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1. Introduction 

The laminar flow problem of free convective due to 

a heated or cooled vertical plate is of considerable 

interest because of its increasing industrial 

applications. Free convective heat and mass transfer 

together with boundary layer analysis over a vertical 

flat surface together with Dufour and Soret terms are 

also of great importance to scientists and engineers 

because of their universal occurrence in many 

branches of science and engineering most in 

industry. Generally, it is understood that when a hot 

object is exposed to cold air; the temperature of the 

outside of the object drops as a result of heat transfer 

through cold air and the temperature of adjacent air 

to the object must rise. Since the temperature of the 

air adjacent to the hot object is higher, thus, the 

density of the fluid is lower. As a result, the heated 

layer of air close to the object rises. This movement 

is called natural convection current. Both theoretical 

and experimental studies have revealed that in the 

absence of this kind of movement, heat transfer 

would be by conduction only and its rate would be 

much lower. 

Due to the importance and application of boundary 

layer flow after the publication of Blasius [1] in 

engineering processes such as liquid composite 

moulding, extrusion of plastic sheets, paper 

production, glass blowing, metal spinning, wire 

drawing and hot rolling (see Loganathan and Arasu 

[2]); hence, the problem of the classical boundary 

layer flow over a surface is studied in two different 
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types which are: problem of a boundary layer flow 

past a surface at rest and  boundary layer behavior on 

a moving surface. The discovery of boundary layer 

formed in a motion of fluid due to continuously 

moving of the surface can be traced to Sakiadis and 

Crane [3-5]. Sakiadis [3, 4] carried out the flow field 

analysis where the stretched surface was assumed to 

move with uniform velocity and similarity solutions 

were obtained for the governing equations. He 

reported that due to the fact that ambient fluid was 

carried along (entrainment), this type of boundary 

layer flow along continuously stretching surface had 

a solution which was significantly different from that 

of Blasius [1]. Crane [5] also investigated the steady 

boundary layer flow of an incompressible viscous 

fluid over a linearly stretching plate and gave an 

exact similarity solution in a closed analytical form. 

Bhattacharyya [6] investigated two-dimensional 

boundary layer flows of a Newtonian fluid and heat 

transfer over an exponentially shrinking sheet; using 

similarity transformations in exponential form, the 

governing boundary layer equations were 

transformed into self-similar nonlinear ordinary 

differential equations and were solved numerically 

by Runge-Kutta along with Secant method. The 

effects of mass Suction and Prandtl number over an 

exponentially shrinking sheet were investigated. It is 

reported that the similarity solution exists when the 

mass suction parameter 𝑆 satisfies the condition 

𝑆 ≥ 2.266684 and consequently, for 𝑆 < 2.266684 

the flow has no similarity solution. For 𝑆 ≥

2.266684 dual similarity solutions are obtained. 

Fourier’s law of heat conduction described the 

relation between energy flux and temperature 

gradient. In other aspects, Fick’s law was determined 

by the correlation of mass flux and concentration 

gradient. Moreover, it was found that energy flux 

could be generated by composition gradients, 

pressure gradients or body forces. The energy flux 

caused by a composition gradient was discovered in 

1873 by Dufour and was correspondingly referred to 

as Dufour effect; on the other hand, mass flux can be 

also created by a temperature gradient, as was 

established by Charles Soret. In general, the thermal-

diffusion and the diffusion-thermo effects were of a 

smaller order of magnitude than the effects described 

by Fourier’s or Fick’s law and were often neglected 

in heat and mass transfer process. When heat and 

mass transfer occurs simultaneously in a moving 

fluid, the relations between the fluxes and the driving 

potentials may be of a more intricate nature. And 

energy flux can be generated not only by temperature 

gradients but also by composition gradients. Both 

Dufour and Soret effects are significant when density 

differences exist in the flow regime. For example, 

when species are introduced at a surface in a fluid 

domain, with a different (lower) density than the 

surrounding fluid, both Soret (thermo-diffusion) and 

Dufour (Diffuso-thermal) effects can become 

influential. The Soret and Dufour effects are 

important for intermediate molecular weight gasses 

in coupled heat and also for mass transfer in fluid 

binary systems, often encountered in chemical 

engineering processes Refs.[7 - 9]. Alam et al. [10] 

carried out a theoretical study on two-dimensional 

free convection and mass transfer flow past a 

continuously moving semi-infinite vertical porous 

plate in a porous medium considering the Dufour and 

Soret effects. The governing partial differential 

equations for the flow were transformed into a set of 

ordinary differential equations using similarity 

transformations. The resulting equations were then 

solved numerically by a shooting method using 

Runge-Kutta sixth-order integration scheme. It is 

reported that the influence of Soret number 𝑆𝑟  and 

Dufour number 𝐷𝑓 on the velocity field of fluids 

with medium molecular weight is significant. 

Recently, Motsa and Animasaun [11] presented the 

motion of unsteady non-Darcian 

magnetohydrodynamic fluid flow in the presence of 

Diffuso-thermal using bivariate spectral local 

linearization method. 

Scientific research has revealed how hot air balloon 

rises and falls; as air is heated and released inside the 

balloon, the balloon rises. This happens because hot 

air is less dense than the surrounding air; as the air 

inside the balloon cools, it becomes denser and the 

balloon descends. In most situations of fluid flow, 

there may be an appreciable and a significant 

temperature difference between the surface and the 

ambient fluid. This brings forth the fact to consider 

temperature dependent heat source or sink that is not 

influenced by the temperature at the wall and such 

model may exert a strong influence on the heat 

transfer characteristics. Recently, researchers have 

revealed that study of heat generation or absorption 

effects on moving fluids are important in view of 

several physical problems such as fluids undergoing 

exothermic or endothermic chemical reactions 

(stated in Aziz and Salem [12]). Heat generation or 

absorption can be assumed constant, space 

dependent or temperature dependent; Crepeau and 

Clarksean [13] adopt similarity solutions to analyze 

the effect of an exponential form of heat generation 

when the temperature of the vertical plate is 
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constant. The effect of space-dependent heat source 

on unsteady flow with thermophoresis of particles 

past a vertical surface moving through binary 

mixture was presented by Animasaun [14]. In 

another related literature, Animasaun [15] reported 

the behavior of non-Newtonian Casson fluid flow 

along exponentially stretching surface in the 

presence of space-dependent internal heat source. It 

is shown that variation of exponentially decaying 

heat source parameter has a significant effect on the 

thickness of the boundary layer profiles (i.  e. 

velocity,  temperature  and temperature gradient). 

The Arrhenius equation was first proposed by 

Dutch Chemist J. H. Van’t Hoff in 1884 as a simple 

but remarkably accurate formula for the temperature 

dependence of the reaction rate constant (i.e. rate of 

a chemical reaction). Few years after, Swedish 

Chemist Svante Arrhenius provided a physical 

justification and interpretation of Arrhenius equation 

as a mathematical model which gave the dependence 

of the rate constant "𝑘" of chemical reactions on the 

temperature "𝑇" (in absolute temperature) and 

activation energy "𝐸𝑎". Thermal stability between 

layers of fluid in which internal heat is generated and 

wall at absolute zero plays a vital role in the motion. 

In the research of Kamenetskii [16], it is reported 

that thermal criticality occurs when the rate of heat 

generation within the flow system exceeds the heat 

dissipation to surrounding. This condition is known 

as the ignition in the flow system. Koriko and 

Omowaye [17] investigated a steady state of 

exothermic reaction taking the diffusion of the 

reactant into account and assuming Arrhenius 

temperature dependence with variable pre-exponent 

factor. It is reported that for various values of 

activation energy parameter, the temperature of the 

medium fluctuates, when activation energy is 0.5, 

the maximum of parabolic temperature profiles 

is 0.1639913398. They further report that an 

increase in Frank- Kamenetskii parameter 

corresponds to a significant decrease in temperature 

profiles. 

In all of the above-mentioned studies, fluid viscosity 

and fluid thermal conductivity were assumed to be 

constant within the boundary layer. However, it is 

known that the physical properties of the fluid may 

change significantly when exposed to internally 

generated temperature. For lubricating fluids, the 

heat generated by the internal friction and the 

corresponding rise in temperature affect the viscosity 

of the fluid and so the fluid viscosity can no longer 

be assumed constant. An increase in temperature 

leads to a local increase in the transport phenomena 

by reducing the viscosity across the momentum 

boundary layer and so the heat transfer rate at the 

wall is  greatly affected. In industrial systems, fluids 

can be subjected to extreme conditions such as high 

temperature, pressure, high shear rates and external 

heating (I.e. ambient temperature) and each of these 

factors can lead to the high temperature being 

generated within the fluid. According to Anyakoha 

[18], Batchelor [19], Meyers et al. [20], Animasaun 

[21] and other researchers in fluid dynamics, it is a 

well-known fact that the property which is most 

sensitive to a small temperature rise is viscosity. 

Mukhopadhyay [22] adopted Batchelor’s model of 

temperature-dependent fluid viscosity in his study on 

the effect of radiation and variable fluid viscosity on 

flow and heat transfer along a symmetric wedge 

assuming constant thermal conductivity. The natural 

convective boundary layer flow of a fluid with 

variable viscosity over a vertical stretching surface in 

the presence of suction and injection was 

investigated by Loganathan and Arasu [2] using Lie 

group analysis. The temperature-dependent fluid 

viscosity model which was developed by Batchelor 

[19] was adopted due to the fact that the range of 

temperature they studied was within the range of 

(0𝑜𝐶 −  20𝑜𝐶). In their research, symmetry groups 

admitted by the corresponding boundary value 

problem were obtained by a special form of Lie 

group transformations using scaling group 

transformation. They solved the set of non-linear 

ordinary differential equations with boundary 

conditions using Runge-Kutta-Gill method along 

with Shooting Techniques. It is reported that the 

effect of increasing temperature-dependent fluid 

viscosity parameter on a viscous incompressible 

fluid is to increase the flow which causes the 

temperature to decrease. 

Through literature review, it is observed that, the 

effects of variable fluid viscosity, Soret, Dufour, 

Frank Kamenetskii, space-dependent internal heat 

generation, temperature-dependent heat generation, 

Prandtl and Soret along a wall at absolute zero have 

not been analyzed yet. The present study aims to 

extend the work of Loganathan and Arasu [2] by 

considering a case in which the order of magnitude 

of thermal-diffusion and diffusion-thermo are 𝑂(1). 

Also, it aims to analyze the effect of space- 

dependent internal heat generation on the flow over 

the wall at absolute zero under Arrhenius kinetics. 

The governing partial differential boundary layer 

equations in Cartesian coordinates are presented, 

modified and then transformed into a set of coupled 
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ordinary differential equations. The obtained 

equations are functions of the temperature-dependent 

fluid viscosity parameter, Local thermal Grashof 

related parameter for heat transfer, Local Solutal 

Grashof related parameter for mass transfer, Prandtl 

number, Dufour number, activation energy 

parameter, Frank Kamenetskii parameter, space-

dependent internal heat generation/absorption 

parameter, temperature-dependent internal heat 

generation/absorption parameter, Schmidt number 

and Soret number. The equations are numerically 

solved due to the strong nature of nonlinearity. 

2. Formulation of the Problem 

A steady two-dimensional laminar free convective 

boundary layer flow of a viscous incompressible 

fluid flow of temperature-dependent viscosity and 

constant thermal conductivity is considered along a 

vertical non-porous surface at absolute zero under 

the influence of Dufour, Soret and Arrhenius 

kinetics. The physical model is shown in Fig. 1. In 

this research, we consider a case where the fluid is 

emerging out of a slit at origin 𝑥 = 0, 𝑦 = 0 and 

moving with non-uniform velocity 𝑈(𝑥). 𝑥 −axis is 

taken along the direction of the plate and  y-axis is 

normal to it. Also, the velocity, temperature and 

concentration of the fluid far away from the 

stretchable surface under Arrhenius kinetics are 

assumed to be zero for fluid in its inactive state. 

These assumptions are valid based on the nature of 

the free stream of this problem. The fluid properties 

are assumed to be constant except for the fluid 

viscosity.  The density variation and the buoyancy 

effects are taken into consideration, so that the 

Boussinesq approximation for both the temperature 

and concentration gradient can be adopted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  The physical model and coordinate system 

 

Under these assumptions along with boundary layer 

approximations, the flow and heat transfer in the 

presence of Dufour and Soret take the following 

form: 

 

𝜕𝑢

𝜕𝑥
+ 

𝜕𝑣

𝜕𝑦
= 0,                                                                         (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗

𝜕2𝑢

𝜕𝑦2 + 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞), (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝐶𝑃

𝜕2𝑇

𝜕𝑦2 +
𝐷𝑚𝐾𝑡

𝐶𝑃𝐶𝑆

𝜕2𝐶

𝜕𝑦2 +
𝐴𝑄𝑒−

𝐸

𝑅𝑇

𝜌𝐶𝑃
 

+
𝜅𝑈0

𝜌𝐶𝑃𝜗
[𝐴∗(𝑇𝑊 − 𝑇∞)𝑒

−𝑛𝑦√
𝑈0

𝜗∗
+ 𝐵∗(𝑇 − 𝑇∞)],           (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
 =  𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑡

𝑇𝑚

𝜕2𝑇

𝜕𝑦2 .                            (4) 

 

Where 𝑢 and 𝑣 are the velocity components in  𝑥 and 

𝑦 directions respectively, 𝜌 is the fluid density 

(assumed to be constant), 𝑇 is the temperature of the 

fluid, 𝜅 is the thermal conductivity of the fluid, 𝐷𝑚 is 

the coefficient of mass diffusivity, 𝛽 is the 

volumetric coefficient of thermal expansion, 𝛽∗ is 

the volumetric coefficient of concentration 

expansion, 𝑔 is the gravity field, 𝑇∞ is the 

temperature at infinity, 𝑈(𝑥) is the streamwise 

velocity (i.e. stretching velocity of the sheet with 

𝑈𝑜(> 0) being the stretching constant),  𝑉(𝑥) is the 

velocity of the suction of the fluid, 𝑇𝑤 is the wall 

temperature, 𝐶 is the concentration of the fluid, 𝐶∞ is 

known as concentration at infinity, 𝐶𝑃 is the specific 

heat at constant pressure, 𝐾𝑡 is the thermal diffusion 

ratio and 𝑇𝑚 is the mean fluid temperature. In this 

study, 𝑈(𝑥) = 𝑈0𝑥, 𝑉(𝑥) = 𝑉𝑜. It is assumed that the 

wall is at absolute zero of temperature and internal 

heat generation or absorption term accounts for 

space-dependent and temperature-dependent internal 

heat generation and absorption.𝑈0 is known as 

stretching velocity of the sheet with, 𝐴∗ and 𝐵∗which 

are the coefficients of space-dependent and 

temperature-dependent internal heat 

generation/absorption, respectively. In the last term 

of equation (3), the first mathematical expression 

represents the dependence of the internal heat 

generation or absorption on the space coordinates 

while the second term represents its dependence on 

the temperature. It is also important to state that the 

power 𝑦√
𝑈0

𝜗
is to account for space between the fluid 

domains; hence the viscosity in the denominator is 

treated as constant. 

In this research, fluid viscosity (𝜇) is assumed to 

vary as a linear function of temperature. This 

assumption is valid due to the nature of the flow 
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problem, (i.e. as heat is being generated within the 

layers of the fluid domain; there is typically an 

increase in the molecular interchange as molecules 

of fluid move faster in higher temperatures) hence, 

we adopted the mathematical model of temperature-

dependent viscosity given by Mukhopadhyay [22] 

and Batchelor [19] as 

 

𝜇 =  𝜇∗[𝑎 + 𝑏(𝑇𝑎 − 𝑇)]                                                        (5) 

 

𝜇∗is the constant value of the coefficient of viscosity 

far from the sheet, 𝑇𝑎 > 𝑇𝑊, 𝑎 and 𝑏 are constants. 

𝑏 > 0; the case when 𝑎 = 1 is considered. The 

following relations are now introduced for 𝑢, 𝑣, 

𝜃( 𝜂)and 𝜙(𝜂)as  

 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
, 𝜃 =  

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜙 =  

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
       (6) 

 

respectively. Here, 𝜓(𝑥, 𝑦) is the stream function. 

The first two mathematical relations of equation (6) 

satisfy continuity equation (1). Modified governing 

equations of (2)-(4) are now of the form 

 

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
= −𝜗∗𝜉

𝜕𝜃

𝜕𝑦

𝜕2𝜓

𝜕𝑦2
+ 𝜗∗[1 + 𝜉 − 𝜃𝜉]

𝜕3𝜓

𝜕𝑦3  

+𝑔𝛽𝜃(𝑇𝑤 − 𝑇∞) +  𝑔𝛽∗𝜙(𝐶𝑤 − 𝐶∞)                             (7) 

𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
=

𝜅

𝜌𝐶𝑃

𝜕2𝜃 

𝜕𝑦2
+

𝐷𝑚𝐾𝑡

𝐶𝑃𝐶𝑆

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)

𝜕2𝜙 

𝜕𝑦2
 

+
𝐴𝑄𝑒

−
𝐸

𝑅(𝑇∞+𝜃(𝑇𝑤−𝑇∞))

𝜌𝐶𝑃(𝑇𝑤 − 𝑇∞)
+

𝜅𝑈0

𝜌𝐶𝑃𝜗
[𝐴∗𝑒

−𝑛𝑦√
𝑈0

𝜗∗
+ 𝐵∗𝜃]       (8) 

𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦
= 𝐷𝑚

𝜕2𝜙

𝜕𝑦2
+

𝐷𝑚𝐾𝑡

𝑇𝑚

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)

𝜕2𝜃 

𝜕𝑦2
  (9) 

 

In this study, a case where the momentum diffusivity 

of the flow is greatly influenced not by wall 

temperature but mainly by heat generation due to 

internal friction, heat from the environment of the 

fluid and others. Equations (7) - (9) are subject to 

boundary conditions 

 

𝑢 = 𝑈(𝑥), 𝑣 = −𝑉(𝑥), 𝑇 = 𝑇∞, 𝐶𝑤 = 𝐶∞   𝑎𝑡  𝑦 = 0 (10) 

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ 𝑎𝑠    𝑦 → ∞                              (11) 

 

Introducing Stream function𝜓(𝑥, 𝑦), similarity 

variables 𝜂 and𝑓(𝜂) as 
 

𝜓(𝑥, 𝑦) = √𝜗𝑈0𝑥𝑓(𝜂) ,𝜂 = 𝑦√
𝑈0

𝜗
                              (12) 

 

Substituting equation (7) into equation (11) we 

obtain the following locally similar ordinary 

differential equations: 

 

[𝑎 + 𝜉 − 𝜃𝜉]
𝑑3𝑓

𝑑𝜂3 − 𝜉
𝑑𝜃

𝑑𝜂

𝑑2𝑓

𝑑𝜂2 −
𝑑𝑓

𝑑𝜂

𝑑𝑓

𝑑𝜂
+ 𝑓

𝑑2𝑓

𝑑𝜂2  

+ 𝐽𝑇𝜉𝜃 + 𝐽𝑆𝜉𝜙 + 𝑧(𝜂) = 0,                                                (13) 

𝑑2𝜃

𝑑𝜂2 + 𝑃𝑟𝑓
𝑑𝜃

𝑑𝜂
+ 𝑃𝑟𝐷𝑓

𝑑2𝜙

𝑑𝜂2 + 𝑃𝑟𝛿𝑒
(

𝜃

𝛼+ 𝜖𝜃
)
 

+
𝐴∗𝑒−𝑛𝜂 + 𝐵∗𝜃

[𝑎 + 𝜉 − 𝜃𝜉]
= 0,                                                          (14) 

𝑑2𝜙

𝑑𝜂2 + 𝑆𝑟𝑆𝑐

𝑑2𝜃

𝑑𝜂2 + 𝑆𝑐𝑓
𝑑𝜙

𝑑𝜂
= 0,                                       (15) 

 

In equation (13), 𝑧(𝜂) = 0. This constant function is 

introduced and later readjusted in section 3. It is 

adopted in order to verify the accuracy of the applied 

numerical scheme when compare to the study of 

Singh et al. [27]. The dimensionless boundary 

conditions are: 

 

𝑑𝑓

𝑑𝜂
 = 1,    𝑓 = 𝑆,    𝜃 = 0, 𝜙 = 1  𝑎𝑡  𝜂 = 0                  (16) 

𝑑𝑓

𝑑𝜂
 → 0,   𝜃 → 0, 𝜙 → 0,   𝑎𝑠    𝜂 → ∞                          (17) 

The parameters in equations (13) - (17) are defined 

as 

 

𝜉 = 𝑏(𝑇𝑎 − 𝑇∞)Such that |𝑇𝑎 − 𝑇∞| > 0 

𝐽𝑇 =
𝑔𝛽

𝑥𝑏𝑈0
2 , 𝐽𝑆 =

𝑔𝛽∗

𝑥𝑏𝑈0
2 , 𝜖 =

𝑅𝑇𝑜

𝐸
  𝛼 =

𝜖𝑇∞

(𝑇𝑤 − 𝑇∞)
 

𝑃𝑟 =
𝜗∗

𝛼
=  

𝐶𝑝𝜇

𝑘
, 𝐷𝑓 =

𝐷𝑚𝐾𝑡

𝐶𝑃𝐶𝑆𝜗∗

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)
, 𝑆𝑐 =

𝜗∗

𝐷𝑚
 

𝛿 =
𝐴𝑄𝑒

−
𝐸

𝑅𝑇𝑜

𝜌𝐶𝑃𝑈0(𝑇𝑤 − 𝑇∞)
𝑆𝑟 =

𝐷𝑚𝐾𝑡

𝜗∗
𝑇𝑚

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)
              (18) 

 

Here, 𝜉, 𝐽𝑇 , 𝐽𝑆, 𝑃𝑟 , 𝐷𝑓 , 𝜖, 𝛿, 𝐴∗, 𝐵∗, 𝑆𝑐 , 𝑆𝑟  and 𝑛 denote 

temperature-dependent viscosity parameter, local 

thermal Grashof related parameter for heat transfer, 

local Solutal Grashof related parameter for mass 

transfer, Prandtl number, Dufour number, activation 

energy parameter, Frank-Kamenetskii parameter, 

coefficient of space-dependent internal heat 

generation, coefficient of temperature-dependent 

internal heat generation, Schmidt number, Soret 

number and intensity of internal heat generation 

parameter respectively . In heat and mass transfer, 

physical quantities of interest are the local skin 

friction coefficient 𝐶𝑓, heat transfer rates (i.e. local 

Nusselt number  𝑁𝑢) and mass transfer rates (i.e. 
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local Sherwood number 𝑆ℎ) which can be obtained 

as follows: The local skin friction is of the form 

 

 𝐶𝑓 =
2𝜏𝑤

𝜌𝑈𝑜
2𝑥2

where𝜏𝑤 = 𝜇
𝜕𝑢

𝜕𝑦
|

𝑦=0

                               (19) 

 

Where 𝜏𝑤is known as shear stress or skin friction 

along the stretching sheet, substituting equation (12) 

into equation (19) and simplifying 

 

√𝑥𝑅𝑒

2
 𝐶𝑓 = 𝑓′′(0)                                                                (20) 

 

Nusselt Number is a physical quantity defined as 

 

𝑁𝑢 =
𝑥𝑞𝑤

𝜅(𝑇𝑤 − 𝑇∞)
where𝑞𝑤 = −𝜅

𝜕𝑇

𝜕𝑦
|

𝑦=0

                    (21) 

 

𝑞𝑤is known as heat flux from the sheet, substituting 

equation (12)  into equation (21) and simplifying 

 

𝑁𝑢

√𝑥𝑅𝑒
= −𝜃′(0)                                                                   (22) 

 

Sherwood number is another physical quantity 

defined as 

 

𝑆ℎ =
𝑥𝐽𝑤

𝐷𝑚(𝐶𝑤 − 𝐶∞)
where  𝐽𝑤 = −𝐷𝑚

𝜕𝐶

𝜕𝑦
|

𝑦=0

           (23) 

 

𝐽𝑤is known as mass flux from the sheet, substituting 

equation (12)  into equation (23) and simplifying 

 

𝑆ℎ

√𝑥𝑅𝑒
= −𝜙′(0)                                                                   (24) 

 

3. Numerical Solution 

Equations (13), (14) and (15) are non-linear, coupled 

ordinary differential equations; exact (analytical) 

solutions are not possible for the complete set of 

equations subject to the boundary conditions (16) 

and (17) and hence we use Runge Kutta Gill method 

along with quadratic interpolation for the solution 

process. The set of coupled ordinary differential 

equations (13)-(15) along with boundary conditions 

(16) and (17) are solved by converting the BVP to 

IVP; using the method of superposition stated in Na 

[23]. We set 𝑓 = 𝑟(𝜂), 𝑓′ = 𝑠(𝜂), 𝑓′′ = 𝑡(𝜂), 𝜃 =

𝑐(𝜂), 𝜃′ = 𝑑(𝜂), 𝜙 = 𝑒(𝜂) and 𝜙′ = 𝑗(𝜂), we now 

obtain the following systems of IVP 
 

𝑟′ = 𝑠              𝑟(0) = 𝑆                                                    (24𝑎) 

𝑠′ = 𝑡              𝑠(0) = 1                                                     (24𝑏) 

𝑡′ =
𝜉𝑑𝑡 + 𝑠2 − 𝑟𝑡 −  𝐽𝑇𝜉𝑐 − 𝐽𝑆𝜉𝑒 + 𝑧

(𝑎 + 𝜉 − 𝜉𝑐)
   𝑡(0) = 𝐺1 (24𝑐) 

𝑐′ = 𝑑        𝑐(0) = 0                                                         (24𝑑) 

𝑑′ =
−𝑃𝑟𝑟𝑑 + 𝑃𝑟𝐷𝑓𝑆𝑐𝑟𝑗 − 𝑃𝑟𝛿𝑒

(
𝑐

𝛼+ 𝜖𝑐
)

−
𝐴∗𝑒−𝑛𝜂+𝐵∗𝑐

[𝑎+𝜉−𝑐𝜉]

(1 − 1𝑃𝑟𝐷𝑓𝑆𝑟𝑆𝑐)
 

 𝑑(0) = 𝐺2                                                                           (24𝑒) 

𝑒′ = 𝑗            𝑒(0) = 1                                                     (24𝑓) 

𝑗′ = −𝑆𝑐𝑟𝑗 +
𝑆𝑟𝑆𝑐𝑃𝑟𝑟𝑑 − 𝑆𝑟𝑆𝑐𝑃𝑟𝐷𝑓𝑆𝑐𝑟𝑗

(1 − 1𝑃𝑟𝐷𝑓𝑆𝑟𝑆𝑐)
+ 

𝑆𝑟𝑆𝑐𝑃𝑟𝛿𝑒
(

𝑐

𝛼+ 𝜖𝑐
)

+ 𝑆𝑟𝑆𝑐
𝐴∗𝑒−𝑛𝜂+𝐵∗𝑐

[𝑎+𝜉−𝑐𝜉]

(1 − 𝑃𝑟𝐷𝑓𝑆𝑟𝑆𝑐)
 𝑗(0) = 𝐺3              (24𝑗) 

Where the prime denotes differentiation with respect 

to 𝜂. There are two types of error involved in Runge-

Kutta as an approximation method of ordinary 

differential equations. They are round off error and 

truncation error. Runge-Kutta-Gill method is 

selected because it reduces (minimizes) round off 

error (see Gill [24]). According to Finlayson [25], 

Order analysis, Consistency analysis and Stability 

analysis show that Runge-Kutta-Gill is also of order 

four, stable and consistent. The constants are 

selected to reduce the amount of storage required in 

solving a large number of simultaneous first-order 

differential equations. In addition, the Runge-Kutta-

Gill variant method is probably most often used in 

machine integration because of the storage savings.  

The BVP cannot be solved on an infinite interval, 

and it would be impractical to solve it on a very large 

finite interval. In this research, we imposed the 

infinite boundary condition at a finite point of  

𝜂 =  12 . In order to integrate (24a) to (24j) as an 

initial value problem, the first step is to calculate 

proper estimate values for 𝑡(0) = 𝑓′′(0), 𝑑(0) =

 𝜃′(0) and 𝑗(0) =  𝜙′(0) since no such values exists 

after the non-dimensionalization process. The 

suitable guesses for 𝑡(0), 𝑑(0) and 𝑗(0)are chosen 

and then integration is carried out with small value 

of step size. The calculated values for 𝑓′(𝜂 = 12),

𝜃(𝜂 = 12) and 𝜙(𝜂 = 12) are compared with those 

of boundary condition (13) which are 𝑓′(𝜂 → ∞),

𝜃(𝜂 → ∞) and 𝜙(𝜂 → ∞); the solution is improved 

using quadratic interpolation which is better than 

linear interpolation namely secant method (see 

Hoffman [26]). Care has been taken to shoot in steps; 

shoots are improved in stages and round off error is 

avoided by computing with 15 decimal places. 

Equation (24a)-(24j) together with 𝑟(0), 𝑠(0), 

suitable guess 1, 𝑐(0), suitable guess 2, 𝑒(0) and 
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suitable guess 3 are solved using Runge-Kutta-Gill 

method with ℎ = 0.01. The above procedure is 

repeated until we get the results up to the desired 

degree of accuracy 0.0001. 

 
 

3. Results and Discussion 

In order to analyze our numerical results, numerical 

computation has been carried out using the method 

described in the previous section for various values 

of temperature-dependent viscosity (𝜉), Dufour 

number (𝐷𝑓), Frank Kamenetskii parameter (𝛿), 

space-dependent internal heat generation/absorption 

parameter (𝐴∗), temperature-dependent internal heat 

generation/absorption parameter (𝐵∗), Schmidt 

number (𝑆𝑐), Soret number (𝑆𝑟), suction parameter 

(𝑆), Prandtl number (𝑃𝑟), Activation energy 

parameter (𝜖) and 𝑧(𝜂) = 0. To have a better 

illustration of the results, numerical values are 

plotted in figures 1-18. To demonstrate successful 

implementation of the numerical scheme, a 

comparison is made based on some fixed parameters. 

To be realistic, values of the embedded parameters 

are chosen following Singh et at. [27]. It is very 

important to note that when 𝜉 = 0, 𝑎 = 1, 𝐽𝑇𝜉 = 𝐺𝑇, 

𝐽𝑆𝜉 = 𝐺𝐶, 𝐷𝑓 = 𝛿, 𝑆𝑟 = 𝐴∗ = 𝐵∗ = 0,𝑓(𝜂 = 0) =

𝑓′(𝜂 = 0) = 0, 

𝑓′(𝜂 → ∞) = 1, 𝜃(𝜂 = 0) = 1 and 𝑧(𝜂) =

−𝐾[𝑓′(𝜂) − 1] + 1. 

 

Table 1a. Comparison of the results for local skin friction 

coefficient𝑓′′(0), local Nusselt 𝜃′(0) number and local 

sherwood number𝜙′(0) for several values of 𝑃𝑟 when 

𝐺𝑇 = 1, 𝐺𝐶 = 0.5, 𝐾 = 5 and 𝑆𝐶 = 0.5 

 

 𝒇′′(𝟎) 

Singh et al. [27] 

𝒇′′(𝟎)for the modified 

version of Present study 

𝑷𝒓 = 𝟎. 𝟏 3.0760 3.076073143441386 

𝑷𝒓 = 𝟏. 𝟎 3.0145 3.014501813709973 

𝑷𝒓 = 𝟏𝟎 2.9197 2.919781986462112 

 𝜃′(0) 

Singh et al. [27] 

𝜃′(0) for the modified 

version of Present study 

𝑷𝒓 = 𝟎. 𝟏 0.2427 0.242820251581915 

𝑷𝒓 = 𝟏. 𝟎 0.6713 0.671324078697536 

𝑷𝒓 = 𝟏𝟎 1.6594 1.659436606514022 

 𝜙′(0) 

Singh et al. [27] 

𝜙′(0) for the modified 

version of Present study 

𝑷𝒓 = 𝟎. 𝟏 0.5064 0.506440102717707 

𝑷𝒓 = 𝟏. 𝟎 0.4971 0.497120940728913 

𝑷𝒓 = 𝟏𝟎 0.4896 0.489653294568737 

 

Table 1b. Comparison of the results for local skin friction 

coefficient  𝑓′′(0), local Nusselt 𝜃′(0) number and local 

sherwood number 𝜙′(0) for several values of 𝑆𝐶 when 

𝐺𝑇 = 1, 𝐺𝐶 = 0.5, 𝐾 = 5 and  𝑃𝑟 = 1.0 

 𝒇′′(𝟎) 

Singh et al. [27] 

𝒇′′(𝟎) for the modified 

version of Present study 

𝑺𝑪 = 𝟎. 𝟏 3.0335 3.033553016375812 

𝑺𝑪 = 𝟎. 𝟓 3.0145 3.014501813709973 

𝑺𝑪 = 𝟓. 𝟎 2.9705 2.970546443951942 

 𝜃′(0) 

Singh et al. [27] 

𝜃′(0) for the modified 

version of Present study 

𝑺𝑪 = 𝟎. 𝟏 0.6750 0.675077137397746 

𝑺𝑪 = 𝟎. 𝟓 0.6713 0.671324078697536 

𝑺𝑪 = 𝟓. 𝟎 0.6652 0.665243176209401 

 𝜙′(0) 

Singh et al. [27] 

𝜙′(0) for the modified 

version of Present study 

𝑺𝑪 = 𝟎. 𝟏 0.2398 0.239888865400243 

𝑺𝑪 = 𝟎. 𝟓 0.4971 0.497120940728913 

𝑺𝑪 = 𝟓. 𝟎 1.2816 1.281608505249092 

 

Table 2. Comparison of the results for the skin friction 

coefficient, Nusselt number and sherwood number for 

several values of  𝜉 = 0.1, 0.2, 0.3 and 0.4 when𝑃𝑟 = 0.71,

𝑆𝑐 = 0.62, 𝐷𝑓 = 0.03, 𝐽𝑇 = 𝐽𝑆 = 1, 𝑛 = 1 

𝑆𝑟 = 0.4, 𝑎 = 1, 𝛼 = 1, 𝛿 = 0.07, 𝜖 = 0.01, 𝐴∗ = 0.3,  
𝐵∗ = 0.2, 𝑓(0) = 𝑆 = 0.5 

𝒇′′(𝟎) −𝜽′(𝟎) −𝝓′(𝟎) 

−𝟎. 𝟗𝟖𝟏𝟓𝟒𝟖𝟎𝟕𝟒𝟒 −1.7031387441 1.05062430743 

−𝟎. 𝟖𝟑𝟕𝟖𝟓𝟒𝟕𝟖𝟑𝟒 −1.2176429767 0.96624859199 

−𝟎. 𝟕𝟐𝟔𝟎𝟕𝟎𝟒𝟒𝟒𝟒 −1.0095541501 0.93575083241 

−𝟎. 𝟔𝟑𝟒𝟒𝟑𝟓𝟔𝟒𝟓𝟑 −0.8832388730 0.91982245298 
 

Table 3. Comparison of the results for the skin friction 

coefficient, Nusselt number and sherwood number for 

several values of 𝑃𝑟 = 0.4, 0.5, 0.6 and 0.7 

 

𝜉 = 0.3, 𝑆𝑐 = 0.62, 𝐷𝑓 = 0.03, 𝐽𝑇 = 𝐽𝑆 = 1, 𝑆𝑟 = 0.4,  

𝑎 = 1, 𝛼 = 1, 𝛿 = 0.07, 𝜖 = 0.01, 𝐴∗ = 0.3, 𝑛 = 1  
𝐵∗ = 0.2, 𝑓(0) = 𝑆 = 0.5 

𝒇′′(𝟎) −𝜽′(𝟎) −𝝓′(𝟎) 

 −𝟎. 𝟔𝟓𝟑𝟖𝟎𝟒𝟗𝟓𝟓𝟒 −1.1660346667 0.9696920256 

−𝟎. 𝟔𝟗𝟓𝟎𝟕𝟎𝟖𝟔𝟗𝟑 −1.0397363812 0.9424618125 

−𝟎. 𝟕𝟏𝟒𝟐𝟑𝟗𝟗𝟔𝟗𝟗 −1.0083373822 0.9354767950 

−𝟎. 𝟕𝟐𝟓𝟐𝟑𝟎𝟖𝟖𝟐𝟏 −1.0085759162  0.9355281140 
 

Table 4. Comparison of the results for the skin friction 

coefficient, Nusselt number and sherwood number for 

several values of 𝛿 = 0,0.025,0.050,0.075 and 0.1 when 

 

𝜉 = 0.3, 𝑃𝑟 = 0.71, 𝑆𝑐 = 0.62, 𝐷𝑓 = 0.03, 𝐽𝑇 = 𝐽𝑆 = 1,  

𝑆𝑟 = 0.4, 𝑎 = 1, 𝛼 = 1, 𝜖 = 0.01, 𝑛 = 1  
𝐴∗ = 0.3, 𝐵∗ = 0.2, 𝑓(0) = 𝑆 = 0.5 

𝒇′′(𝟎) −𝜽′(𝟎) −𝝓′(𝟎) 

 −𝟎. 𝟗𝟎𝟓𝟒𝟒𝟓𝟎𝟔𝟑𝟕 −0.2397268816 0.7337380330 

 −𝟎. 𝟖𝟐𝟗𝟎𝟗𝟖𝟖𝟒𝟓𝟏 −0.5121962475 0.8126159815 

 −𝟎. 𝟕𝟕𝟎𝟗𝟎𝟎𝟐𝟕𝟖𝟏 −0.7761509118 0.8797095327 

−𝟎. 𝟕𝟏𝟒𝟔𝟖𝟑𝟖𝟓𝟏𝟖 −1.0729890609 0.9506307017 

−𝟎. 𝟔𝟓𝟒𝟑𝟏𝟑𝟎𝟒𝟎𝟕 −1.4382639462 1.0343020776 
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The function [𝑧(𝜂)] is introduced to account for the 

dimensionless mixed convection and porosity term 

which are neglected in this present study. Hence, we 

solve using the method described in the previous 

section. In tables 1a and 1b, it is observed that there 

is a perfect agreement between the modified version 

of this present study and Singh et al. [27]. We first 

consider the effect of temperature-dependent 

viscosity parameter (𝜉) over dimensionless velocity, 

temperature and concentration profiles.  When heat 

is injected into the fluid domain by setting  𝐽𝑇 = 𝐽𝑆 =

1, space-dependent internal heat parameter 𝐴∗ = 0.3  

and temperature-dependent internal heat 

parameter𝐵∗ = 0.2, buoyancy is magnified and the 

velocity profile increases as 𝜉 increases. The friction 

between the layers of the fluid converts kinetic 

energy to heat at the center of the domain rather than 

near and far from the wall. This accounts for a 

significant increase in the velocity profiles within the 

fluid domain. Also, increasing the value of 𝜉 simply 

implies an increase in the magnitude of|𝑇𝑎 − 𝑇∞|; 

this eventually decreases the time of interaction 

between neighboring molecules and the 

intermolecular forces between the layers of the fluid. 

This actually results in a decrease in the viscosity 

and the fluid tend to move faster. It is also observed 

that such an increment in the velocity is greatly 

experienced within the fluid domain. It is very 

important to report that at a constant value of 𝑏, 

𝐴∗ = 0.3 and 𝐵∗ = 0.2, an increase in the value of 𝜉 

corresponds to an increase in the temperature 

|𝑇𝑎 − 𝑇∞|. The first increment in 𝜉(i.e. from 0 to 0.1) 

greatly decreases the shear (or bulk) viscosity of the 

fluid with temperature. As 𝜉 increases from 0 to 0.1, 

the time of interaction between neighboring 

molecules of a liquid decreases highly compared to 

the successive increment of 𝜉 (i. e. when 𝜉 increases 

from 0.1 to 0.2). This is simply because as 𝜉 

increases the initial temperature (heat energy) within 

the fluid domain is been added to and also been used 

at the same time. Hence, as 𝜉 increases the 

percentage increase of velocity will continue to be 

decreasing till the boiling point is attained. When too 

much of heat energy is introduced, the fluid may 

start to boil. 

Fig.3. depicts the effect of (𝜉) over temperature 

profiles, as the value of (𝜉) increases, the 

temperature reduces significantly. As the fluid 

temperature increases (i.e. 𝜉 increases), it tries to 

expand, since the fluid is incompressible, the 

pressure decreases as its molecules become weak. 

Fig. 2 The effect of temperature-dependent viscosity  

parameter 𝜉 over velocity profiles 

 

 
Fig. 3  The effect of temperature-dependent viscosity 

parameter 𝜉 over temperature profiles 

 
Fig. 4  The effect of temperature dependent viscosity 

parameter 𝜉 over concentration profiles 

 

Hence, the fluid consumes all the temperature; this 

accounts for the decrease in the temperature. The 

maximum temperature is found to be 1.362 within 

1.76 ≤ 𝜂 ≤ 1.8 when 𝜉 = 0.1.In this case the fluid 

particles undergo two opposite forces: one increases 

the fluid velocity due to an decrease in the fluid 

viscosity (simply because of the increase in the 

magnitude of  ) and the other decreases the fluid 

velocity due to a decrease in temperature since 𝜃( 𝜂) 

decreases with an increase in(𝜉); the effect of both 
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forces are significant throughout the domain since no 

heat is generated by the wall. 

As 𝜉 increases from 0 to 0.1 much heat energy is 

absorbed to process the reduction of interaction 

between neighboring molecules of a liquid 

comparing to successive increment of 𝜉 (i. e. when 𝜉 

increases from 0.1 to 0.2). This is simply because as 

𝜉 increases the initial temperature (heat energy) 

within the fluid domain is been added to and also 

been highly used up at the same time. Hence, as 𝜉 

increases the percentage decrease of temperature will 

continue to be decreased. 

As 𝜉 increases from 0 to 0.1 much heat energy is 

absorbed to process the reduction of interaction 

between neighboring molecules of a liquid 

comparing to successive increment of 𝜉 (i. e. when 𝜉 

increases from 0.1 to 0.2). This is simply because as 

𝜉 increases the initial temperature (heat energy) 

within the fluid domain is been added to and also 

been highly used up at the same time. Hence, as 𝜉 

increases the percentage decrease of temperature will 

continue to be decreased. 

Fig. 4 shows the effect of 𝜉 on concentration. Instead 

of the concentration profiles to decrease throughout 

the fluid domain as reported by Loganathan and 

Arasu [2] it is observed that the concentration 

increases slightly very close to the wall due to the 

effect of exponentially internal heat being generated 

and as 𝜂 increases, lim𝜂→∞ 𝑒−𝜂 = 0 ; the 

concentration tends to change within 2.3 ≤ 𝜂 ≤ 2.8 

and certainly decreases within 𝜂 > 2.8 till infinity 

(see Fig. 4). Due to the effect of 𝐴∗ = 0.3 and 

𝐵∗ = 0.2, the fluid near the wall is less viscous and 

the concentration of fluid is positively influenced. 

This may account for the increase of concentration 

near the wall since it is a known fact that mass 

transfer is faster in less viscous fluid. 

As expected, at a constant value of specific heat 

capacity 𝐶𝑃 and thermal conductivity 𝜅; an increase 

in the value of Prandtl number 𝑃𝑟 =
𝐶𝑃𝜇

𝜅
 simply 

implies an increase in the magnitude of fluid 

viscosity. When the value of fluid viscosity is high 

this corresponds to the fluid with low velocity. In 

this research, the same result is obtained, it is also 

observed that near the wall and far from the wall 

(7.6 ≤ 𝜂 < 12) Prandtl number has no effect on the 

velocity profiles. Since the fluid at free stream and 

the fluid at the wall  have absolute zero of 

temperature, the fluid viscosity is only suppressed 

within the fluid domain where the temperature is 

generated. In this case, as viscosity increases the heat 

generated forcefully reduces the viscosity but far 

from the wall; as  𝜂 → ∞, the heat generated by 𝐴∗ 

varnishes but that of 𝐵∗, 𝐽𝑇 and 𝐽𝑠 is balanced up 

with an increase in viscosity. Hence, Prandtl Number 

has no effect far from the wall. In Figs. 5 and 6, it is 

observed that an increase in the Prandtl number 

results in a decrease in the velocity, momentum 

boundary layer thickness, temperature and thermal 

boundary layer thickness and in general lower 

average temperature within the boundary layer. The 

reason is that smaller values of 𝑃𝑟  are equivalent to 

increasing thermal conductivities, and therefore heat 

is able to diffuse away from the heated plate more 

rapidly than for higher values of 𝑃𝑟 . Hence, in the 

case of smaller Prandtl numbers as the boundary 

layer is thicker the rate of heat transfer is reduced.  

The numerical results show that the effect of 

increasing values of Prandtl number results in an 

increase in concentration close to the wall but a 

decrease in concentration far from the wall due to the 

influence of parameters 𝐴∗and𝐵∗ (see Fig. 7a). It is 

further observed that the flow satisfies the boundary 

condition (i. e. as the fluid flows along vertical 

surface at absolute zero, the concentration of the 

fluid is high at the wall 𝜂 = 0 and low at 

freestream 𝜂 = 12). As expected, an effect of 

increasing Prandtl number tends to either increase or 

decrease the concentration profiles of fluid 

throughout the domain (0 ≤ 𝜂 ≤ ∞) depending on 

the nature of physical model/coordinate system in 

question, flow configuration when dimensionless 

wall temperature is unity and no heat energy is 

generated within the domain. It is observed that all 

these cases can be obtained depending on the values 

we assign to 𝐴∗and𝐵∗ when 𝑃𝑟varies. In order to 

further unravel the effect of Prandtl number on 

concentration profiles of fluid which flows along the 

surface with absolute zero three cases are considered 

when 𝑃𝑟 = 0.35 (for noble gasses with hydrogen) 

and 𝑃𝑟 = 0.72. (for air and many other gasses). In 

the first case, 𝑃𝑟  varies, 𝐴∗ = 0.3 and 𝐵∗ = 0.2. In 

the second case, 𝑃𝑟  varies, 𝐴∗ = 0 and 𝐵∗ = 0.2. In 

the third case, 𝑃𝑟  varies, 𝐴∗ = 0.3 and 𝐵∗ = 0 

together with 𝜉 = 0.3, 𝑆𝑐 = 0.62, 𝐷𝑓 = 0.03,𝑆𝑟 =

0.4, 𝐽𝑇 = 𝐽𝑆 = 𝛼 = 𝑛 = 𝑎 = 1, 𝛿 = 0.07, 𝜖 = 0.01, 

𝑆 = 0.5. Figure 7b clearly depicts the effect of 

Prandtl number on the concentration profiles at 

certain points of 𝜂 near the wall only. We 

intentionally chop off figure 7b so as to reveal the 

negligible effect. From figure 7b, it is observed that 

in case 1 and case 2, concentration profiles increase 

near the wall with an increase in the magnitude of 

Prandtl number. In case 3, the result is opposite. 
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Since it is assumed that the problem is of constant 

thermal conductivity; it is valid to accept the fact that 

as the magnitude of 𝑃𝑟  increases, the dynamic 

viscosity (𝜇) of the fluid also increases. This makes 

the fluid become more fluidity from the wall to the 

free stream and causes an increase/decrease in the 

concentration depending on the condition being 

invoked. 

 
Fig. 5  The effect of Prandtl number 𝑃𝑟 over velocity 

profiles 

 

 
Fig. 6  The effect of Prandtl number 𝑃𝑟 over temp. profiles 

 

 
Fig. 7b  The effect of Prandtl Number 𝑃𝑟 on concentration 

profiles near the wall 0 ≤ 𝜂 ≤ 4 

 

The influence of the Schmidt number 𝑆𝐶 on the 

dimensionless velocity 𝑓′(𝜂) is investigated; it is 

observed that as the Schmidt number increases the 

velocity decreases significantly close to the wall with 

negligible effect far from the wall 𝜂 > 4.5. Also, as 

the Schmidt number increases the temperature 

profiles increase. The reductions in the velocity and 

concentration profiles are accompanied by 

simultaneous reductions in the velocity and 

concentration boundary layers thickness (see Fig. 8 

and 10). The effect of energy flux due to 

composition gradient i.e., the Dufour number 𝐷𝑓 on 

the dimensionless velocity profiles and concentration 

profiles is investigated. As Dufour number increases, 

velocity profiles increase negligibly very close to the 

wall with no effect within the range 𝜂 > 3. Fig. 12 

illustrates the influence of Dufour number on the 

temperature. 

As 𝐷𝑓 increases, the energy transfer increases close 

to the wall with no effect from 4.5 < 𝜂 ≤ 12. The 

concentration profiles for various values of Dufour 

number are plotted in Fig. 13. As 𝐷𝑓 increases, the 

concentration of the fluid increases close to the wall 

and decreases far from the wall. When the mass flux 

created by temperature gradient is fixed at 0.4; as 𝐷𝑓 

increases, the rate at which energy flux is caused by 

a composition gradient increases. Since the surface is 

at absolute zero, this leads to a significant decrease 

effect near the wall. The temperature gradient is 

significant within the fluid domain due to the effect 

of parameter 𝐵∗. This greatly influences the rate at 

which energy flux is caused; hence the concentration 

profiles increase near the wall 0 ≤ 𝜂 ≤ 0.41 and 

decrease thereafter as 𝜂 approaches12. Moreover, it 

is observed that the effect of Soret number on 

velocity and temperature profiles is significant. From 

Fig. 14 it is clear that there exists a significant effect 

of Soret number on concentration profiles. 

Very close to the wall, concentration decreases as we 

increase the magnitude of Soret number and far 

away, the concentration increases with an increase in 

the value of Soret number. Figs. 15 – 17 depict the 

influence of Frank-Kamenetskii parameter 𝛿 on the 

velocity, temperature and concentration profiles 

within the boundary layer formed on a surface 

respectively. 

As Frank-Kamenetskii increases due to the 

Arrhenius kinetics it causes velocity increases, 

temperature increases and concentration decreases. 
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Fig. 8 The effect of Schmidt Number 𝑆𝑐 on velocity 

profiles

Fig. 9  The effect of Schmidt number 𝑆𝑐 over temp. 

profiles 

 
Fig. 10 The effect of Schmidt Number 𝑆𝑐 on concentration 

profiles 

 

Fig. 18 depicts the influence of activation energy 

parameter 𝜖 on temperature profiles, as 𝜖 increases 

velocity profiles decrease negligibly, temperature 

profiles decrease significantly and concentration 

profiles reduce negligibly. The effect of space-

dependent internal heat generation parameter 𝐴∗ on 

dimensionless velocity, temperature and 

concentration profiles is investigated. In order to 

analyze the effect of space-dependent internal heat 

generation on the flow, two cases are considered. In 

the first case, the flow is subjected to small 

magnitude of Prandtl number (i. e. 𝑃𝑟 = 0.25) at 

constant values of 𝜉 = 0.1, 𝑆𝑐 = 0.62, 𝐷𝑓 = 0.03, 

𝐽𝑇 = 𝐽𝑆 = 1, 𝑛 = 1, 𝑆𝑟 =  0.4, 𝑎 = 𝛼 = 1, 𝛿 =

0.07, 𝜖 = 0.01, 𝐵∗ = 0.1 and(0) = 𝑆 = 0.5; it is 

observed that with an increase in parameter 𝐴∗, 

velocity profiles increase, temperature profiles 

increase and concentration profiles decrease 

significantly. It is also observed that as 𝐴∗ ranges 

from −0.3 to 0, the velocity increases, the 

temperature increases, the concentration decreases 

close to the wall and increases far from the wall. (i.e. 

almost the same result with a case when 𝐴∗ ranges 

from 0 to 0.4).  When 𝑃𝑟 = 0.71, an effect of 

parameter 𝐴∗ is found to be negligible on velocity 

and concentration (see Fig. 19 and 20). As the 

magnitude of Prandtl number increases, this 

drastically increases the viscosity of the fluid. It is 

observed that an increase in 𝜇 dominates the fluid 

and retards the velocity and also affects the 

concentration distributions within the fluid domain. 

In order to unravel the effect of space-dependent 

internal heat generation parameter 𝐴∗ on 

concentration profiles in the boundary layer, 

variations of parameter 𝐴∗ when 𝑃𝑟 = 0.25 and 

𝑃𝑟 = 0.71 are considered. At small value of Prandtl 

number, it is noticed from Fig. 21 that the 

dimensionless concentration decreases significantly 

near the wall within 0 ≤ 𝜂 ≤ 3.2 with an increase in 

parameter 𝐴∗. When the magnitude of Prandtl 

number is increased (i. e. at a constant value of𝐶𝑝, is 

either thermal conductivity of the fluid decreases or 

viscosity of the fluid increases) the fluid may 

become more viscous. This accounts for the 

negligible decrease of concentration profiles near the 

wall within 0 ≤ 𝜂 ≤ 2.1. It is a known fact that 

concentration in the fluid with high viscosity is lower 

than the concentration of fluid which is less viscous. 

Figs. 22 – 24 depict the influence of the temperature-

dependent internal heat generation in the boundary 

layer on the flow, as the magnitude of 𝐵∗ increases 

from −0.2 to 0.2; it is observed that velocity profiles 

increase, temperature distribution increases, the 

concentration decreases near the wall and increases 

far from the wall. For more reports on the boundary 

layer analysis of flow over a surface on which the 

heat energy falls at a lower limit of thermodynamic 

temperature scale (i.e. absolute zero and melting 

surface) see Sandeep et al. [28], Animasaun [29], 

Omowaye and Animasaun [30]. 
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Fig. 11. The effect of Dufour number 𝐷𝑓 on velocity 

profiles 

 

Fig. 12  The effect of Dufour number 𝐷𝑓 on temperature 

profiles 

 

Fig. 13  The effect of Dufour number 𝐷𝑓 on concentration 

profiles 

 

Fig. 14. The effect of Soret number 𝑆𝑟 on concentration 

profiles 

 

Fig. 15 The effect of Frank Kamenetskii parameterδ on 

velocity profiles 

Fig. 16  The effect of Frank Kamenetskii parameter 𝛿 on  

temperature profiles 
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Fig 17  The effect of Frank Kamenetskii parameter 𝛿 on 

concentration profiles 

Fig 18  The effect of activation energy parameter 𝜖 on 

temperature profiles 

Fig. 19  The effect of space-dependent internal heat 

generation parameter𝐴∗ on velocity profiles 

Fig.20  The effect of space-dependent internal heat 

generation parameter 𝐴∗ on temperature profiles 

Fig. 21  The effect of space-dependent internal heat 

generation parameter 𝐴∗ on concentration profiles 

Fig. 22  The effect of temperature-dependent internal heat 

generation parameter 𝐵∗ on velocity profiles 
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Fig. 23  The effect of temperature-dependent internal heat 

generation parameter 𝐵∗ on temperature profiles 

Fig. 24  The effect of temperature-dependent internal heat 

generation parameter 𝐵∗ on concentration profiles 

Conclusion 

`The problem of steady laminar free convective heat 

and mass transfer flow past a vertical stretching 

surface under Arrhenius Kinetics in the presence of 

suction is considered. It is assumed that the heat 

energy of the vertical surface falls at a lower limit of 

the thermodynamic temperature scale. The resulting 

partial differential equations were transformed into a 

system of nonlinear coupled ordinary differential 

equations using similarity transformation. The 

numerical results pertaining to the present study 

indicate that the effect of increasing temperature-

dependent fluid viscosity parameter is an increase in 

the flow velocity which in turn causes the 

temperature distribution to decrease. It is interesting 

to conclude that the concentration of the fluid 

increases near the vertical surface and decreases far 

from the wall. Other important results are: 

i. The thickness of both momentum and temperature 

boundary layer decreases with an increase in Prandtl 

number (P_r). However, the concentration profiles 

increase significantly near the wall with the same 

increase in the magnitude of  (P_r). 

ii.  An increase in the magnitude of Prandtl number 

causes an increase in concentration profiles in the 

absence of space-dependent internal heat generation 

and a negligible decrease in concentration profiles in 

the absence of temperature-dependent internal heat 

generation. 

iii. The concentration of fluid inside the boundary 

layer decreases with an increase in Soret number. 

The effect of Soret number on velocity and 

temperature profiles is negligible. 

 

iv. The concentration of fluid inside the boundary 

layer decreases with an increase in Soret number. 

The effect of Soret number on velocity and 

temperature is negligible. 

 

v. With an increase in Dufour number the fluid 

velocity increases slightly and the temperature 

distributions increase significantly with the 

formation of a peak for higher values of Dufour 

parameter in the thermal boundary layer. The same 

effect is also a reduction in the thickness of 

concentration boundary layer close to the wall and a 

negligible increase far from the wall. 

 

vi. Based on the results of the present study, it can be 

concluded that the effect of Frank Kamenetskii is to 

increase velocity distribution and temperature 

distribution significantly. 

 

vii. An increase in the magnitude of Frank 

Kamenetskii parameter 𝛿 reduces the concentration 

profiles and solutal boundary layer thickness 

significantly near the wall. 

 

viii. Both space and temperature dependent heat 

generations cause the velocity and temperature 

distribution to increase. Also, it can be concluded 

that both space and temperature dependent heat 

generations cause concentration to decrease near the 

wall and increase far from the wall. The effect of 

space-dependent internal heat generation is 

pronounced for low Prandtl number fluid. 
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Nomenclature 

𝑥       Distance on stretching surface 

𝑦       Distance on the line normal to 𝑥 −axis 

𝑢       Velocity component in 𝑥 −direction 

𝑣       Velocity component in 𝑦 −direction 

𝑎, 𝑏   Constants (𝑏 > 0) 

𝐴∗      Space-dependent internal heat coefficient 

𝐵∗      Temperature-dependent internal heat  

 

coefficient 

𝑈𝑜,     Stretching constant 

𝐷𝑚     Mass diffusivity 

𝑇        Temperature 

𝐶       Concentration 

𝑈(𝑥) Streamwise velocity (Stretching velocity) 

k1Momentum boundary Layer thickness 

k2Thermal boundary Layer thickness  
k3𝑆𝑜𝑙𝑢𝑡𝑎𝑙 boundary Layer thickness  

𝑉(𝑥) Velocity of the Suction 

𝐶𝑃     Specific heat at constant pressure 

𝑔 Acceleration due to gravity 

𝑘𝑡  Thermal diffusion ratio 

𝑇𝑚  Mean fluid temperature 

𝐴 Pre-exponential factor 

𝑄 Heat release 

𝐽𝑇Thermal Grashof related parameter (heattransfer) 

𝐽𝑆Solutal Grashof related parameter (masstransfer) 

𝐷𝑓 Dufour Number 

𝑆𝑟      Soret Number 

 

Greek 

𝛽     Coefficient of thermal expansion 

𝛽∗   Coefficient of concentration expansion 
𝜂     Dimensionless normal distance 

𝜇     Dynamic viscosity 

𝜗     Kinematic viscosity 

𝜃     Dimensionless temperature 

𝜙     Thermal conductivity 

𝜉      Temperature-dependent fluid viscosity 

𝛿      Frank Kamenetskii parameter  

𝜖      Activation energy 

𝜓     Stream function 

𝜌      Fluid density 

 

Subscripts 

𝑊    Property at the wall 

𝑎     Significant temperature of the fluid layer near the wall 

∞    Free stream condition 
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