
Int. J. Nonlinear Anal. Appl. 11 (2020) No. 2, 17-28
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2019.17071.1905

A fixed point approach to the stability of
additive-quadratic-quartic functional equations

Abasalt Bodaghia∗ , Themistocles Michael Rassiasb , Abbas Zivari-Kazempourc

aDepartment of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
bDepartment of Mathematics, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
cDepartment of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional
equations and obtain their common solutions. We also investigate the stability of such modified
functional equations in the non-Archimedean normed spaces by a fixed point method.
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1. Introduction

The stability of a functional equation originated from a question raised by Ulam in [28] as follows:
“when is it true that the solution of an equation differing slightly from a given one must of ne-
cessity be close to the solution of the given equation?”. The first answer (in the case of Cauchy’s
functional equation in Banach spaces) to Ulam’s question was given by Hyers in [18]. Following his
result, a great number of papers on the stability problems of several functional equations have been
extensively published as generalizing Ulam’s problem and Hyers’s theorem in various directions; see
for instance [1, 17, 19, 20, 25, 27]. Some results regarding to the stability of various forms of the
mixed type additive-quadratic ([5], [31]), additive-cubic ([23], [30]), additive-quartic ([2], [3], [12]),
cubic-quartic ([4], [14]), quadratic-quartic ([6], [11], [29]), additive-quadratic-cubic ([13], [21]), and
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additive-quadratic-sextic [15] functional equations were investigated in some normed spaces and alge-
bras. For some results on the various functional equations in non-Archimedean (2,β)-Banach spaces,
refer to [9] and [10].

Mohamadi et al. in [22] introduced the additive-quadratic-quartic functional equation

f(x+ 2y) + f(x− 2y) = 2[f(x+ y) + f(x− y)f(−x− y) + f(y − x)]

− 4[f(−x) + f(y) + f(−y)]− 2f(x) + f(y) + f(−2y). (1.1)

They study the Ulam stability problem for (1.1) in complete random normed spaces; for fuzzy
stability of (1.1) see [24].

In this article, we consider the class of mixed type additive-quadratic-quartic functional equations
as follows:

f(ax+ by) + f(ax− by) + f(bx+ ay) + f(bx− ay)

= 2(ab)2[f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)]

+ 2[f(ax) + f(bx) + f(ay) + f(by)]− (a+ b)(f(y)− f(−y)) (1.2)

for the fixed integer a and any integer b such that a, b 6= 0,±1 and a + b 6= 0. It is easy to check
that the mapping f(x) = αx4 + βx2 + γx is a common solution of the functional equations given in
(1.2). We obtain the general solution and study the Hyers-Ulam stability of the equation (1.2) in the
non-Archimedean normed spaces for the fixed integer a and any integer b such that a, b 6= 0,±1 and
a + b 6= 0. In other words, in the proof of our main results, we apply the fixed point method which
was used for the first time by Brzdȩk et al., in [8]; see also [7] and [26].

2. Solutions of (1.2)

In the sequel, by the mapping f : X −→ Y satisfies the functional equation (1.2), we mean that
f satisfies (1.2) for the fixed integer a and any integer b such that a, b 6= 0,±1 and a+ b 6= 0. Here,
we firstly find out the general solutions of (1.2).

Proposition 2.1. Let X and Y be real vector spaces. Suppose that the mapping f : X −→ Y
satisfies the functional equation (1.2).

(i) If f is an odd mapping, then it is additive;

(ii) If an even mapping f : X −→ Y satisfies functional equation (1.2), then the mappings g, h :
X −→ Y defined by g(x) := f(2x) − 16f(x) and h(x) := f(2x) − 4f(x) are quadratic and
quartic, respectively.

Proof . (i) By assumption, the equation (1.2) can be rewritten as follows:

f(ax+ by) + f(ax− by) + f(bx+ ay) + f(bx− ay) (2.1)

= 2(ab)2[f(x+ y) + f(x− y)− 2f(x)]

+ 2[f(ax) + f(bx) + f(ay) + f(by)]− 2(a+ b)f(y) (2.2)

Note that f(0) = 0. Replacing (x, y, b) by (0, x, a) in (2.1), we get

f(ax) = af(x) (2.3)



A fixed point approach to the stability of · · · 11 (2020) No. 2, 17-28 19

for all x ∈ X. Putting a = b in (2.1) and using (2.3), we have

a(a3 − 1)[f(x+ y) + f(x− y)− 2f(x)] = 0 (2.4)

for all x, y ∈ X. Since a 6= 0, 1, it follows from (2.4) that

f(x+ y) + f(x− y) = 2f(x) (2.5)

for all x, y ∈ X. Interchanging (x, y) by (y, x) in (2.5), we obtain

f(x+ y) + f(y − x) = 2f(y) (2.6)

for all x, y ∈ X. Now, equalities (2.5), (2.6) and the oddness of f imply that f(x+ y) = f(x) + f(y)
for all x, y ∈ X. This means that f is an additive mapping.

(ii) We firstly note that f(0) = 0. Letting y = x and b = 2a in (1.2) and using the eveness of f ,
we get

f(3ax) + f(ax) = 4a4[f(2x)− 4f(x)] + 2[f(ax) + f(2ax)] (2.7)

for all x ∈ X (and for the rest of this proof, all the equations are valid for all x ∈ X). Putting y = x
and b = 3a in (1.2), we obtain

f(4ax) + f(2ax) = 9a4[f(2x)− 4f(x)] + 2[f(ax) + f(3ax)] (2.8)

It follows from (2.7) and (2.8) that

f(4ax) + f(2ax) = 17a4[f(2x)− 4f(x)] + 4[f(ax) + f(2ax)] (2.9)

Replacing (b, y) by (a, 2x) in (1.2), we have

f(3ax) + f(ax) = 2a4[f(3x)− f(x)− 2f(2x)] + 4[f(ax) + f(2ax)] (2.10)

Substituting (b, y) by (a, 3x) in (1.2), we deduce that

f(4ax) + f(2ax) = a4[f(4x) + f(2x)− 2f(x)− 2f(3x)] + 2[f(3ax) + f(ax)] (2.11)

Plugging (2.10) into (2.11), we find

f(4ax) + f(2ax) = a4[f(4x)− 3f(2x)− 4f(x)] + 4[f(ax) + f(2ax)] (2.12)

Since a 6= 0, one can check that equalities (2.9) and (2.12) necessitate that

f(4x)− 20f(2x) + 64f(x) = 0 (2.13)

for all x ∈ X. From relation (2.13), the desired results can be obtained. �

Corollary 2.2. Let X and Y be real vector spaces. Then, a mapping f : X −→ Y satisfies the
functional equation (1.2) for all x, y ∈ X if and only if there exist a unique additive mapping A :
X −→ Y , a unique symmetric bi-additive mapping Q : X × X −→ Y and a unique symmetric
multi-additive mapping Q : X ×X ×X ×X −→ Y such that f(x) = A(x) +Q(x, x) + Q(x, x, x, x)
for all x ∈ X.
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Proof . Suppose that f satisfies (1.2). We decompose f into the odd part and even part by putting

fo(x) =
1

2
(f(x)− f(−x)), fe(x) =

1

2
(f(x) + f(−x)), (x ∈ X).

By Proposition 2.1, fo(x) = A(x). If g, h : X −→ Y are mappings defined as in Proposition 2.1,
then the mappings g and h are quadratic and quartic, respectively, and fe(x) := 1

12
(h(x)− g(x)) for

all x, y ∈ X. Thus, there exist a unique symmetric bi-additive mapping Q : X × X −→ Y and a
unique symmetric multi-additive mapping Q : X ×X ×X ×X −→ Y such that g(x) = −12Q(x, x)
and h(x) = 12Q(x, x, x, x) for all x ∈ X (see also the proof of [29, Theorem 2.2]). Therefore,

f(x) = fo(x) + fe(x) = A(x) +Q(x, x) + Q(x, x, x, x) (x ∈ X).

The proof of the converse is trivially. �

3. Stability Results for (1.2)

In this section, we prove the generalized Hyers-Ulam-Rassias stability of the mixed type additive,
quadratic and quartic functional equation (1.2) in the non-Archimedean normed spaces.

We firstly recall some basic facts concerning non-Archimedean spaces and some preliminary re-
sults. By a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from
K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for
all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N (for more information about the
non-Archimedean fields refer to [16]).

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation | · |. A
function ‖·‖ : X −→ R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖, (x ∈ X , r ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X ).

Then (X , ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖;m ≤ j ≤ n− 1} (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a non-Archimedean normed
space X . By a complete non-Archimedean normed space we mean one in which every Cauchy
sequence is convergent.

Here and subsequently, for the given mapping f : X −→ Y , we define the difference operators
∆a,bf : X ×X −→ Y via

∆a,bf(x, y) = f(ax+ by) + f(ax− by) + f(bx+ ay) + f(bx− ay)

− 2(ab)2[f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)]

− 2[f(ax) + f(bx) + f(ay) + f(by)] + (a+ b)(f(y)− f(−y))

for the fixed integer a and any integer b such that a, b 6= 0,±1 and a+ b 6= 0.
Throughout, for two sets A and B, the set of all mappings from A to B is denoted by BA. We

also denote the nonnegative real numbers by R+. The proof of the stability of the functional equation
(1.2) in the non-Archimedean normed spaces is based on a fixed point result that can be derived
from [8, Theorem 1]. To present it, we introduce the following three hypotheses:
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(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean
field of the characteristic different from 2, j ∈ N, g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→
R+,

(H2) T : Y E −→ Y E is an operator satisfying the inequality

‖T λ(x)− T µ(x)‖ ≤ maxi∈{1,...,j}Li(x) ‖λ(gi(x))− µ(gi(x))‖ , λ, µ ∈ Y E, x ∈ E,

(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) := maxi∈{1,...,j}Li(x)δ(gi(x)) δ ∈ RE
+, x ∈ E.

Here, we bring the following theorem which is a fundamental result in fixed point theory [8]. This
result plays a key tool to reach our aim in this paper.

Theorem 3.1. Let hypotheses (H1)-(H3) hold and the function ε : E −→ R+ and the mapping
ϕ : E −→ Y fulfill the following two conditions:

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), lim
l→∞

Λlε(x) = 0 (x ∈ E).

Then, for every x ∈ E, liml→∞ T lϕ(x) =: ψ(x) and the function ψ ∈ Y E, defined in this way, is a
fixed point of T with

‖ϕ(x)− ψ(x)‖ ≤ supl∈N0
Λlε(x) (x ∈ E).

From now on, let X be a linear space and let Y be a complete non-Archimedean normed space
over a non-Archimedean field K of the characteristic different from 2, unless otherwise explicitly
stated. Furthermore, we assume that |2| < 1.

Theorem 3.2. Let s ∈ {−1, 1} be fixed. Suppose that φ : X × X −→ R+ is a mapping satisfying
the equality

lim
l→∞

1

|2|sl
φ
(
2slx, 2sly

)
= 0 (3.1)

for all x, y ∈ X. Assume also f : X −→ Y is an odd mapping satisfying the inequality

‖∆a,bf(x, y)‖ ≤ φ(x, y) (3.2)

for all x, y ∈ X. Then, there exists a unique additive mapping A : X −→ Y such that

‖f(x)−A(x)‖ ≤ supl∈N
1

|2| s+1
2

+sl
Φ
(

2
s−1
2

+slx
)

(3.3)

for all x ∈ X, where

Φ(x) =
1

|2a(1− a3)|
max

{
1

|2|
φ(0, 2x), |2|φ(0, x), φ(x, x)

}
. (3.4)
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Proof . We firstly note that f(0) = 0. Replacing (x, y, b) by (0, x, a) in (3.2) and applying the
oddness of f , we have

‖f(ax)− af(x)‖ ≤ 1

|4|
φ(0, x) (3.5)

for all x ∈ X. Putting y = x and b = a in (3.2), we get

‖2f(2ax)− 2a4(f(2x)− 2f(x))− 8f(ax) + 4af(x)‖ ≤ φ(x, x) (3.6)

for all x ∈ X. The inequality (3.6) can be modified as

‖2(f(2ax)− af(2x)) + 2a(1− a3)(f(2x)− 2f(x))− 8(f(ax)− af(x))‖ ≤ φ(x, x) (3.7)

for all x ∈ X. It follows from (3.5) and (3.7) that

‖f(2x)− 2f(x)‖ ≤ Φ(x) (3.8)

for all x ∈ X, where Φ(x) is defined in (3.4). In other words, the inequality (3.8) is equivalent to

‖f(x)− 1

2s
f(2sx)‖ ≤ 1

|2| s+1
2

Φ
(

2
s−1
2 x
)

(3.9)

for all x ∈ X. For each x ∈ X, set

T ξ(x) :=
1

2s
ξ(2sx) and ε(x) :=

1

|2| s+1
2

Φ
(

2
s−1
2 x
)

(ξ ∈ Y X).

The inequality (3.9) can be rewritten as follows:

‖f(x)− T f(x)‖ ≤ ε(x) (x ∈ X). (3.10)

Define Λη(x) := 1
|2|sη (2sx) for all η ∈ RX

+ , x ∈ X. It is easy to see that Λ has the form described in

(H3) with E = X, g1(x) := 2sx for all x ∈ X and L1(x) = 1
|2|s . Moreover, for each λ, µ ∈ Y X and

x ∈ X, we get

‖T λ(x)− T µ(x)‖ =

∥∥∥∥ 1

2s
λ(2sx)− 1

2s
µ(2sx)

∥∥∥∥ ≤ L1(x) ‖λ(g1(x))− µ(g1(x))‖ .

The above relation shows that the hypothesis (H2) holds. By induction on l, one can check that for
any l ∈ N and x ∈ X that

Λlε(x) :=
1

|2|sl
ε
(
2slx

)
=

1

|2| s+1
2

+sl
Φ
(

2
s−1
2

+slx
)

(3.11)

for all x ∈ X. Relations (3.1) and (3.11) show that all assumptions of Theorem 3.1 are satisfied.
Hence, there exists a unique mapping A : X −→ Y such that A(x) = liml→∞(T lf)(x) for all x ∈ X,
and also (3.3) holds. Clearly,

‖∆a,b(T lf)(x, y)‖ ≤ 1

|2|sl
φ
(
2slx, 2sly

)
(3.12)

for all x, y ∈ X and l ∈ N. Letting l→∞ in (3.12) and applying (3.1), we arrive at ∆a,bA(x, y) = 0
for all x, y ∈ X. This means that the odd mapping A satisfies (1.2) and so by Proposition 2.1 it is
additive. Therefore, the proof is now completed. �

In the oncoming corollary which is a direct consequence of Theorem 3.2, the norm of ∆a,bf(x, y)
is bounded by a positive real number δ.
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Corollary 3.3. Let δ be a positive real number. Suppose that f : X −→ Y is an odd mapping
satisfying the inequality

‖∆a,bf(x, y)‖ ≤ δ

for all x, y ∈ X. Then, there exists a unique additive mapping A : X −→ Y such that

‖f(x)−A(x)‖ ≤ δ

|2a(1− a3)|
(x ∈ X).

Proof . It is enough to put s = −1 and φ(x, y) = δ in Theorem 3.2. �
We have the next result which is analogous to Theorem 3.2 for functional equation (1.2) in the

even case.

Theorem 3.4. Let s ∈ {−1, 1} be fixed. Suppose that φ : X × X −→ R+ is a mapping satisfying
the equality

lim
l→∞

1

|2|2sl
φ
(
2slx, 2sly

)
= 0 (3.13)

for all x, y ∈ X. Assume also f : X −→ Y is an even mapping satisfying f(0) = 0 (in the case
s = −1) and the inequality

‖∆a,bf(x, y)‖ ≤ φ(x, y) (3.14)

for all x, y ∈ X. Then, there exists a unique quadratic mapping Q : X −→ Y such that

‖f(2x)− 16f(x)−Q(x)‖ ≤ supl∈N
1

|2|s+1+2sl
Ψ
(

2
s−1
2

+slx
)

(3.15)

for all x ∈ X, where

Ψ(x) =
1

|2a4|
max {(1 + |2|)φ(x, x), |2|φ(x, 2x), φ(x, 3x)} (3.16)

Proof . For the case s = 1, since |2| < 1 is assumed, φ(0, 0) = 0 by (3.13) and so f(0) = 0 by (3.14).
Interchanging (y, b) by (x, 2a) in (3.14) and using the evenness of f , we obtain

‖2(f(3ax) + f(ax))− 8a4(f(2x)− 4f(x))− 4(f(ax) + f(2ax))‖ ≤ φ(x, x) (3.17)

for all x ∈ X. Putting y = x and b = 3a in (3.14), we find

‖2(f(4ax) + f(2ax))− 18a4(f(2x)− 4f(x))− 4(f(3ax) + f(ax))‖ ≤ φ(x, x) (3.18)

for all x ∈ X. Plugging (3.17) into (3.18), we have

‖2(f(4ax) + f(2ax))− 34a4(f(2x)− 4f(x))− 8(f(ax) + f(2ax))‖ ≤ (1 + |2|)φ(x, x) (3.19)

for all x ∈ X. Once more, replacing (y, b) by (2x, a) in (3.14), we get

‖2(f(3ax) + f(ax))− 2a4(f(3x)− f(x)− 2f(2x))− 4(f(ax) + f(2ax))‖ ≤ φ(x, 2x) (3.20)
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for all x ∈ X. Setting y = 3x and b = a in (3.14), we arrive at

‖2(f(4ax) + f(2ax))− 2a4(f(4x) + f(2x)− 2f(x)− 2f(3x))− 4(f(3ax) + f(ax))‖
≤ φ(x, 3x) (3.21)

for all x ∈ X. It follows from (3.20) and (3.21) that

‖2(f(4ax) + f(2ax))− a4(2f(4x)− 6f(2x)− 8f(x))− 8(f(ax) + f(2ax))‖
≤ max{|2|φ(x, 2x), φ(x, 3x)} (3.22)

for all x ∈ X. Now, inequalities (3.19) and (3.22) imply that

‖f(4x)− 20f(2x) + 64f(x))‖ ≤ Ψ(x) (3.23)

for all x ∈ X, where Ψ(x) is defined in (3.16). Similar to the proof of Theorem 3.2, for each x ∈ X
we consider

T ξ(x) :=
1

22s
ξ(2sx) and ε(x) :=

1

|2|s+1
Ψ
(

2
s−1
2 x
)

(ξ ∈ Y X).

Then, inequality (3.23) will be rewritten as

‖g(x)− T g(x)‖ ≤ ε(x) (x ∈ X), (3.24)

where g(x) := f(2x) − 16f(x). Define Λη(x) := 1
|2|2sη (2sx) for all η ∈ RX

+ , x ∈ X. Hence, the

mapping Λ satisfies in (H3) with E = X, g1(x) = 2sx for all x ∈ X and L1(x) = 1
|2|2s . Furthermore,

for each λ, µ ∈ Y X and x ∈ X, we have

‖T λ(x)− T µ(x)‖ =

∥∥∥∥ 1

22s
λ(2sx)− 1

22s
µ(2sx)

∥∥∥∥ ≤ 1

|2|2s
‖λ(2sx)− µ(2sx)‖ .

Thus, the hypothesis (H2) holds. In addition, for any l ∈ N and x ∈ X we have

Λlε(x) :=
1

|2|2sl
ε
(
2slx

)
=

1

|2|s+1+2sl
Ψ
(

2
s−1
2

+slx
)

(3.25)

for all x ∈ X. It follow from (3.13) that liml→∞ Λlε(x) = 0 and hence all assumptions of Theorem
3.1 are satisfied. Therefore, there exists a unique mapping Q : X −→ Y defined through Q(x) =
liml→∞(T lf)(x) such that

‖g(x)−Q(x)‖ ≤ supl∈N
1

|2|s+1+2sl
Ψ
(

2
s−1
2

+slx
)

(x ∈ X).

In other words, the relation (3.15) holds. One can show that

‖∆a,b(T lf)(x, y)‖ ≤ 1

|2|2sl
φ
(
2slx, 2sly

)
(3.26)

for all x, y ∈ X and l ∈ N. Taking l →∞ in (3.26) and using (3.13), we find ∆a,bQ(x, y) = 0 for all
x, y ∈ X. Hence, the mapping Q satisfies (1.2). Therefore, it is quadratic by Proposition 2.1. This
finishes the proof. �

We have the next result which is analogous to Theorem 3.4 for the functional equation (1.2) in
another even case.
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Theorem 3.5. Let s ∈ {−1, 1} be fixed. Suppose that φ : X × X −→ R+ is a mapping satisfying
the equality

lim
l→∞

1

|2|4sl
φ
(
2slx, 2sly

)
= 0

for all x, y ∈ X. Assume also f : X −→ Y is an even mapping satisfying f(0) = 0 (in the case
s = −1) and the inequality (3.14). Then, there exists a unique quartic mapping Q : X −→ Y such
that

‖f(2x)− 4f(x)−Q(x)‖ ≤ supl∈N
1

|2|2(s+1)+4sl
Ψ
(

2
s−1
2

+slx
)

for all x ∈ X, where Ψ(x) is defined in (3.16).

Proof . From the proof of Theorem 3.4, we have

‖f(4x)− 20f(2x) + 64f(x))‖ ≤ Ψ(x) (3.27)

for all x ∈ X, where Ψ(x) is defined in (3.16). For each x ∈ X, consider

T ξ(x) :=
1

24s
ξ(2sx) and ε(x) :=

1

|2|2(s+1)
Ψ
(

2
s−1
2 x
)
.

We modify relation (3.27) as follows:

‖h(x)− T h(x)‖ ≤ ε(x) (x ∈ X), (3.28)

where h(x) := f(2x)− 4f(x). Define Λη(x) := 1
|2|4sη (2sx) for all η ∈ RX

+ , x ∈ X. Thus, the mapping

Λ is as in (H3) with E = X, g1(x) = 2sx for all x ∈ X and L1(x) = 1
|2|4s . The rest of the proof is

similar to the proof of Theorem 3.4. �
The next corollary is a direct result of Theorems 3.4 and 3.5.

Corollary 3.6. Let δ be a positive real number. Suppose that f : X −→ Y is an even mapping
satisfying the inequality

‖∆a,bf(x, y)‖ ≤ δ

for all x, y ∈ X. Then, there exists a unique quadratic mapping Q : X −→ Y and a unique quartic
mapping Q : X −→ Y such that

‖f(2x)− 16f(x)−Q(x)‖ ≤ |2|(1 + |2|)
|a|4

δ

and

‖f(2x)− 4f(x)−Q(x)‖ ≤ |2|
3(1 + |2|)
|a|4

δ, (x ∈ X).

In the upcoming result, we prove the stability for the functional equation (1.2) when f is an
arbitrary mapping.
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Theorem 3.7. Let s ∈ {−1, 1} be fixed. Suppose that φ : X × X −→ R+ is a mapping satisfying
the equalities

lim
l→∞

1

|2|4l
φ
(
2lx, 2ly

)
= 0 and lim

l→∞
|2|lφ

( x
2l
,
y

2l

)
= 0 (3.29)

for all x, y ∈ X. Assume also f : X −→ Y is a mapping satisfying the inequality

‖∆a,bf(x, y)‖ ≤ φ(x, y)

for all x, y ∈ X. Then, there exists a unique additive mapping A : X −→ Y , a unique quadratic
mapping Q : X −→ Y and a unique quartic mapping Q : X −→ Y such that

‖f(x)−A(x)−Q(x)−Q(x)‖

≤ supl∈N

{
1

|2| s+1
2

+sl
Φ̃
(

2
s−1
2

+slx
)
,

1

|12|
1

|2|2(s+1)+4sl
Ψ̃
(

2
s−1
2

+slx
)
,

1

|12|
1

|2|s+1+2sl
Ψ̃
(

2
s−1
2

+slx
)}

for all x ∈ X, where

Φ̃(x) =
1

|2a(1− a3)|
max

{
1

|2|
ϕ(0, 2x), |2|ϕ(0, x), ϕ(x, x)

}
(3.30)

and

Ψ̃(x) =
1

|2a4|
max {(1 + |2|)ϕ(x, x), |2|ϕ(x, 2x), ϕ(x, 3x)} (3.31)

in which

ϕ(x, y) =
1

2
[φ(x, y) + φ(−x,−y)]. (3.32)

Proof . To achieve our aim, we decompose f into the even part and odd part by setting

fo(x) =
1

2
(f(x)− f(−x)), fe(x) =

1

2
(f(x) + f(−x)), (x ∈ X).

We have
‖∆a,bfo(x, y)‖ ≤ ϕ(x, y), ‖|∆a,bfe(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X, where ϕ(x, y) is given in (3.32). Since |2| < 1, the equalities in (3.29) imply that

lim
l→∞

1

|2|slt
ϕ
(
2slx, 2sly

)
= 0 (t ∈ {1, 2, 4}).

It follows from Theorem 3.2 that there exists a unique additive mapping A : X −→ Y such that

‖fo(x)−A(x)‖ ≤ supl∈N
1

|2| s+1
2

+sl
Φ̃
(

2
s−1
2

+slx
)

(3.33)

for all x ∈ X, where Φ̃(x) is defined in (3.30). Furthermore, Theorems 3.4 and 3.5 imply that there
exists a unique quadratic mapping Q0 : X −→ Y and a unique quartic mapping Q0 : X −→ Y such
that

‖fe(2x)− 16fe(x)−Q0(x)‖ ≤ supl∈N
1

|2|s+1+2sl
Ψ̃
(

2
s−1
2

+slx
)

(3.34)
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and

‖fe(2x)− 4fe(x)−Q0(x)‖ ≤ supl∈N
1

|2|2(s+1)+4sl
Ψ̃
(

2
s−1
2

+slx
)

(3.35)

for all x ∈ X, where Ψ̃(x) is defined in (3.31). By the inequalities (3.34) and (3.35), we have

‖fe(x)−Q(x)−Q(x)‖ ≤ 1

|12|
supl∈N

{
1

|2|2(s+1)+4sl
Ψ̃
(

2
s−1
2

+slx
)
,

1

|2|s+1+2sl
Ψ̃
(
2s−1+slx

)}
(3.36)

for all x ∈ X, where Q(x) = − 1
12
Q0(x) and Q(x) = 1

12
Q0(x). Plugging relation (3.33) into (3.36),

we obtain the desired result. �

Corollary 3.8. Let δ be a positive real number. Suppose that f : X −→ Y is a mapping satisfying
the inequality

‖∆a,bf(x, y)‖ ≤ δ

for all x, y ∈ X. Then, there exists a unique additive mapping A : X −→ Y , a unique quadratic
mapping Q : X −→ Y and a unique quartic mapping Q : X −→ Y such that such that

‖f(x)−A(x)−Q(x)−Q(x)‖ ≤ max

{
δ

|2a(1− a3)|
,
1 + |2|
|6||a|4

δ

}
.
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