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Abstract

Let R be a commutative ring with identity and M an R-module. The Scalar-Product Graph of M
is defined as the graph Gr(M) with the vertex set M and two distinct vertices x and y are adjacent
if and only if there exist r or s belong to R such that x = ry or y = sx. In this paper , we discuss
connectivity and planarity of these graphs and computing diameter and girth of Ggr(M). Also we
show some of these graphs is weakly perfect.
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1. Introduction

The concept of the zero-divisor graph of a commutative ring, denoted by I'(R), was introduced by
Beck [[l], where he was mainly interested in coloring.I'( R) is graph with vertices nonzero zero divisors
of R and edges those pairs of distinct nonzero zero divisors {a, b} such that ab = 0. We consider
this investigation of coloring of the zero-divisor graph of a commutative ring was then continued by
Anderson and Naseer [2].

Let G be an undirected graph with the vertex set V(G). If G contains n vertices then it is said to
be an n-vertex graph and we write |V(G)| = n. Two graphs G and H are isomorphic if there exists
a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G
is a graph having all of its vertices and edges in G. The complete graph is a graph in which any two
distinct vertices are adjacent.

Throughout this paper all rings are commutative with non-zero identity and all modules unitary.
We associate a graph Gr(M) to an R-module M whose vertices are elements of M in these way that
two distinct vertices x and y are adjacent if and only if there exists r belong to R that z = ry or
y = rz. We investigate the relationship between the algebraic properties of an R-module M and the
properties of the associated graph Gg(M) namely Scalar-product graph of M.
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Let G = (V,E) be a graph. We say that G is connected if there is a path between any two
distinct vertices of G. For vertices x and y of G, we define d(x,y) to be the length of a shortest
path from x to y (d(z,z) = 0 and d(x,y) = oo if there is no such path). The diameter of G is
diam(G) = sup{d(z,y) : z,y € V(G)}. The girth of a graph G, denoted by gr(G), is the length of
the shortest cycle in GG. A graph with no cycle has infinite girth. For a vertex v € (G, neighbours of
v denotes N(v) is equal {u € V(G)\{v} : v is adjacent to u}. In a graph G, a set S C V(G) is an
independent set if the subgraph induced by S contains no edge. The independence number «(G) is
the maximum size of an independent set in G.

Afkhami and et al. in [3] introduced the cozero-divisor graph of a commutative ring R denoted by
[(R) as a graph with vertices W(R)* = W(R)\{0} where W (R) is the set of all non-unit elements
of R and two distinct vertices z and y are adjacent if and only if x ¢ Ry and y ¢ Rz where Rc is a
ideal generated by ¢ € R.

Let M be a R-module and Wr(M) = {x € M|Rm # M}. By R as R-module Wg(R) is set of
all non-units elements of R. In [4] authors investigate cozero-divisor graphs on R-module M which
vertices from Wr(M)* = Wr(M)\{0} and two distinct vertices m and n are adjacent if and only if
m ¢ Rn and n ¢ Rm, and they studied girth, independent number, clique number and planarity of
this graph.

We use T'(M) to denote the set of torsion elements of M; that is,

T(M)={m € M :rm =0 for some 0 # r € R}. If R is an integral domain, then T'(M) is a
submodule of M. If T(M) = 0, we say that M is torsion-free while if T(M) = M we say that M
is torsion. D. Anderson et al. in [5] showed when T'(M) is submodule of M and they showed if
T(M) # M then T'(M) is a union of prime sub-modules of M.

In section 2, we compute diameter and girth of Gr(M) and in section 3, we discuss planarity of

Gr(M).

2. Diameter and Girth of Gr(M)

Remark 2.1. Let M be an R-module and x € M, we denote set of vertices that is adjacent to x in
Gr(M) by T,(M)={m e M :rm =ax for some r € R}. The torsion element of M is To(M). The
T.(M) is set of neighbours of x or N(z). Note that if Gr(M) is a Scalar product graph of R-module
M, then x,y € M is adjacent if and only if x € T,(M) ory € T,(M).

Remark 2.2. Let M be a finite R-module and Gr(M) a scalar product graph of M. If M is torsion
then for every m € M, vertex m is adjacent to 0 and deg(0) = |[M| — 1. Also, diam(Gr(M)) < 2.
Also, If M is torsion-free then 0 is isolated vertewz.

Proposition 2.3. Let R be a division ring and M an R-module. If a is adjacent to b in Gr(M),
then N(a) = N(b).

Proof . Assume that a and b are two adjacent vertices of Gr(M). Then a € Rb or b € Ra. Hence
since R is a division ring, we have Ra = Rb. First suppose that x € N(a). Then € Ra or a € Rx
hence x € Rb or a € Rz, Therefore x € N(b). So N(a) C N(b). Next if x € N(b), then = € Rb or
b € Rx. Hence x € Ra or b € Rx therefore x € N(a) so N(b) C N(a). Thus N(a) = N(b). O

Example 2.4. o Let M be a free R-module, then one can see that M is torsion-free, thus 0 is
isolated vertex. Also, if V' is vector space over field K then V is torsion-free, therefore 0 is
isolated vertex.
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e Q is torsion-free Z-module. Therefore 0 is isolated verter.

e If R is a integral domain and Q) its field of fractions, then % is a torsion R-module. Therefore
dz’am(GR(%)) < 2.

e Consider a linear operator L acting on a finite-dimensional vector space V. If we view V as
an F[L]-module in the natural way, then, V is a torsion F[L]-module. Then T(V) =V as a
result by previous proposition we have deg(0) = |V| — 1 and diam(G gy (V)) < 2.

Remark 2.5. Let Gr(M) be a Scalar product graph of R-module M. If v,y € M then x is adjacent
toy if and only if < x >C<y > or<y>C< x> or Rx C Ry or Ry C Rx.

Lemma 2.6. Let M be an R-module and x,y € M. If < x >=< 1y >, then x is adjacent to y in
Ggr(M) and for all z € M, x is adjacent to z if and only if y is adjacent to z.

Proof . Suppose < z >=< y > then < x >C< y >. So x is adjacent to y. If z is adjacent to =,
then < z >C<x >or <x >C< z>. Hence < z >C<y >or <y >C< z>. So z is adjacent to y.
Similarly, if y is adjacent to z then z is adjacent to z. [

This concludes that any two vertices that generate the same submodules will have exactly the
same set of neighbours.

Corollary 2.7. Let M be an R-module and x,y € M. If cyclic submodules Rx, Ry are mazimal,
Then x is not adjacent to y in Gr(M).

Proof . Suppose z is adjacent to y in Gr(M). Without loss of generality suppose that Rz C Ry
which is contradiction by maximality of Rx. UJ

Theorem 2.8. Let M = M; x My x --- x M, where M; is a module 1 < ¢ < n. Let x =
(1, s 20),y = (Y1, -, Yn) € M, If z; is not adjacent to y; in Gr(M;) for some i € {1,...,n},
Then x is not adjacent to y in Gr(M).

Proof . Suppose z is adjacent to y in Gr(M). Then without loss of generality x € Ry, There exist
z € R such that zy = x or (2191, 222, - - -, Zn¥Yn) = (1,22 ..., 2,) and for all i € {1,...,n} we have
x; = z;y; and hence z; is adjacent to y; in Gr(M;). O

The converse of theorem 2.8 does not hold. Let M = Zg X Z1s, R = 7Z. In Gz(Z1s X Z16) vertex
(2,4) is not adjacent to vertex (4,2), but 2 is adjacent to 4 in G(Zs).

We know that any abelian group is a Z-module. If G is a Z-module and x,y € G then according
to definition of scalar product on G, x is adjacent to y if there exist n € Z which x = ny or y = nx.

Example 2.9. Let M = Zg be Z-module. Scalar product Gz(Zg) have shown in Fig 1.



78 M. Nouri Jouybari, Y. Talebi, S. Firouzian

(=1

(52l
[y

=

[

o
1

3

Fig 1. Scalar Product of Z-module Zg

Proposition 2.10. Let Z, be Z-module. If p,m are prime and positive integer number, then for
n=1,p,p™, Scalar product graph Gz(Z,) is complete.

Theorem 2.11. Let R =7 and M = 7Z, be a Z-module. Then the number of edges e of Gr(M) is
given by 2e =3, {2d — ¢(d) — 1}¢(d).

Proof . In the directed scalar product graph Gr(M ;, vertex a is adjacent to b if there exist r € R
such that b = ra. Therefore, for any vertex a € M, the out-degree of a is
{b € M : b€ Ra,b# a}| = |Ra|] — 1. Also, that the number of arcs in a directed graph is the sum

of out-degrees of all the vertices of the graph. Thus the number of arcs of Gr(M ) is Y wen |Ral = 1.
To counting number of edges in the undirected scalar product graph Gr(M), we have to count the
bi-directed arcs only once. The bi-directed arcs occur for some b € M, (b # a) such that, a € Rb and
be Ra. O

Proposition 2.12. Let M be an R-module and N submodule of M. Then Ggr(N) is an induced
subgraph of Gr(M).

Proof . As N C M, V(Gr(N)) = N C M = V(Ggr(M)). Also from the definition of the scalar
product graph, it follows that for any a,b € N, a and b are adjacent in Gg(NV) if and only if they
are adjacent in Gr(M). Thus Gr(N) is an induced subgraph of Gr(M). O

Lemma 2.13. Let f: My — My be a R-module homomorphism. We have:

1. If vertices x and y are adjacent in Gr(M;) then f(x) and f(y) are adjacent in Gr(Ms).
2. If Gr(My) is complete then Gg(f(M;)) is complete.

Proof .

1. Let = and y be adjacent in Gr(M;). By definition there exists r € R that z = ry or y = rx
then f(x) = f(ry) =rf(y) or f(y) = f(rax) = rf(x). Therefore f(zx) is adjacent f(y).
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2. Let y1,y2 € f(M;) be two arbitrary vertices in scalar product graph Gg(f(M;)). Then there
exist x1, 9 € My such that y; = f(z1) and yo = f(x2). Since the Gr(M;) is complete z; is
adjacent z5. From 1. y; is adjacent y,. Therefore scalar product graph Gg(f(M;)) is complete.

O

Theorem 2.14. Let M be a R-module. Then scalar product graph Gr(M) is complete if and only
if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof . Let M be a R-module and N; =< a >, Ny =< b > be two cyclic submodules of M that
a # b in M. Since scalar product graph Gr(M) is complete then a and b is adjacent. We have
<a>C<b>or<b>C<a>and N; C Ny or Ny C Ny. Conversely, Let M be R-module which
linearly ordered cyclic submodules by inclusion relation. If a # b is two vertices of Gr(M) then
<a>C<b>or <b>C<a>. Therefore we have a and b are adjacent in Gr(M). Hence Gr(M)
is complete. [

Corollary 2.15. Let R be a ring and M a finite R-module. If Gr(M) is complete then M is a cyclic
R-module.

Recall that an R-module M is called uniserial if its submodules are linearly ordered by inclusion.
Evidently, a valuation ring R is uniserial as a module over itself, and its ring of quotients is likewise
a uniserial R-module. It is obvious that submodule and quotients of uniserial modules are again
uniserial. As an example, we see that Z, is a uniserial Z-module. A right R-module is called a serial
module if it is a direct sum of uniserial modules. Note that every uniserial module is serial but serial
modules need not be uniserial.

Lemma 2.16. If M is a R-module, then M is uniserial if and only if the cyclic submodules of M
are linearly ordered.

Proof . According to the definition one side is obvious. Conversely, Let K, L be submodules of M
with K ¢ Land L ¢ K. Choosing z € K\ L,y € L\ K we have, Rr C Ry or Ry C Rz. In the
first case we have x € Ry C L, in the second case y € Rx C K. Both are contradiction. [J

Corollary 2.17. If M is an R-module, then the scalar product graph Gr(M) is complete if and only
if M is uniserial.

By this corollary, it’s obvious that scalar product graph of uniserial module is complete . So we give
some examples of uniserial module and their complete scalar product graph.

Example 2.18. e For any prime number p, any cyclic p-group or the quasi-cyclic p-group C(p™)
is a uniserial Z-module. So Gz(C(p™)) is complete graph.

e Bvery Simple module is uniserial. So Z, is a uniserial Z-module and its scalar product graph
is complete.

o FEvery function having finite length is uniserial. So F|x,y| = {23, 2%y, y*} is uniserial since its
length is 3.

o FEvery semisimple module is serial.

— 1z ~ pZ —~ p’Z P2~ prL : SO :
o Ly = iz D g D iz D D g D gz = 0, here Zpn is uniserial. So its scalar product

graph is complete.
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e Also Zy, the Z-injective hull of p%, p a prime number, is uniserial. So we have , Zy~ is
artinian and uniserial, but not noetherian (not finitely generated).

Corollary 2.19. Let M be an R-module, Then Gr(M) is complete, if each of the following condition
holds:

(a) M is uniserial;
(b) the cyclic submodules of M are linearly ordered;

(c) any submodule of N has at most one maximal submodule;

(d) for any finitely generated submodule 0 # K C N, M+m is simple;

(e) for every factor module L of N, SocL is simple or zero.

Proof . According to previous corollary, if (a) is true, then Gr(M) is complete. Equivalency of
next expression to (a) will be discussed:
(a) = (b) is obvious.
(b) = (a) Let K, L be submodules of N with K ¢ L and L ¢ K. Choosingz € K\ L,y € L\ K we
have, by (b), Rx C Ry or Ry C Rx. In the first case we conclude x € Ry C L , in the second case
y € Rx C K. Both are contradictions.
(a) = (c) and (a) = (b) = (e) are obvious.
(d) = (b) Let us assume that we can find two cyclic submodules K, L C N with K ¢ Land L ¢ K.
Then: (K+L)/(KNL)~K/(KNL)@PL/(KNL),
and the factor of (K + L)/(K N L) by its radical contains at least two simple summands. Therefore
the factor of K + L by its radical also contains at least two simple summands. This contradicts (d).
(e) = (d) We show that every non-zero finitely generated submodule KX C N contains only one max-
imal submodule: If V|, V, C K are different maximal submodules, then K/(ViNV,) ~ K/Vi @ K/ V3
is contained in the socle of N/(V; NV;). This is a contradiction to (e). O

Observation. According to definition of cozero-divisor graph over modules we have the follow-
ings:
(1) If M is an R-module, the subgraph of Gg(M) which vertices are Wr(M)* is complement of
cozero-divisors graph of M.
(2) We denote Gr(M) = T'y VI'y where I'y is a complete graph with | Wr(M)* | vertices and I'y is
complement of cozero-divisor graph of M.

3. Planarity

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at
their ends. A subdivision of a graph G is a graph resulting from the subdivision of edges in G.
The subdivision of some edge e with endpoints {u, v} yields a graph containing one new vertex w,
and with an edge set replacing e by two new edges, {u,w} and {w,v}. Kuratowski’s theorem is a
forbidden graph characterization of planar graphs given by Kazimierz Kuratowski in 1930.

Theorem 3.1. If G is a finite graph, then G is is planar if and only if it contains no subdivision of
K5 or Ks3, where K,, is a complete graph with n vertices and K,,,, is a complete bipartite graph, for
positive integers m,n.
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In this section we discuss planarity of scalar product graph of a module.

Proposition 3.2. Let M a finite R-module. If | Wr(M)* |> 5, then Gr(M) is not planar.

Proof . If | Wgr(M)* |> 5 then subgraph of Gr(M) which vertices are Wgx(M)* is complete. By
Kuratowski’s Theorem, we have Gr(M) is not planar. [J

Proposition 3.3. Let M be a Noetherian R-module. If Gr(M) has an clique, then M has a cyclic
submodule which contains all vertices of the clique.

Proof . Let K be an clique in Gr(M) and x; be a vertex of K. Assume to the contrary that
there is no cyclic submodule in M that contains all vertices of K. Since the cyclic submodule z; R
doesn’t contain all vertices of K, there exists a vertex x5 in K such that x5 ¢ z1R. As x; and x9
are in one clique and are adjacent and =5 ¢ 1R, we have x; € x9R. Therefore, xR ; roR. Again
since the cyclic submodule x5 R doesn’t contain all vertices of K, there exists a vertex z3 in K such
that z3 ¢ xoR. Also, x5 and x3 are adjacent. This implies that xs € 3R and so xzoR ; r3R. By
continuing this method, we find an increasing sequence of cyclic submodule of M which doesn’t stop
and this is a contradiction. [

Lemma 3.4. Let M be a R-module. Assume x1 —xy — ... — x, is a cycle in Gr(M) such that the
subgraph induced by vertices x1, s, ..., x, contains no cycle with smaller length. If Rx; C Rx, then
we have Rxop_1 C Rxop and Rxopi1 C Rxoy fork=1,....n

Proof . By our assumption, x5 is not adjacent to x, thus we have Rxy ¢ Rz, and Rz, € Rx,.
Since z7 is adjacent to xo hence Rx; C Rxy or Rxo C Rxy. If Rrs C Rxy, by assumption since
Rxy C Rz, then Rxys C Rx, which is contradiction. Therefore Rx; C Rxs.

Also, x5 is not adjacent to x,, thus we have Rxj Q Rz, and Rz, gZ Rxs. Since x5 is adjacent to
x3 hence Rry C Rxz or Rrs C Rxy. If Rxo C Raxs, since Rxy C Rxo then Rx; C Rxs which is
contradiction. Therefore Rxs C Rxs.

Also, x4 is not adjacent to x,, thus we have Rxy ,i_ Rz, and Rz, Q Rzy4. Since x3 is adjacent to
x4 hence Rrs C Rxy or Rxy C Rxs. If Rry C Raxs, since Rxs C Rxy then Rxy C Rxo which is
contradiction. Therefore Rxs C Rxy.

by similar method we have:Rx; C Rxy, Rrs C Rxo, Rrs C Rxy, Rxs C Rxy, Rxs C Rxg, Ry C
Rxg,... which complete the proof. [J

4. Weakly Perfect

For a graph G, a k-colouring of the vertices of GG is an assignment of k colors to the vertices of
GG in such a way that no two adjacent vertices receive the same color. The chromatic number of
G, denoted by x(G), is the smallest number k such that G admits a k-coloring. A clique of G is a
complete sub-graph of G and the number of vertices in a largest clique of G, denoted by w(G), is
called the clique number of G. It is easy to see that x(G) > w(G), because every vertex of a clique
should get a different color. A graph G is called weakly perfect if x(G) = w(G). If M = Z, be an
finite Z-module, then Gz (M) is weakly perfect.

Example 4.1. Chromatic number and clique number of Ggz(Zy,) for some n is listed in below (p is
prime number):
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n=1 1 1
n=p p p
n=p" p" p"
n=2p 2p—1 2p—1
n=3p 3p—2 3p—2

Table 1: Clique number, Chromatic of Gz(Z,)
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