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Abstract

In this paper, we are concerned with the following fractional Schrodinger-Poisson system:

(—A%)u+u+ Apu = pf(w) + [l ul, 7€ R

(=AY = u?, zeR’
where A, i are two parameters, s,t € (0,1] 2t +4s >3 1 <p < 2% and f: R — R is continuous
function. Using some critical point theorems and truncation technique, we obtain the existence and

multiplicity of non-trivial solutions with the help of the variational methods.
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1. Introduction

The aim of this paper is to investigate the existence of non-trivial solutions for the following frac-

tional Schrodinger-Poisson system

(=A%u + u + Mpu = pf (u) + |uP?|ul, rcR?

(1.1)
(=AY = u?, zeR’
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where A,  are two parameters, s,t € (0,1] 2t+4s > 3,1 < p < 2%, (—A?®) is the fractional Laplacian

and f(u) is continuous function. Where 2} = z=5-.

When s = ¢t = 1 the equation () reduces to Schrodinger-Poisson equation, which describes
quantum particles and is related to the study of nonlinear stationary Schrodinger equations inter-
acting with the electromagnetic field generated by the motion [1, 2].

This article was motivated by [3].There the authors show the existence and multiplicity of solutions

for the system

(=A)u + u+ Apu = puf (u) + [ul|ul, x €N (12)

(—=A)p = u?, x € .
where ) is a smooth and bounded domain in R3, 1 < p < 6, A, & are two parameters is a parameter
and f: R — R is a continuous function. Our purpose is to show that when we consider this system
with fractional Laplacian operator instead of the Laplacian, then we obtain the existence and mul-
tiplicity of non-trivial solutions for the system.
Fractional Schrodinger-Poisson equations have attracted some attention in recent years. If we only
consider the first equation in () and assume that ¢ = 0, then it reduces to a fractional Schrodinger
equation, which is a fundamental equation in fractional quantum mechanics [4, 5].

Authors in [6] studied the existence of positive solutions and ground state solutions for the following

system

(=A)u+ V(z)u+ ¢u = f(u), in R 13
(—A)'p =u? in R?,

Where V : R?* — R? is a continuous periodic potential and positive

Recently, some authors proposed a new approach called perturbation method to study the quasilinear

elliptic equations, see [7, §]

in [9] the existence of infinitely many solutions for the following system was studied by wei

(=A% )u+ V(z)u+ ¢pu = f(z,u), in R3,
(—A%)¢ = Yatl?, in R3,

Where s € (0,1] and 7, is a positive constant.
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Kexue Li in [10] studied the nonlinear fractional Schrodinger-Poisson system

(—A%u+u+¢u= f(z,u), nR’

(1.5)
<_At)¢ = UQ, in RS?

And by using the perturbation method and mountain pass theorem, obtained the existence of non-
trivial solutions.

Up to our knowledge, there are no result on the existence of multiple solutions for problem ()
with the nonlinear term f(u) + |u[P"?u. In particular, if f may be not odd, than the associated
functional of () may be nonsymmetric which leads to the significant difficulty in finding multiple
solutions. Indeed problem (EI) with the nonsymmetric term f does possess a variational structure
as well, problem () can be attacked by means of variational methods. Namely, the weak solutions
are characterized as critical points of a C! functional I = I(u) defined on the fractional sobolev space
H*#(R?). Here, we obtain a sufficient result ensuring the existence of at least three weak solutions for
problem (@) whose the nonlinear term f may be nonsymmetric. The following is our result in the

case of the subcritical exponent p € (1,2).

Theorem 1.1. Assume that f € C(R,R) is not an odd function and the following condition holds:
(f) there exist three positive constants ci, co,q such that |f(u)] < ¢ + colul?t.

If g € (1,2) and p € (1.2), then there exist L > 0 and an open interval J with 0 € J such that, for
every pu € J, problem (@) with A = p admits at least three weak solutions whose norms are less or
equal to L.

The proof of @ is based on an abstract critical point theorem developed by Anello [11] in finding
two local minimum points of the associated functional which is the two weak solutions of problem
(@) And then, we find the third weak solution different from the earlier two ones using a Mountain
Pass Theorem coming from [12].

The reminder of this paper is organized as follows. In section 2 we present a suitable variational
framework for our problem. In section 3, we prove Theorem @ Throughout this paper, C' > 0 will
be used indiscriminately to denote a suitable positive constant whose value may change from line to

line. Moreover, we use ||.||s to denote the usual norm on L*(R?) for 1 < s < +o00.

2. Variational setting and preliminaries

1
For p € [1,00), we denote by LP(R?) the usual Lebesgue space with the norm [|ul|, = (fgs [ulPdz)?.

For any p € [1,00) and s € (0, 1), we recall some definitions of fractional Sobolev spaces and the
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fractional Laplacian (—A)*, for more details, we refer to [13]. H*(R?) is defined as follows

H®) = {ue P®): [ @ IeP)FuePds < oo

with the norm

N

ullzre = (IFu(©)* + [ Fu(©)) >, (2.1)

where Fu denotes the Fourier transform of u. By S(R3), we denote the Schwartz space of rapidly
decaying C* functions in R3. For u € S(R?) and s € (0,1), (—A)* is defined by

(—A)f =F g (Ff)), v e R

By Plancherel’s theorem, we have || Fully = [Julls, |||¢]*Full2 = ||(=A)2ul|. Then by (@), we get the

equivalent norm

1
. 3
fullr = ( [ -8k + luo)Pyir)
For s € (0,1), the fractional Sobolev space D*?(R?) is defined as follows
D*2(R?) = {u € L*(R?) : [¢]"Fu(€) € L*(R%)},

which is the completion of C§°(R3) with respect to the norm
s 12 : 2 2 :
pa= ([ 1apapas) = ([ epiFuera)
R3 R3

Lemma 2.1. (Theorem 2.1 in [14]). For any s € (0,2), D¥*(R3) is continuously embedded in
L% (R3), i.e., there exists ¢, > 0 such that

(Lo
R3

We consider the variational setting of (@) From Theorem 6.5 and Corollary 7.2 in [13], it is known

[[ul

2/23
Z:da:) <cs | |(=A)2ulPdz, u € D¥(R?).
R3

that the space H*(R?) is continuously embedded in L4(R?) for any ¢ € [1,2] and the embedding
H*(R?) < L1(R?) is locally compact for g € [1,2%).

If 2t + 4s > 3, then H*(R3) — L%(R:”). For u € H*(R3), the linear operator T, : D**(R*) — R
defined as
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By Holder inequality and Lemma @,

I Tu ()] < Nl sian 0]l < Cllullzsllvlipee. (2.2)

Set
n(u,v) = / (=A)2u - (=A)zvdz, u,v € D"2(R).
R3

It is clear that n(u,v) is bilinear, bounded and coercive. The Lax-Milgram theorem implies that
for every u € H*(R®), there exists a unique ¢!, € D"?(R?) such that T,(v) = n(¢,,v) for any
v € D"(R3), that is
/ (—A)2¢ (—A)2vdz —/ w?vdz., (2.3)
R3 R3

Therefore, (—A)!¢! = u? in a weak sense. Moreover,
19l pte = I Tull < CllullF. (2:4)

Since t € (0,1] and 2t + 4s > 3, then 22 € (2,2%). From Lemma EI, (@) and (@), it follows that

3+2t

s = [ 1-M)tehPar= [ wldide <l 1ol < Cllully 6o 29
R3 R3 3+2t 3+2¢
Then
165Dz < Cllulfse . (2.6)
3+2t
For € R3, we have
2
t u*(y)
= ——d 2.7
which is the Riesz potential [15], where
T(3=2t
Ct = o=~ ( 2 ) .
/29207 (1)

Substituting ¢!, in (@), we have the fractional Schrodinger equation
(=A)*u+u+ Adlu = pf(u) + [uf[u], = € R, (2.8)

The energy functional I : H*(R?) — R corresponding to problem (@) is defined by
1 s A 1
I(u) = —/ (|(=A)z2u(2)|* + |u(z)|?)dz + —/ Pl uldr — u/ F(u)dx — - |ulPdz. (2.9)
2 R3 4 R3 R3 D Jrs

It is easy to see that I is well defined in H*(R?) and I € C'(H*(R?),R), and

(I'(u),v) = /Rg ((=A)2u(—=A)2v + uv + ApLuv — pf (u)v — lufP2uv) dz, ve H*(R®).  (2.10)
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Definition 2.2.
(1) We call (u, ) € H*(R?) x D¥*(R?) is a weak solution of () if u is a weak solution of @)

(2) We call u is a weak solution of @) if
/ ((—A)%u(—A)%v + uwv 4+ AgLuv — pf (u)v — |ufP~w) dz = 0,
R3

for any v € H*(R?).
Definition 2.3. We say a C' functional I satisfies Palais-Smale condition ((PS) condition for
short) if any sequence {u,} C H*(R®) such that

I(uy) being bounded, I'(u,) — 0, asn —0 (2.11)

admits a convergent subsequence, and such a sequence is called a Palais-Smale sequence ((PS)
sequence).

Now we define the following integral momentums

1 1 1
W(u) = ||u||2——/‘ lufPdz, B(u) ‘——/, tuu2dx—/r Fds — (212)
2 P Jrs 4 R3 R3

Theorem 2.4. ([16]).Let E be a real Banach space and I € C*(E,R) satisfy the (PS)-condition. If
I is bounded from below, then ¢ = infg I is a critical value of I.

Theorem 2.5. (|11]).Let E be a reflexive Banach space and ®, ¥ be two sequentially weakly lower
semicontinuous real functionals defined on E. Suppose U is (strongly) continuous. Moreover, assume
that there exists x1, g, ..., Tn € E, r1,...,rn > 0, with r; + 1; < ||x; — z;|| for alli,j € {1,...,n} with
i # j, such that foe alli € {1,...,n},
(a) the functional r — inf) g =, V(x + x;) is continuous in R,
(b) \If(l’z) < inflle:m \I/(ZE + xz)
Then there exists p* > 0 such that for every p > p* the functional p¥ + ® admits at least n distinct
local minimum points yi, ..., y, such that ||x —i —y;|| < r; foralli=1,.. n.

Theorem 2.6. ([14]). Let X be a Banach space and assume that I satisfies the following conditions:

(H1) there exist numbers a,r, R such that 0 <r < R and I(z) > a for every
reA={xe X :r<|z| <R}

(H2) 1(0) < a and I(e) < a for some e with |le|| > R.
If I satisfies the Palais-Smale compactness condition, then there exists a critical point x, in X, dif-
ferent from 0 and e, with critical value ¢ > a; moreover, v € A when ¢ = a, where ¢ is characterized by

inf sup I(y(t)) = ¢, I'={yeC(0,1,X):7(0)=0 and (1) =e}

7€l ef0,1)
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3. Proof of Theorem

In this section, under the condition that f may be not odd function, we give the result of the
existence of at least three solutions for problem () (i.e., Theorem ) In what follows, we will
give the proof of Theorem @

Proof . Firstly, with the help of Theorem @, we show that problem (@) has at least two weak
solutions. It follows from the conditions of Theorem EI and @—@ that U, are two well-defined
differentiable and sequentially weakly lower semicontinuous functionals. Moreover, ¥ is strongly
continuous and coercive. Hence, it is clear that ¥ is bounded from below in H*(R3). Next we show
U satisfies the (PS)-condition. Assume that {w,} C H*(R3) such that {¥(w,)} is bounded and

U'(wy) — 0 as n — oco. Then there exist positive constants C, C,, > 0 such that
1 , 1 »
C>W(wn) 2 gllwnll” = = Cpllnl

In view of the above inequality, we know that |lw,| is bounded. Hence, there exists wy € H*(R?)

such that w,, — wy. It follows from the definition of ¥ that

(U’ (wy) — W' (wo), wn — wo) = [|wy, — woll* — / (|wnP~2wy — [wo[P~*wo) (wy — wo). (3.1)
R3
Noting that, by sobolev embedding theorem and Hoéldre inequality, we have

| / (Jwa|P~?wy — Jwol~*wo) (wy, — wo)
) (3.2)
< lonls™ = wnll 5 +1 [ ol = wn)] =0

as n — oo. Moreover, it is easy to see that (V' (w,)—V'(wy), w, —w) — 0 as n — co. Combining @
with @, we deduce that w, — wy as n — oo. Therefore, U satisfies the (PS)-condition. Theorem
@ implies that there exists w satisfying W(w) = infysgs) ¥ and ¥'(w) = 0. We claim that w # 0.
Let w € H*(R3)/{0}, then ¥(sw) < 0 for sufficiently small positive number s.

Therefore W(w) = infys@s) < 0. Our claim is true. Moreover, the standard elliptic estimates imply
that w € L*(R3) and v > 0 follows from the strong maximum principle. we can easily deduce
from [17] and the definition of ¥ that w and —w are the unique two global minimum points of the
functional ¥ over H*(R3). It is shown in [1§] that, if ug € H*(R?), then the real function

2 2
1
r— inf \Il(u—uo)zr——i—m— sup ((u,u())—i——
p

u — ug|Pdx
[[ull=r 2 2 lful|=r | o )

R:’)
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is continuous in R*. Now we claim that, for each fixed r € (0, 2||w||),

inf V(utw)> inf V=U(+w 3.3
nf ( ) Ak (Fw) (3.3)

If not, without loss of generality, suppose that there exists 1o € (0, 2||w||) such that

inf UV(u+w)= inf U (3.4)
l[ull=ro H*(R3)

The argument is same as the case where

inf U(u—w)= inf ¥
l[ull=ro H*(R3)

So we only consider the case @ It follows from @ that there exists a sequence {u,} C H*(R?)

with ||u,|| = ro such that

lim ¥(u, +w) = inf ¥
n—o0 HS(]R3)

From this, up to subsequence, again denoted by {u,}, we have u, — u* in H*(R?). Therefore, by

using Sobolev embedding theorem we have

0= lim Y(u,+w)— VY(w)

n—-+o0o
2 2
. 5wl 1
:nﬂz(§+_3_+@mw_51mmﬁwwm — U(w) (3.5)

2

T 1
=04 (u*, w) + —/ (|lwl? = Ju* 4+ w|?)dz.
2 D Jrs

If we put By = {z € R : u* # 0}, then |B;| > 0. Or else, by (@), it would be 7y = 0, against the
choice of rg. On the other hand, if we put By = {zx € R® : u* # —2w}, then |By| > 0. Otherwise,
again by (@), it would be 9 = 2||w||, which contradicts with the choice of ry. Consequently, the
function u* + w is different from w and —w. So it follows from Fatou lemma,Sobolev embedding
theorem and ¥(w) = inf s (gs) ¥

U(w) = nl—igloo U(u, +w) (3.6)

1 s 1
= lim [ [S)(=A)2(un +w)[* + |u + w]* = =|uy + w]fldz
p

n—-4o00 R3

1 s 1
> [ I + ) + o+l =+ wPlde > Tw)
R3

which is impossible. Hence, @ holds. Fixr € (0, |[w||), then it is easy to check that all the hypotheses

of theorem @ are fulfilled if we take n = 2, r1 = ro = r and 1 = —x9 = w. Hence there exists
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p* > 0 such that for all p > p* the functional p¥ + ® contains at least two distinct local minimum
points uf, ub satisfying

max{|[u] — w|, [[u; +w|} <.
Indeed, such minimum points are critical points of the same functional. Hence, if we put pj = pi*, we

have that, for all u € (0, u}), functional ¥ + p® admits at least two critical points uf, u} such that
max{ [[uy ], [[uz[|} < 2[w]] +7].

That is, problem (@) admits at least two weak solutions for A = p € (0, u3).It is easy to see that, for
i = 0, the same conclusion holds and the two weak solutions are exactly w and —w. Now, consider
the functional

Dy(u) = —d(u) = /}R3 F(u)dx — éll/Rs ¢t udw
defined for all u € H*(R?). Repeating the same above argument applied to ®; and ¥, we eas-
ily deduce that there exists uj such that the previous conclusion holds for all p € (—p3,0). Put
o = 2[||w| + 7] and J = (—ub, u}), then problem () contains at least two weak solutions whose
norms are less or equal that o.
Secondly, using a Mountain Pass Theorem (see Theorem @), we will find the third weak solution
for problem (@) We show that U + u® satisfies the (PS)-condition. Assume that u, is a sequence
in H*(R3) such that {¥(u,) + u®(u,)} is bounded and ¥'(u,,) + u® (u,) — 0 as n — +o0.
By (@),() and (), there exist two positive constant a, as such that

1
ay + a2||“ﬂ|| > U(u,) + pd(u,) — Z[q}/(un)un + ,uCI)/(un)un]

>l = G =) [ fPde g [ GFln)u, - Plu)ds
1 1
p 4
for p € J. in view of the earlier inequality, using the fact that p,q < 2 we conclude that {u,} is

1
> ~lual* = ( )Cull” + plerCllull + c2Cull)

bounded in H*(R?) for p1 € J and, up to subsequence,
u, > u in H(R3)
U, —u in L5 (R3) for 1<s<6 (3.7)
Up () — u(z) a.e. in R3

Hence, V' (uy,)(u, —u) + p®' (up)(u, —u) = 0,(1), that is
4

(tn
(Un, Up — u) + - (1P, tn — puf (un) — | |P 2t (1 — ) = 0,,(1) (3.8)
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From @, we have

/R3 1@ Up(tn — w)dz = 0,(1) (3.9)
Using (f), (@) and 1 < p < 2, we obtain
/R il ) = wde =0, and [ P, —wde = o,(1) (@10
Therefore, combining @, with @, we get
(U, Uy, — u) = 0, (1) (3.11)

With the help of the fact that (u,,u, — u) = 0,(1), we deduce that u, — w in H*(R3). In fact,
the two weak solutions uj, w5 turn out to be the global minimum points for the restriction of the
functional ¥ + u® to the set B,.(w) and B,.(—w), respectively. Therefore, by applying Theorem @,

for every p € J, we can get a critical points u; of ¥ 4 p® different from ] and w3 such that

W (uz) + p®(uz) = c(p) (3.12)
where
c(p) = inf ti‘[é%(‘l’”(t” +u®(y(1))),
and

D= {y € OO 1L H(RY) i 1(0) = w  and  7(1) = 5
Note that, for every u € J and t € [0, 1], if we take
Yo(t) = tuy + (1 —t)uy
then vy € ', and ||y (t)|| < 0. Consequently, for © € J we have

c(p) = inf sup (V(y(t)) + pP(v(1)))

Y€l efo,1]

< ti%pl](qj(%(t)) + 1®(70(1)))

0.2

1
< S+l (CCI®[* + sup [ [F((t))|dx)
2 4 tefo,1] Jr3

(3.13)

o? 1
< 7 + (,UT + M;)(ZCOA + 0100' + CQCO’q) =C"
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It follows from B.12 and () that
* * * 1 * * * *
C* = c(p) = V(uz) + p®(uz) — Z[W’(u?))ug + ' (us)us]

> Il = = D [ pde+u [ G306~ Fui)da (3.14)
1

> sl — (= PCIaIP + merCllugl + exCllus ).

Since p,q < 2, for u € J, there exists a positive constant Cy such that ||uj| < Cy. Therefore, let

L = max{o, Cs}, then we have max{||uil], ||usll, ||u3]|} < L for all 4 € J. This completes the proof

of Theorem . O
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