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Abstract

In this paper, we study the Ulam–Hyers–Rassias stability for stochastic integral equations of Volterra
type by using fixed point theorem and Pachpatte’s inequality.
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1. Introduction

Stochastic (or random) integral equations are fundamental for modeling finance, physics and
engineering phenomena. Several papers have considered on the problem of existence and uniqueness
of solutions of stochastic (or random) integral equations, and the results are established by using
various fixed point techniques and the method of successive approximation (see, e.g [1, 3, 4, 6, 11,
24]). Furthermore, asymptotic behavior and stability of solutions of stochastic integral equations are
discussed in [5, 23, 27]. In 1940, Ulam [25] posted the open question ”Under what conditions, the
approximate solution of a given equation can be approximated by its exact solution ?”. This question
was first answered by D.H. Hyers one year later. Thereafter, T. Aoki [2], D.G. Bourgin [7] and Th.M.
Rassias [21] improved the result of D.H. Hyers. For more details and further discussions, we refer
the readers to the monographs by Soon-Mo Jung [12] and the papers of Hamid Khodaei [9, 14]. In
recent years, accompanied by the development of the Hyers–Ulam stability for ordinary differential
equations (see, e.g [13, 20, 22]) and stochastic (or random ) integral equations (see, e.g [17, 18]), and
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stochastic (or random) differential equations (see, e.g [10, 16, 26]). In [17], Ngoc proved Ulam-Hyers-
Rassias stability results for Volterra type stochastic integral equations by using Gronwall lemma and
Banach’s fixed point theorem. Ngoc [18] also investigated and established the stability in the sense of
Ulam-Hyers and in the sense of Ulam-Hyers-Rassias for the stochastic Ito-Volterra integral equation.
Li et al. [16] proved the existence for random impulsive stochastic functional differential equations
with finite delays by using Krasnoselskii’s fixed point. Authors also showed Hyers-Ulam stability
results to the equation under the Lipschitz condition on a bounded and closed interval. Vinodkumar
et al. [26] studied the existence and uniqueness of solutions, and Hyers-Ulam-Rassias stability results
for random impulsive fractional differential systems by relaxing the linear growth conditions.

To the best of our knowledge, up to now, the number of papers dealing with Ulam–Hyers stability
for stochastic integral equations is rather scant as opposed to the amount of publications concern-
ing stochastic integral equations. Based on the motivation stated in the work of Ngoc [17, 18] and
Vinodkumar et al. [26] and Li et al. [16]. In this paper, we shall study the Ulam–Hyers–Rassias sta-
bility for stochastic integral equations of Volterra type by using fixed point theorem and Pachpatte’s
inequality.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and
necessary preliminaries. In Section 3, we shall the Ulam–Hyers–Rassias stability of Equation (2.1)
via fixed point theorem and Pachpatte’s lemma approach.

2. Preliminaries

Throughout this paper, we denote F the σ–algebra of subsets of the sample space Ω and let
(Ω,F,P) be a complete probability space. Let W (t) be a Brownian motion defined on the space
(Ω,F,P) and let {Ft, t ∈ J := [0, T ]} be the natural filtration associated to Wt.

Let X(t, ω) =
{
X(t), t ∈ J, ω ∈ Ω

}
be a stochastic process. For 1 ≤ p < ∞, we will use Lp(Ω) to

denote the space of all random variables X with E(|X|p) < ∞. It is a Banach space with norm

∥X∥p = p
√

E|X|p.

Let Lp
ad(J,Ω) denote the space of stochastic processes X(t, ω) satisfying the conditions: X(t, ω)

is adapted to the filtration {Ft} and E
( ∫

J
|X(t, ω)|pdt

)
< ∞.

Suppose that F : J × Rd × Rd → Rd, G : J × Rd × Rd → Rd×m and K : J × Rd → Rd be
measurable, where J = {(t, s) ∈ T × T : s ≤ t}, and X0 be an Ft-measurable Rd–valued random
variable such that E(|X0|p) < ∞. We consider the following stochastic integral equations of Volterra
type of the form

X(t) = X0 +

∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s), (2.1)

where

(QX)(t) =

∫ t

0

K(t, s,X(s))ds, ∀t ∈ J. (2.2)

To investigated the Ulam–Hyers–Rassias stability of Equation (2.1), we will use the following
assumptions:

(A1) There exists a constant L1 > 0 such that

max
{∣∣F (t,X2, Y2)− F (t,X1, Y1)

∣∣; ∣∣G(t,X2, Y2)−G(t,X1, Y1)
∣∣} ≤ L1

(∣∣X2 −X1

∣∣+ ∣∣Y2 − Y1

∣∣),
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for any t ∈ J and X1, X2, Y1, Y2 ∈ Rd;
(A2) There exists a constant L2 > 0 such that

max
{∣∣F (t,X, Y )

∣∣; ∣∣G(t,X, Y )
∣∣} ≤ L2

(
1 +

∣∣X∣∣+ ∣∣Y ∣∣),
for any t ∈ J and X, Y ∈ Rd;

(A3) There exists a constant M1 > 0 such that∣∣K(t, s,X)−K(t, s, Y )
∣∣ ≤ M1

∣∣X − Y
∣∣,

for any (t, s) ∈ J and X ∈ Rd;
(A4) There exists a constant M2 > 0 such that∣∣K(t, s,X)

∣∣ ≤ M2

(
1 +

∣∣X∣∣),
for any (t, s) ∈ J and X ∈ Rd;

(A5) The random variable X0 is F-measurable with E(Xp
0 ) < ∞, where p ≥ 2.

Theorem 2.1. Let p ≥ 2 and let g ∈ L2
ad(J,Ω) be such that

E
(∫ T

0

|g(t)|pdt
)

< ∞,

then

E
∣∣∣∣ ∫ T

0

g(t)W (s)

∣∣∣∣p ≤ C̃E
(∫ T

0

|g(t)|pdt
)
,

where C̃ :=

(
p(p− 2)

2

)p/2

T (p−2)/2.

Theorem 2.2. ([8]) Let d : X×X → [0,+∞) be a generalized metric on X and (X, d) is a generalized
complete metric space. Assume that T : X → X is a strictly contractive operator with the Lipschitz
constant L < 1. If there exists a nonnegative integer n such that d

(
T n+1x, T nx

)
< ∞ for some

x ∈ X, then the followings are true:

(i) the sequence {T nx} converges to a fixed point x∗ of T ;

(ii) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X | d

(
T nx, y

)
< ∞

}
;

(iii) if y ∈ X∗, then we have

d(y, x∗) ≤ 1

1− L
d
(
Ty, y

)
.

Lemma 2.3. ([19]) Let a, b, c ∈ C(J,R+) be a real-valued functions satisfying the inequality

a(t) ≤ a0 +

∫ t

0

b(s)u(s)ds+

∫ t

0

b(s)

(∫ s

0

c(r)u(r)dr

)
ds,∀t ∈ J

holds, where a0 is positive constant. Then

a(t) ≤ a0

(
1 +

∫ t

0

b(s) exp

(∫ s

0

(
b(r) + c(r)

)
dr

)
ds

)
for t ∈ J .
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Lemma 2.4. ([15]) Let a, b, c, h ∈ C(J,R+) and e be a positive and nondecreasing continuous func-
tion defined on J for which in equality

a(t) ≤ e(t) +

∫ t

0

b(s)

[
a(s) +

∫ s

0

c(r)a(r)dr +

∫ T

0

h(r)a(r)dr

]
ds.

If

r∗ =

∫ T

0

h(r) exp

(∫ r

0

[
b(τ) + c(τ)

]
dτ

)
dr < 1,

then

a(t) ≤ e(t)

1− r∗
exp

(∫ t

0

[
b(s) + c(s)

]
ds

)
for any t ∈ J .

Definition 2.5. Equation (2.1) is Ulam–Hyers stable with respect to ϵ if there exists Mϵ such that
for each solution X(t) ∈ Lp

ad(J,Ω) of the following inequality∥∥∥∥X(t)−X0 +

∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

∥∥∥∥
p

≤ ϵ, (2.3)

for any t ∈ J , there exists a solution U(t) ∈ Lp
ad(J,Ω) of Equation (2.1) such that∥∥X(t)− U(t)

∥∥
p
≤ Mϵϵ, (2.4)

where Mϵ is a constant that does not depend on X(t).

Definition 2.6. Equation (2.1) is Ulam–Hyers–Rassias stable with respect to φ(t) ∈ C(J,R+) if
there exists Mφ such that for each solution X(t) ∈ Lp

ad(J,Ω) of the following inequality∥∥∥∥X(t)−X0 +

∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

∥∥∥∥
p

≤ φ(t), (2.5)

for any t ∈ J , there exists a solution U(t) ∈ Lp
ad(J,Ω) of Equation (2.1) such that∥∥X(t)− U(t)
∥∥
p
≤ Mφ φ(t), ∀t ∈ J, (2.6)

where Mφ is a constant that does not depend on X(t).

Remark 2.7. We see that Definition 2.5 =⇒ Definition 2.6.

3. Main results

3.1. Fixed point approach to the Ulam–Hyers–Rassias stability of Equation (2.1)

In this part, we present the Ulam–Hyers stability and Ulam–Hyers–Rassias stability for Equation
(2.1) by using the fixed point approach.
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Theorem 3.1. Assume that (A1)-(A5) are satisfied. If(
22p−2(T p−1 + C̃)T pLp

1 + 22p−1(T p−1 + C̃)T p+1Lp
1M

p
1

)1/p

< 1

then
(i) Equation (2.1) has a unique solution in Lp

ad(J,Ω).
(ii) Equation (2.1) has Ulam-Hyers stable in Lp

ad(J,Ω).

Proof . Consider a space Lp
ad(J,Ω) consisting of all stochastic processes X(t), which it is F-adapted

and continuous such that ∥∥X(t)
∥∥
p,∞ =

(
sup
t∈J

E
(
|X(t)|p

))1/p

. (3.1)

Now, we consider the operator G : Lp
ad(J,Ω) → Lp

ad(J,Ω) defined by

(
GX

)
(t) = X0 +

∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s), (3.2)

where

(QX)(t) =

∫ t

0

K(t, s,X(s))ds, ∀t ∈ J,X ∈ Lp
ad(J,Ω).

For X ∈ Lp
ad(J,Ω) and t ∈ J , and by the Hölder inequality, we have∫ t

0

|X(s)|ds ≤ T (p−1)/p

(∫ t

0

|X(s)|pds
)1/p

(3.3)

∫ t

0

|(QX)(s)|ds ≤ T (p−1)/p

(∫ t

0

|(QX)(s)|pds
)1/p

(3.4)

Using the elementary inequality (a+ b)p ≤ 2p−1(ap + bp) and assumtion (A4), we have the following
estimate ∣∣(QX)(t)

∣∣p ≤ (∫ t

0

∣∣K(t, s,X(s))
∣∣ds)p

≤
(∫ t

0

M2

∣∣1 +X(s)
∣∣ds)p

≤ 2p−1T p−1

{
Mp

2T
p +Mp

2

(∫ t

0

∣∣X(s)
∣∣ds)p}

(3.5)

Form (3.3), (3.4) and (3.5), we obtain for t ∈ J∫ t

0

∣∣(QX)(s)
∣∣pds ≤ 2p−1T p−1

{
Mp

2T
p +Mp

2

(∫ s

0

∣∣X(r)
∣∣dr)p}

≤ 2p−1T p−1

∫ t

0

{
Mp

2T
p +Mp

2T
p−1

(∫ s

0

∣∣X(r)
∣∣pdr)}ds

≤ 2p−1T p−1

{
Mp

2T
p+1 +Mp

2T
p−1

∫ t

0

(∫ s

0

∣∣X(r)
∣∣pdr)ds} (3.6)



218 Vu, Dong

Using the inequality (a + b + c)p ≤ 3p−1(ap + bp + cp) and the Hölder inequalities (3.3), (3.4), and
assumtions (A1)-(A4), we have the following estimates∣∣∣∣ ∫ t

0

F
(
s,X(s), (QX)(s)

)
ds

∣∣∣∣p ≤ (∫ t

0

L2

(
1 + |X(s)|+

∣∣(QX)(s)
∣∣)ds)p

≤ 3p−1Lp
2

{
T p +

(∫ t

0

∣∣X(s)
∣∣ds)p

+

(∫ t

0

∣∣(QX)(s)
∣∣ds)p}

≤ 3p−1Lp
2

{
T p + T p−1

(∫ t

0

∣∣X(s)
∣∣pds)+ T p−1

(∫ t

0

∣∣(QX)(s)
∣∣pds)} (3.7)

Inserting (3.6) into (3.7), we have∣∣∣∣ ∫ t

0

F
(
s,X(s), (QX)(s)

)
ds

∣∣∣∣p ≤ C1 + C2

∫ t

0

∣∣X(s)
∣∣pds+ C3

∫ t

0

∫ s

0

∣∣X(r)
∣∣pdrds, (3.8)

where C1 := 3p−1Lp
2T

p + 6p−1Lp
2M

p
2T

3p−1, C2 := 3p−1Lp
2T

p−1 and C3 := 6p−1Lp
2T

3p−pMp
2 .

Using Theorem 2.1 and assumption (A2), we have

E
∣∣∣∣ ∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

∣∣∣∣p ≤ C̃E
(∫ t

0

∣∣G(
s,X(s), (QX)(s)

)∣∣pds)
≤ C̃Lp

2E
(∫ t

0

(
1 + |X(s)|+

∣∣(QX)(s)
∣∣)pds)

≤ 3p−1C̃Lp
2E

(∫ t

0

(
1 +

∣∣X(s)
∣∣p + ∣∣(QX)(s)

∣∣p)ds)
≤ 3p−1C̃Lp

2

{
T p + E

∫ t

0

∣∣X(s)
∣∣pds+ E

∫ t

0

∣∣(QX)(s)
∣∣pds}. (3.9)

Inserting (3.6) into (3.9), we obtain

E
∣∣∣∣ ∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

∣∣∣∣p ≤ C4 + C5

∫ t

0

E
∣∣X(s)

∣∣pds+ C6

∫ t

0

∫ s

0

E|X(r)|pdrds (3.10)

where C4 := 3p−1C̃Lp
2

(
T p + 2p−1Mp

2T
2p
)
, C5 := 3p−1C̃Lp

2 and C6 := 6p−1C̃Lp
2M

p
2T

2p−2.
Using the inequalities (a+ b+ c)p ≤ 3p−1(ap + bp + cp) and (3.8), (3.10), we obtain for t ∈ J

E
∣∣(GX

)
(t)

∣∣p ≤ 3p−1

{
E
∣∣X0

∣∣p + E
∣∣∣∣ ∫ t

0

F
(
s,X(s), (QX)(s)

)
ds

∣∣∣∣p
+ E

∣∣∣∣ ∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

∣∣∣∣p}
≤ 3p−1

(
C1 + C4 + E|X0|0

)
+ 3p−1

(
C2 + C5

) ∫ t

0

E
∣∣X(s)

∣∣pds
+ 3p−1

(
C3 + C6

) ∫ t

0

∫ s

0

E|X(r)|pdrds (3.11)

Form (3.1) and inequality (3.10), we infer that
∥∥(GX

)
(t)

∥∥
p,∞ < ∞. Hence, G(Lp

ad(J,Ω)) ⊂
Lp
ad(J,Ω).
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For X, Y ∈ Lp
ad(J,Ω) and using assumptions (A1), and (A3), we have for t ∈ J(∫ t

0

∣∣F(
s,X(s), (QX)(s)

)
− F

(
s, Y (s), (QY )(s)

)∣∣ds)p

≤ T p−1

∫ t

0

∣∣F(
s,X(s), (QX)(s)

)
− F

(
s, Y (s), (QY )(s)

)∣∣pds
≤ T p−1Lp

1

∫ t

0

(∣∣X(s)− Y (s)
∣∣+ ∣∣(QX)(s)− (QY )(s)

∣∣)p

ds

≤ 2p−1T p−1Lp
1

∫ t

0

(∣∣X(s)− Y (s)
∣∣p + ∣∣(QX)(s)− (QY )(s)

∣∣p)ds
≤ 2p−1T p−1Lp

1

∫ t

0

∣∣X(s)− Y (s)
∣∣pds+ 2p−1T 2p−2Lp

1M
p
1

∫ t

0

∫ s

0

∣∣X(r)− Y (r)
∣∣pdrds (3.12)

and

E
∣∣∣∣ ∫ t

0

(
G
(
s,X(s), (QX)(s)

)
−G

(
s, Y (s), (QY )(s)

))
dW (s)

∣∣∣∣p
≤ C̃E

∫ t

0

∣∣∣G(
s,X(s), (QX)(s)

)
−G

(
s, Y (s), (QY )(s)

)∣∣∣pds
≤ 2p−1C̃Lp

1E
(∫ t

0

(∣∣X(s)− Y (s)
∣∣+ ∣∣(QX)(s)− (QY )(s)

∣∣)p

ds

)
≤ 2p−1C̃Lp

1

∫ t

0

E
∣∣X(s)− Y (s)

∣∣pds+ C̃2p−1T p−1Lp
1M

p
1

∫ t

0

∫ s

0

E
∣∣X(r)− Y (r)

∣∣pdrds (3.13)

Let X, Y ∈ Lp
ad(J,Ω) and the estimations (3.12), (3.13), we have for t ∈ J

E
∣∣(GX

)
(t)−

(
GY

)
(t)

∣∣p = E
∣∣∣∣ ∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s)

−
∫ t

0

F
(
s, Y (s), (QY )(s)

)
ds−

∫ t

0

G
(
s, Y (s), (QY )(s)

)
dW (s)

∣∣∣∣p
≤ 2p−1

{
E
∣∣∣∣ ∫ t

0

[
F
(
s,X(s), (QX)(s)

)
− F

(
s, Y (s), (QY )(s)

)]
ds

∣∣∣∣p
+ E

∣∣∣∣ ∫ t

0

[
G
(
s,X(s), (QX)(s)

)
−G

(
s, Y (s), (QY )(s)

)]
dW (s)

∣∣∣∣p}
≤ 22p−2(T p−1 + C̃)Lp

1

∫ t

0

E
∣∣X(s)− Y (s)

∣∣pds
+ 22p−2(T p−1 + C̃)T p−1Lp

1M
p
1

∫ t

0

∫ s

0

E
∣∣X(r)− Y (r)

∣∣pdrds. (3.14)

By taking the supremum of both sides of (3.14) for t ∈ J , we have∥∥(GX
)
(t)−

(
GY

)
(t)

∥∥
p,∞ ≤ C7(T )

∥∥X(t)− Y (t)
∥∥
p,∞

where C7(T ) :=
(
22p−2(T p−1 + C̃)T pLp

1 + 22p−1(T p−1 + C̃)T p+1Lp
1M

p
1

)1/p

. By choosing a suitable

T1 ∈ (0, T ) sufficient small such that C7(T ) < 1, hence G is contraction mapping. By Banach fixed
point theorem, then there exists a unique U ∈ Lp

ad(J,Ω) such that G(U) = U .
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Next, we assume that X(t) be a solution of Inequation (2.3). For t ∈ J , we have∥∥X(t)−G
(
QX

)
(t)

∥∥
p
≤ ϵ

which implies that ∥∥X(t)−G
(
QX

)
(t)

∥∥
p,∞ ≤ ϵ.

By Theorem 2.2 and for t ∈ J , we obtain∥∥X(t)− U(t)
∥∥
p,∞ ≤ ϵ

1− C7

.

On the other hand, we get ∥∥X(t)− U(t)
∥∥
p
≤

∥∥X(t)− U(t)
∥∥
p,∞

for t ∈ J . Hence we infer that ∥∥X(t)− U(t)
∥∥
p
≤ ϵ

1− C7

.

That is, Equation (2.1) has Ulam-Hyers stability. The proof is completed. □

Theorem 3.2. Assume that the assumptions (A1)-(A5) are satisfied and there exists a constant
Nφ > 0 such that ∫ t

0

φp(s)ds ≤ Nφ φ
p(t),

where φ : J → R+ is continuous function. If(
2p−1(1 + C̃)T p−1Lp

1Nφ + 4p−1(1 + C̃)T 2p−2Lp
1M

p
1N

2
φ

)1/p

< 1

then
(i) Equation (2.1) has a unique solution in Lp

ad(J,Ω).
(ii) Equation (2.1) has Ulam–Hyers–Rassias stability with respect to φ(t) in Lp

ad(J,Ω).

Proof .
Firstly, we choose continuous function Ψ : J → R+ such that∫ t

0

Ψp(s)ds ≤ NφΨ
p(t), ∀t ∈ J.

Suppose that there exists two constants αφ, βφ > 0 satisfies the following inequality

αφΨ(t) ≤ φ(t) ≤ βφΨ(t), ∀t ∈ J. (3.15)

For X(t), Y (t) ∈ Lp
ad(J,Ω), we define

dΨ
(
X(t), Y (t)

)
= sup

t∈J

1

Ψ(t)

∥∥X(t)− Y (t)
∥∥
p
. (3.16)
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It is easy to see that the space
(
Lp
ad(J,Ω), dΨ

)
is a complete generalized metric space.

Consider the operator H : Lp
ad(J,Ω) → Lp

ad(J,Ω) defined by

(
HX

)
(t) = X0 +

∫ t

0

F
(
s,X(s), (QX)(s)

)
ds+

∫ t

0

G
(
s,X(s), (QX)(s)

)
dW (s), (3.17)

where

(QX)(t) =

∫ t

0

K(t, s,X(s))ds, ∀t ∈ J,X ∈ Lp
ad(J,Ω).

Now, we need to check the operator H is strictly contractive on Lp
ad(J,Ω). For any X, Y ∈

Lp
ad(J,Ω) and let CX,Y ∈ [0,∞) be a arbitrary constant with dΨ

(
X, Y

)
≤ CX,Y , that is, by (3.16),

we have ∥∥X(t)− Y (t)
∥∥
p
≤ CX,YΨ(t), ∀t ∈ J.

For anyX, Y ∈ Lp
ad(J,Ω) and performing similar calculations as in Theorem 3.1, we have the following

estimate

E
∣∣(HX

)
(t)−

(
HY

)
(t)

∣∣p ≤ 22p−2(T p−1 + C̃)Lp
1

∫ t

0

∥∥X(r)− Y (r)
∥∥p

p
ds

+ 22p−2(T p−1 + C̃)T p−1Lp
1M

p
1

∫ t

0

∫ s

0

∥∥X(r)− Y (r)
∥∥p

p
drds

≤ 22p−2(T p−1 + C̃)Lp
1

∫ t

0

Cp
X,YΨ

p(s)ds

+ 22p−2(T p−1 + C̃)T p−1Lp
1M

p
1

∫ t

0

∫ s

0

Cp
X,YΨ

p(r)drds

≤ 22p−2(T p−1 + C̃)Lp
1C

p
X,YNφΨ

p(t)

+ 22p−2(T p−1 + C̃)T p−1Lp
1M

p
1

∫ t

0

Cp
X,YNφΨ

p(s)ds

≤ 22p−2(T p−1 + C̃)Lp
1C

p
X,YNφΨ

p(t)

+ 22p−2(T p−1 + C̃)T p−1Lp
1M

p
1C

p
X,YN

2
φΨ

p(t)

which implies that ∥∥(HX
)
(t)−

(
HY

)
(t)

∥∥
p
≤ C8CX,YΨ(t), ∀t ∈ J,

where C8(T ) :=
(
22p−2(T p−1 + C̃)Lp

1Nφ + 22p−2(T p−1 + C̃)T p−1Lp
1M

p
1N

2
φ

)1/p

. It implies that

dΨ
(
HX

)
(t),HY

)
(t)

)
≤ C8CX,Y ,

for any t ∈ J. Therefore, we conclude that

dΨ
((
HX

)
(t),HY

)
(t)

)
≤ C8dΨ

(
X(t), Y (t)

)
, (3.18)

where X, Y ∈ Lp
ad(J,Ω). By choosing a suitable T2 ∈ (0, T ) sufficient small such that C8(T ) < 1,

hence H is strictly contractive on
(
Lp
ad(J,Ω), dΨ

)
. Applying Banach fixed point theorem, then there

exists a unique U ∈ Lp
ad(J,Ω) such that H(U) = U .
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Let X(t) be a solution of (2.5) and by assumption (3.15) and for any t ∈ J , we have∥∥(HX
)
(t)−

(
HY

)
(t)

∥∥
p
≤ φ(t) ≤ βφΨ(t). (3.19)

For any X(t), U(t) ∈ Lp
ad(J,Ω) and t ∈ J , we have the following estimate

dΨ
(
X(t), U(t)

)
≤ dΨ

(
X(t),

(
HX

)
(t)

)
+ dΨ

((
HX

)
(t), U(t)

)
= dΨ

(
X(t),

(
HX

)
(t)

)
+ dΨ

((
HX

)
(t),H(U)(t)

)
(3.20)

By the definition of the metric dΨ and (3.18), (3.19), (3.20), we obtain

dΨ
(
X(t), U(t)

)
≤ βφ + C8dΨ

(
X(t), Y (t)

)
(3.21)

for any t ∈ J , which implies that

dΨ
(
X(t), U(t)

)
≤ βφ

1− C8

, ∀t ∈ J. (3.22)

Therefore, ∥∥X(t)− Y (t)
∥∥
p
≤ βφ

1− C8

Ψ(t) ≤ Mφφ(t),

where Mφ =
βφ

(1− C8)αφ

, that is, Equation (2.1) has the Ulam–Hyers–Rassias stability. This com-

pletes the proof the theorem. □

3.2. Pachpatte’s lemma approach to the Ulam–Hyers–Rassias stability of Equation (2.1)

In this part, we present the Ulam–Hyers stability and Ulam–Hyers–Rassias stability for Equation
(2.1) by using Pachpatte’s inequality.

Theorem 3.3. Let φ : J → R+ be a continuous function and φp(t) is non-decreasing on J . Assume
that the assumptions (A1)-(A5) are satisfied. Then

(i) Equation (2.1) has a unique solution in Lp
ad(J,Ω).

(ii) Equation (2.1) has Ulam–Hyers–Rassias stability with respect to φ(t) in Lp
ad(J,Ω).

Proof . Let U(t) be the solution of Equation (2.1). For any t ∈ J , we have

U(t) = X0 +

∫ t

0

F
(
s, U(s), (QU)(s)

)
ds+

∫ t

0

G
(
s, U(s), (QU)(s)

)
dW (s), (3.23)

where

(QU)(t) =

∫ t

0

K(t, s, U(s))ds, ∀t ∈ J. (3.24)

Using the inequality (a+ b+ c)p ≤ 3p−1(ap + bp + cp) and assumptions (A1)-(A5), we obtain

E
∣∣U(t)

∣∣p ≤ 3p−1

{
E
∣∣X0

∣∣p + E
∣∣∣∣ ∫ t

0

F
(
s, U(s), (QU)(s)

)
ds

∣∣∣∣p
+ E

∣∣∣∣ ∫ t

0

G
(
s, U(s), (QU)(s)

)
dW (s)

∣∣∣∣p}. (3.25)
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Performing similar calculations as in Theorem 3.1, we have the following estimates

E
∣∣U(t)

∣∣p ≤ 3p−1
(
C1 + C4 + E|X0|0

)
+ 3p−1

(
C2 + C5

) ∫ t

0

E
∣∣X(s)

∣∣pds
+ 3p−1

(
C3 + C6

) ∫ t

0

∫ s

0

E|X(r)|pdrds

≤ 3p−1
(
C1 + C4 + E|X0|0

)
+

∫ t

0

3p−1
(
C2 + C5

)
E
∣∣X(s)

∣∣pds
+

∫ t

0

3p−1
(
C2 + C5

) ∫ s

0

C3 + C6

C2 + C5

E|X(r)|pdrds. (3.26)

Applying Gronwall-Bellman lemma 2.3, we obtain

E
∣∣U(t)

∣∣p ≤ C9

(
1 + exp

(
TC10

C10 + C11

))
< +∞, (3.27)

for any t ∈ J , where C9 := 3p−1
(
C1 + C4 + E|X0|0

)
, C10 := 3p−1

(
C2 + C5

)
and C11 :=

C3 + C6

C2 + C5

.

Therefore, we infer that U(t) ∈ Lp
ad(J,Ω).

Next, let X(t) be a solution of (2.5) and let U(t) be a solution of (2.1). For any t ∈ J and by the
inequalities (a+ b+ c)p ≤ 3p−2(ap + bp + cp), we have∣∣X(t)− U(t)

∣∣p ≤ 3p−1

{∣∣∣∣X(t)−X0 −
∫ t

0

F
(
s, U(s), (QU)(s)

)
ds−

∫ t

0

G
(
s, U(s), (QU)(s)

)
dW (s)

∣∣∣∣p
+

∣∣∣∣ ∫ t

0

∣∣F(
s,X(s), (QX)(s)− F

(
s, U(s), (QU)(s)

∣∣ds∣∣∣∣p
+

∣∣∣∣ ∫ t

0

∣∣G(
s,X(s), (QX)(s)

)
−G

(
s, U(s), (QU)(s)

)∣∣dW (s)

∣∣∣∣p} (3.28)

From Inequalities (2.5) and the assumption φp(t) is non-decreasing function on J , we get∣∣∣∣X(t)−X0 −
∫ t

0

F
(
s, U(s), (QU)(s)

)
ds−

∫ t

0

G
(
s, U(s), (QU)(s)

)
dW (s)

∣∣∣∣p ≤ φp(t), (3.29)

for any t ∈ J .
On the other hand, performing similar calculations as in Theorem 3.1, we obtain the following

estimate∣∣∣∣ ∫ t

0

∣∣F(
s,X(s), (QX)(s)− F

(
s, U(s), (QU)(s)

∣∣ds∣∣∣∣p
≤ 2p−1Lp

1T
p−1

∫ t

0

∣∣X(s)− U(s)
∣∣pds+ 2p−1Lp

1T
2p−2Mp

1

∫ t

0

∫ s

0

∣∣X(r)− U(r)
∣∣pdrds (3.30)

and

E
∣∣∣∣ ∫ t

0

∣∣G(
s,X(s), (QX)(s)

)
−G

(
s, U(s), (QU)(s)

)∣∣dW (s)

∣∣∣∣p
≤ 22p−2(T p−1 + C̃)Lp

1

∫ t

0

E
∣∣X(s)− Y (s)

∣∣pds
+ 22p−2(T p−1 + C̃)T p−1Lp

1M
p
1

∫ t

0

∫ s

0

E
∣∣X(r)− Y (r)

∣∣pdrds, (3.31)
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for any t ∈ J .
Combining the estimaties (3.31),(3.30) and (3.29) with (3.28), we get

E
∣∣X(t)− U(t)

∣∣p ≤ C12φ
p(t) + C13

∫ t

0

E
∣∣X(s)− Y (s)

∣∣pds
+ C14

∫ t

0

∫ s

0

E
∣∣X(r)− Y (r)

∣∣pdrds, ∀t ∈ J, (3.32)

where C12 := 3p−1, C13 := 22p−23p−1(T p−1 + C̃)Lp
1 and C14 := 22p−23p−1(T p−1 + C̃)T p−1Lp

1M
p
1 .

Applying Pachpatte’s Inequality 2.4, we obtain

E
∣∣X(t)− U(t)

∣∣p ≤ C12φ
p(t) exp

(∫ t

0

(
C13 + C14

)
ds

)
≤ C12φ

p(t) exp
(
TC13 + TC14

)
, (3.33)

which implies that ∥∥X(t)− U(t)
∥∥
p
≤ Mφφ(t), ∀t ∈ J,

where Mφ =
(
C12 exp

(
TC13 + TC14

))1/p
. This completes the proof the theorem. □
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