their word2vec vector representation method combined with two
popular sequence-labeling approaches of Conditional Random Fields (CRFs) and Maximum Entropy
Markov Models (MEMM) improved the performance of the two machine learning models with differ-
ent datasets. We have an example of two sentences converting to unique matrix. If a 100 elements
vector is generated for every word, we have a 100 dimensions space that every word in this space has
a unique vector (table 1 and 2):

A storm will spread snow over Shanghai.
The earthquakes have shaken parts of Oklahoma.

Table 1 and 2 reveal the first seven elements of 100 elements vector of each sentences word.
According to obtained word vectors, each sentence converts to unique matrix. But sentences with
different length lead to different dimension of matrices. Some previous methods have attempted to
make average value of columns and obtain a one-dimensional vector including N elements [36] [37].
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Table 1: First Sentence Words Vector Generating by Word2vec

Words Vectors
a -0.0145 | -0.10315 | 0.09016 | 0.15967 | 0.12111 | 0.06169 | -0.0506
storm 0.27012 | -0.11728 | -0.10711 | -0.17389 | -0.11666 | 0.101391 | 0.297459
will 0.01242 | 0.12589 | 0.00235 | 0.334008 | 0.052308 | 0.111021 | 0.118059
spread 0.23484 | -0.24044 | -0.23968 | -0.02178 | 0.209235 | 0.106129 | 0.003406
snow 0.27845 | 0.08688 | -0.02953 | -0.21082 | -0.15313 | 0.123246 | -0.16418
over 0.05527 | -0.07588 | 0.22287 | 0.235038 | 0.390302 | 0.102481 | -0.11601
Shanghai || 0.45604 | -0.17005 | 0.13119 | 0.067335 | -0.26712 | -0.31781 | 0.33737
Table 2: Second Sentence Words Vector Generating by Word2ve
Words Vectors
the -0.16441 | 0.03211 | 0.08352 | 0.07601 | 0.14558 | 0.10881 | 0.04161
earthquakes || 0.07366 | -0.01261 | 0.00131 | 0.02239 | 0.04506 | -0.02498 | 0.01721
have 0.05777 | -0.09796 | 0.23698 | 0.05579 | 0.01641 | 0.00640 | 0.02438
shake 0.03016 | -0.13642 | -0.31775 | -0.06335 | 0.16948 | -0.27697 | 0.05185
part 0.10178 | 0.02292 | 0.07076 | 0.04385 | 0.17474 | 0.20870 | 0.14299
of -0.03745 | -0.04726 | 0.28023 | 0.08130 | 0.01393 | 0.09037 | 0.08464
Oklahoma 0.26341 | -0.02099 | 0.00929 | -0.04321 | -0.05444 | -0.21249 | 0.04522
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Averaging based generation sentences vector brings some advantages like simplicity of computing,
generating an N element vector for all sentences, requiring low storage memory and more processing
speed [38]. But the main challenge faced by them is:

Word location is an important feature in all text processing methods. In most of the times,
changing the location of words leads to changing sentences information. But Changing location of
words has no effect on output vector.

Ignoring sentence length feature. Sentence length is one of the most important and effective
features in most text processing fields. In these approaches there is no difference between long and
short sentences.

Because of positive and negative values in word2vec vectors, averaging based methods lead to
create much closed vectors. So, sentence relationship and differences are having low accuracy. Table
3 presents the two-sentence averaging vector.

5. Proposed method

b.1. Text preprocessing

The first and most important issue in any text processing operation is preparing input text for
applying the subsequent algorithms. The initial preprocessing is different according to text type,

Table 3: Sentences vector based on averaging methods

0.184667 | -0.07057 | 0.010041 | 0.055653 | 0.033722
0.046422 | -0.03717 | 0.052053 | 0.024686 | 0.07297

0.041165
-0.01431

0.060776
0.058275

First sentence
Second sentence
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language, and main algorithm. Preprocessing types and the amount of its exploiting rate have
huge impact on main algorithm speed and accuracy. Most important preprocessing algorithms are
tokenizing, stop word removing, stemming, lemmatizing and POS tagging [39] [40]. However, their
challenges are restricting to a particular filed, having no ability to apply and extend to all areas and
languages. Two most important texts preprocessing are text cleaning and text normalizing. Samples
for text cleaning are removing tags in html code, extra space and tabs and for text normalizing
are normalized accent character (naive instead of nave) and informal writing text (hello instead of
hellooo).

The main goal of our method is to convert all texts sentences into unique size numerical vector.
Generated vectors are having the most sentence information and acceptable distance. Therefore, our
method tried to equalize sentences vector length into two distinct phases of preprocessing and main
algorithm. In our study, the first phase offers some important insights into preprocessing method-
ology and input text normalizing. At the beginning we apply text cleaning and word normalizing.
Then we apply other common proposed preprocessing:

Sentence segmentation (tokenization): Firstly, using Python NLTK tools, sentences and
words are separated. There is some limitation in default Python NLTK tokenizer. Therefore, in order
to increase the precision of tokenizer, we taught a new tokenizer which is suitable for large texts. To
learn new tokenizer we use PunktSentenceTokenizer tool and webtext corpus. WordPunctTokenizer
tool is using for word tokenizing and sent-tokenize tool is using for sentence tokenizing.

Text cleaning: in text cleaning phase, first all uppercase characters converted to lowercase
character. Then all extra space and characters are removing. These extra characters do not add any
information to text ({}[][]1\/N....)

Word normalizing: Accent characters are particular type of Unicode characters in borrowed
words from different Latin form languages. In this phase we apply Python NLTK tools and wordnet
database to convert words with accent characters and informal words (like hellooo) into Standard
English characters. Word2vec database is a collection of 132400 words and their vectors, but there are
possible words in the text that cannot be included in the database [41]. In this case, using wordnet
database with NLTK tool in Python, the vector of word with largest common subclass is selected
and placed in the sentence matrix. The other word normalizing which is applied to remaining words
is lemmatizing. Lemmatizing and stemming are two important tools for converting words into basic
and standard form. Stemming works based on word appearance (believes believ). But lemmatizing
works based on word meaning and concept (believes belief).

5.2. Conwverting sentences into normal vectors

All sentences in documents have different length with different numerical matrix dimension. In
order to apply text processing methods, sentences matrix or vector must be normalized. Some
previous methods have attempted to make average value of columns and obtain a one-dimensional
vector including N elements [36] [37]. Our previous study offers a simple and efficient method
which covers some disadvantage of average base vectors [21] [38]. In our previous studies, instead
of average word vectors, original matrices are using for subsequent text processing. But to optimize
the shortcoming and making standard size matrices, instead of word vectors, using most likely n-
grams, phrasal vectors are generated. In present study we propose a statistic and simple method that
converted sentences text into numerical and normalized vectors. The aim of this study is to combines
three most efficient methods (averaging based, most likely n-grams, and words mover distance) to use
their advantages and reduce their constraints by overlapping of three fields. Our proposed method
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Figure 2: An Illustration of Word Movers Distance [16]

generates sequential sentence similarity vector instead of sentences matrix and local most likely n-
grams to convert similarity vector to normal size. As result an N sentences document converted
to (N-1) normalized vectors. To overcome the mentioned method and generate sentence similarity
vector, our approach uses recent results of word2vec vectors [38] and Word Movers Distance (WMD),
utilizes the property of word2vec embeddings [9]. WMD is incorporating the semantic similarity
between individual word pairs into sentence distance metric.

One such measure of word similarity and dissimilarity is naturally provided by their Euclidean
Distance (2), Inverse Cosine Similarity (3) and Hellinger Distance (4) in word2vec embedding space.
The travel cost between two words is a natural building block to evaluate two sentences distance. In
this method, first, the similarity between each word in first sentence is compared with each single
word in followed sentence and then calculated their distance.

n

d(p,q) = | > _(pi — 0)? (5.1)

4 ZZ \/pi X ;
N R (5:2)
Up) = | S~ VD) (5.3)

6. Experiments

For the first time text cleaning and text normalizing are applied on all sentences. Some sequential
sentences and their preprocessing result lists are presented. Resulting lists are the outputs of applied
preprocessing algorithms, including tokenizing, stop word removing and lemmatizing.

There was once a woman who wished very much to have a little child. She went to a fairy and
said I should so very much like to have a little child.

A= [there’, ‘'woman’, "wish’, ‘'much’, ‘little’, 'child’]
B= ['she’, go, ’fairy’, say, 'I’, 'much’, like’, ’little’, "child’]
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Table 4: Words Mover Distance Matrix (WMDM), Calculating by Average of Three Criteria of Two Sentences
’ — H she \ go \ fairy \ say \ I \ much \ like \ little \ child ‘
there 0.75657 | 0.64511 | 0.82923 | 0.85816 | 0.67067 | 0.65756 | 0.63365 | 0.46058 | 0.5883
woman 0.68376 | 0.67041 | 0.79336 | 0.89689 | 0.66131 | 0.59334 | 0.62293 | 0.47120 | 0.33549

wish 0.79769 | 0.68 | 0.90697 | 0.91313 | 0.72964 | 0.68617 | 0.65381 | 0.58297 | 0.58094
much 0.79275 | 0.73319 | 0.92328 | 0.94857 | 0.73339 | 0.08600 | 0.73815 | 0.43588 | 0.61045
little 0.64278 | 0.56185 | 0.75971 | 0.85559 | 0.59220 | 0.37685 | 0.69693 | -0.03783 | 0.43344
child 0.73328 | 0.68328 | 0.80061 | 0.91689 | 0.70776 | 0.61674 | 0.67132 | 0.50661 | 0.02957

| Average | 0.73447 | 0.66230 | 0.83552 | 0.89820 | 0.68249 | 0.50277 | 0.66946 | 0.40323 | 0.42969

In our method, three mentioned measures are applied to make Words Mover Distance Matrix
(WMDM) of words in lists A and B. As results sentence similarity matrix of two sequential sentences
is generated (table 4). To convert sentence similarity matrix to sentence similarity vector, the average
of each column makes an element of final vector:

[0.73447, 0.66230, 0.83552, 0.89820, 0.68249, 0.50277, 0.66946, 0.40323, 0.42969]

WMDM (1, 1) =dist (she, there)
WMDM (1, 2) =dist (go, there)

WMDM (6, 9) = dist (child, child)

To convert the sentence similarity vector into standard size, we use most likely local n-grams. To
choose the best length for similarity vector we extract the minimum, average length of document
sentences. The best length for similarity vector is the half-value of minimum and average sentences
length. To normalize the sentence similarity vector length, we find the most probability local n-grams
of two compared sentences and make phrasal n-grams. For example, in previous two sentences the
most probability n-grams are [much — like(0.586115), little — child(0.698385), she — go(0.41646)]. As
result the similarity vector converted to a six elements vector:

[0.698385, 0.83552, 0.89820, 0.68249, 0.586115, 0.41646]

Some time it is possible a document has two short sequential sentences. This situation leads to
make similarity vector shorter than threshold. In order to solve the leading problem two sentences
join to each other and assumed as one sentence. It can be each sentence join to its next or previous
sentence.

7. Conclusion

The present study was proposed an efficient method for converting and normalizing sentenced
into numerical vectors. Most text processing approaches that employ numerical sentence matrix
suffer from unmatched matrices with different dimensions and tried to overcome its deficiency. We
performed a careful empirical method which optimizes utilization of word vectors obtained word2Vec
approach, statistical language models and text preprocessing likes stop word removing, stemming
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and lemmatizing. The findings from this study make several contributions to the current sentence-
based text processing methods. The modeling taken in this paper is relatively inexpensive, relies on
statistical language models and basic text properties. This makes the proposed model particularly
attractive for the automatic machine generated summaries, text coherence evaluation, and automatic
essay scoring. We found that our consistent trend offers a simple and efficient architecture that lead
to fast and high performance in compare to other post processing algorithms.
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