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Abstract

Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted
modular inequality with variable exponent p(.) for the Hardy operator restricted to non-increasing
function which is

/000% /O:v f)dt)P = (z)dr < C/OOO Fl2)P P u(z)de,

is studied. We show that the exponent p(.) for which these modular inequalities hold must have
constant oscillation. Also we study the boundedness of integral operator T'f(z) = [ K(z,y)f(x)dy
on LP¢) when the variable exponent p(.) satisfies some uniform continuity condition that is named
[B-controller condition and so multiple interesting results which can be seen as a generalization of the
same classical results in the constant exponent case, derived.
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1. Introduction

In any literature on variable exponent functional inequalities, there is a noticeable attention to the
boundedness of Hardy type inequalities.
In 2001, Pick and Ruzicka, proved that the uniform continuity condition on p which is

C 1
— < —qy| < =; 1.1
pe) ~ o) € = vl < (11)
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is quite necessary for Hardy-Littelwood maximal operator (H.L.M.O) to be bounded on LP®); [§].
So this condition appears to be natural in the study of variable exponent LP() spaces. The main
property to consider the condition is that the uniform continuity condition on p is equivalent
by |B[Ps=P5 < C for all open ball B, some fixed constant C' > 0, ph = esssup,cp p(z) and
pp = essinf,cp p(z).

In 2003, Cruze-uribe, Fiorenza and Neugebauer, obtained that uniform continuity condition
and moreover o

In(e + |=[)’
is sufficient for the boundedness of H.L.M.O on LPM) (), where € is any open subset of R”, and is
not necessarily bounded; [2].

By overcoming to the boundedness of H.L.M.O, the boundedness of varied operators such as
potential type and fractional operators in the space LP() is now, one of the interesting topics in
related to this generalized type of Lebesgue spaces, for example see [4, [0l [7, O]. In this paper firstly
we study a weighted modular inequalities with variable exponent for the Hardy operator restricted
to non-increasing function which is

/OO 1/ f)dt)P@y(z)de < O/Oo f(@)PDu(x)ds (1.3)

We show that the exponent p(.) for which these modular inequalities hold must have constant
oscillation, i.c., 0p)u(0) = DPhyneptu — PBynspra Should be constant where B; = (0,6). This result
generalized the main result of Boza and Soria in [1]. After wards by introducing a more generalization
of uniform continuity on p to 0 < p(z) — p(y) < «a(x) which a has [-controller condition that
introduced in the following we can derive the corresponding norm inequality of withu =v=1
which p has no necessarily constant oscillation. Also we generalize the classic general theorems about
the boundedness of the integral operator T'f(z) = [ K(z,y)f(z)dy on L") under some appropriate
conditions on p(.) and K(.,.) which theorem |3 - to [3.6] appertain to this. Finally we conclude two
special weighted integral inequalities

P A P(v) @)
| v rwara <o [ apoa

where —-1 < “L < (0 and
p 1-p
o] Y " [e)
/(/y%%*%ww@mw@@sc/ f (@) da
0 0 Y
where 6 = ”“ and A > = — and C' is independent on f in both of them.

Ip(z) — p(y)| < r,y €, |yl > ||, (1.2)

2. Preliminaries

We refer to [3] for the basic information about variable exponent spaces. But we mention briefly,
some of the main properties of variable exponent Lebesgue spaces that are used in the following. Let
Q be an open subset of RY with N > 2, p € L>=(Q2) and p~ > 1. The variable exponent Lebesgue
space LP0)(Q) is defined by

LPOQ) ={u: u: Q—R is measumble,/ luP@de < ool
)

which is considered by the norm |u|p) ) = inf {o > 0: [, [4[P@dz < 1}
We summarize the main properties of LP()(2) by the following items:
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(i) The space (LP®)(), || (q)) is a separable, uniform convex Banach space, and its conjugate
space is L) (Q), where $ + zﬁ = 1. For any u € LP®(Q) and v € L@ (Q), we have
1 1
| [ wvdz| < (— + —)|ulpre @) tlLae @)

Q p q

which we named generalized Holder inequality.

(ii) If Q is bounded, py,p2 € C(Q) and 1 < py(x) < po(z) for any = € Q, then there is a continuous
embedding LP2(®)(Q)) — L@ ().

(iii)
m1n<|u|Lp() ‘U|Lp<> )> < plu) < max(|u!Lp() ‘U|Lp<>( ))'
which p(u) = [, [ul? @) dx and p* := esssup,.q p(7).

Now we state some new definition which is named (-controller condition.

Definition 2.1. Let « is a measurable function on Q and § € Lp( )(Q) with B+ < 1. We say that
o admits the B-controller condition on (£2;p(.)) provided B(z)~*®) € L>(Q).

For example = admits the - controller condition on ((2, +00);2).

3. The main results

Let p: (0,00) — (0,00) such that 0 < p~ < p* < oo and a positive weight function u, moreover let
Bs = (0,9) and ¢p)(0) = pgmsptu — Ppynsprur Which is called, local oscillation of p; then we have
the following theorem.

Theorem 3.1. [I]. If there exists a positive constant C' such that the inequality

/O m(% /O O () < © /0 @) () (3.1)

for any positive and non-increasing function f to be held then p has necessarily constant local
oscillation.

By the same method similar to [I] we can generalize the above result, as following theorem which
two weighted functions are involved.

Theorem 3.2. Let u,v be two positive weight functions and p : (0,00) — (0,00) such that 0 <
p~ < pt < oo. If there exists a positive constant C' such that

/0 C /0 " F@ (@) < C /0 " F@PPu(a)d, (3.2)

then for any r,s > 0 we have

|y <0 [t + eua)ds

Sp(x)

and so p has constant local oscillation.
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Proof . For r,s > o let f, () = x(0,(2). Then (3.2) is equivalent by

T 1

T “+o00 r T
/0(—)p(m)v(x)dx—|—/ (—)p(x)v(x)dath/o (—)p(””)u(x)dm. (3.3)

S S S

If p has no constant local oscillation then there exists §; > 0 such that for
a = esssup{p(z);z € (0,01) N (sptu U sptv)}

and
i, = esssup{p(z);x € (0,+00) N (sptu U sptv)}

we have a < p, or there exists d; > 0 such that for
B = essinf{p(z);z € (0,2) N (sptu U sptv)}

and
Doy = essinf{p(z);z € (0,+00) N (sptu U sptv)}

we have 8 > p, .
When a < p;, then for ¢ > 0, {z > d1;2 € sptuU sptv, p(x) > a + e} > 0. Now by letting
r=0; and s < min{1,4d;} in (3.3) we obtain

o1

O yarse / o(z)dz < C(L) / (u(z) + 27D (2))dz
x>01,p(z)>a+e S 0

S

(

which by tending s — 0 get to contradiction. By similar arguments when 3 > p,, for € > 0 we have
{z > 09;x € sptu U sptv, p(x) < f —e}| > 0. Now by letting r = 5 and s > max{1,d>} in (3.3) we
deduce

@5_6 v(x)dx 01’3 §2ux 2"@ o (2))dx
&) /ngz,,pwg (@)de < C)* [ (ua) + (o)

which by tending s — oo get to contradiction. [

When p > 1 is a constant value, the modular inequality [, f(z)?dz < C [, g(x)’dx and the norm
inequality || f|lzr) < C|lgllr() are equivalent for any domain €, whereas these are not true for
general function p(.) > 1. When p : Q — [1,00) is not constant function, the modular inequality
shows the corresponding norm inequality but the inverse is not true in general case. So from this
point of view, we can consider the next theorem that present the norm inequality corresponding to
for some p with not necessarily constant local oscillation.

Theorem 3.3. Suppose that p : (0, +00) — [1,00), « is measurable function with (-controller con-
dition on ((0,+00);p(.)) where

ply) —p (B:) <aly);  y<(0,z], (3.4)
and
aly) < |1§y\’ 0<y<l: (3.5)

where c is a positive constant and p~(B,) = pp. = essinf{p(y);y € B. = (0,2)}. Then the Hardy
operator Sf(z) = L [ f(y)dy is bounded in LPV)(0,+00), i.e.; there exist C > 0 such that

||Sf||LP(-)(O,oo) < C“fHLP(')(O,oo); f S Lp()(oa +OO)
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Proof . Fix f € LPV(0,00) with [|f]| = || f[lr1(0,00) = 1- Let p(t) := % then for any = € (0, +00),
p~(B;) > 1. By applying Jensen inequality we obtain

I = / 1/ f(y)dy)? x)dx</ 1/ fly ﬁ Bz)dypwz)dx
1 p(x)
= [T+ [ Oy PayFE
o <L JBf -
<1

5~ —ple) >~ 1 __ p(x)
< C’[/ (— f(y)? (B””)dy)ﬁ_(Ba:)dl‘—f-/ (- f(y)? Be)dy) 752 dz]
o <L JBF 0o T Jp
= L+ 1
where B := B, N{y; f(y) > B(y)} and B, := B, N{y; f(y) < B(y)}. Since ||f|| = 1, when z < 1,

by applying Holder inequality we obtain

1

/jf( Dy < 27 /f (5P dy)= < 1

i/oxf(y)ﬁ(y /f y) < 1.
p(x)

o0 1 _ p(z) > 1 _
I, < / fly 5( ) (Bz)*p(y)dy)ﬁfwz)dx < C/ (= f(y)p(y)dy)ﬁ’ww)dx
B o T Jpf

and for x > 1 we have

Hence

p(z)
_ / f p(y)dy)p (Bz)da:_{_/ f( )p(y dy) 7 (Bz) dz

:C[/O(%pl/f dypdx+/ /f Ddy)? dax;

By using the growth conditions on p, we observe

GH#E < (dyew-ren < ynE < o

i T X

So I < C [°(L [ f(y)P®dy)P” dz. On the other hand,

1 5~ (B p(x) o0
Iy S/ (= [ Bly)? Pdy)r s de < C/ B(x)" @ dz.
o TJB; 0

I<C’/Ool/f dypdx+0/ Bla

which is bounded by using the boundedness of Hardy operator in L? (0,00) and considering /5 €
LP0)(0,00). Hence ||Sf|| < C for any f € LP®)(0,00) with ||f|| = 1. Now suppose f € LP¢)(0, o)
with || f|| # 1 then define g = ”f” so g € LP)(0,00) and ||g|| = 1. Hence by the first part of the proof
we have [[SF[| = [[[f]ISgll = [l/[ll[Sgll < ClIf]. O

Thus

When p is constant , and K is a measurable function on ©; xQy C RYXRY, with [, |K(z,y)|dz <
C for a.e y € Q and fQ2 |K(z,y)|dy < C for a.e x € €; then the integral operator T'f(x) =
[ K(x,y)f(y)dy is converge absolutely for a.e x € Qy and ||Tf|| o)) < C|fllirs); [B]. Now we
present similar result for non constant p.
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Theorem 3.4. Let 1, be two measurable subsets of RN . p: RY — [1,00) and « is a measurable
function with B- controller condition on (Qq;p(.)) where

0 < p(x) —ply) < a(z)
for any x € Q1, y € Q. K s a measurable function on 2y X s and there exist Cy > 0 such that
[1K(x,y)|dy < Cy for a.e. x € Qy and [ |K(z,y)|dz < Cy for a.e. y € Qo. If f € LPU(Qy), the
integral operator
Tfy)= [ K(z,y)f(zx)dz
951
converges absolutely for a.e. y € Qo and ||T f|| o0, < Cllf|l1p0) 0

Proof . By applying Holder inequality for fixed y € {25 we have,
(v)

= [ iR sl < [ 1R F Ry
Q> JO Q2

Ql Ql

Let Qf := Oy N {z; f(z) > B(x)} and Q7 := QN {z; f(z) < B(z)}. So

1< [ ([ K@l - / / / (1K (2, 9) f (@) dw)dy = I; + I

Qo 951
Thus
— o Jot 1K () @) | (@) PO @y < C fos |@)Pfy, K (2, )]y}
gOfl\f 7)) da.
And
L[ / |dudy < C / B[ 1K iy <
Hence [, (fo [K (@, y)f(@)ldz)@dy < C [, | " dg. O

In the case p is a constant value and K is a Lebesgue measurable function on (0,00) x (0,00),
such that K(Az,\y) = A'K(2,y), for all A > 0; Tf(z) = [° K f(y)dy is bounded operator

on LP(0,00) provided that [~ K(z,y)z~ vdr < 00; [5] In the followmg theorem by additional
assumptions we present a counterpart result in variable exponent case.

Theorem 3.5. Let K be a measurable function on (0,00) x (0, 00) such that KAz, \y) = A" K (z,y)
for all X > 0 and for any y > 0, K(.,y) € L7 (0,00) (q is conjugate exponent of p).

Suppose {w;}, is a finite family of measurable sets which is a finite cover for [0,00), i.e.;
[0,00) C U w;, p: R — [1,00) is a measurable function such that

p(y) —pi < forall yew;, 1<i<mn; (3.6)

<« °
~ In(l14ry)

where p; = innywZ p(y) cmd Ty = sup{m K(z,y) <1} < oo.
Define Tf(y) = [;° K (z)dx, then T is bounded operator from LPY)(0,00) NI, LP(0, 00) in
to LP1)(0, 00) pmmded that

o _1 _1
/ K1) o (1) + 7 yam0 (1)) < oc.
0
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Proof . It is enough to prove the boundedness of modular operator ps()(e,00) (1 (-))-

PLr()(0,00) Tf fO fO )|dl’)

< Z/wk(/ooo ’K(:E,y)f(x)]dw)p(y)fpﬁpidy_ (3.7)

i=1

Let us to show the uniform estimate below,
L, = (/ |K (z,y) f(z)|dz)?@ P < C; for any y € w;, 1 <i <n. (3.8)
0

We have,

o0

/0 K (z,y)f(x)|dz < CIK(y)lla) 1 flln) < C(/O |K (2, )| da)’
<Clry+IIEC Y%, < Clry +1)°
where % <fg< q%. Thus
ch
L, < C(T’y + 1)9(19(11)_171') < C’(ry + 1)71n(1+ry) <C.

Using the estimate (3.8]) in (3.7) we obtain

n

P00 (TS) £ O3 / / ) ()| dz) dy.

For any 4, p; is constant, so we may apply the Minkowski inequality for integrals after an appropriate
change of variable. Indeed,

J :_ i= 1 w; fO )|dx>pbdy - z 1 f fO ty)ldt)pldy
n o . . L . n oo =1 . ES .
< (o (U, K@ )P f(ty)Pedy) redt)P = 5700 (fy K (& D7 ([, f@)Pda)rdt)P
< (Jo (KD 7 X0 ) + 17 X0 (0))d) (0 [o7 fx)Pide) < C
which p~ <0 <pt. O
Theorem 3.6. Let K be a measurable function on [0,00) X [0, 00) which K(y"z,y) = y"K(z,1) for
fized p > 1, v > —1. Suppose that for any x,y which 0 < x < y; 0 < p(x) — p(y) < a(z) is held

where « is a measurable function with - controller on (]0,00);p(.)).
Consider the integral operator
/ | K (x,y) f(z)|dx.

Then Tf is defined a.e. and T is bounded operator in LP1)(0,00) provided that

/OO((ZEK(Z, D) + (2K (2, 1)

z

)dz < 0. (3.9)



36 Saiedinezhad

Proof . By applying Jensen inequality we have

/ / |K(x,y)f |da:)
<
/ / YK (z,y) f (x)|dx)" dy</ / YK (z,y) f ()Y dady.

Let 0 := [0,y] N {z; f(z) > B(z)} and Q := [0,y] N {=; f(x) < B(x)}. So

Ool
I —/ / / Wy K (z,y) f ()W dady =: I + .
QF "

for the first equality we have,
> 1
n<c [ o KPPy
o YJaof

Use the change of variable x := y*z thus

L<CfT fo YK (g2, y) P | f(yrz) PO Dyt dzdy
< Cfo fo o V+1K Z 1)|p(y)|f(yuz)|p v"z) Yyt 1dydz

<cofx <;>”T K (2, )PV D| f() PO Latde.

Since ”+1 >0and t < 277 the last inequality leads to

< C/OOO((zl—uK(Z,l)) +(2n HK dz/ FOPOdr < C/OOO FPOdt

z

For the second integral, I, we have

L <[5y Jo, WE (@ y)f()P@dady < [ fo. VK (z,y)[P@]5() Y dedy

SCOJ5™ 5 Jop Iy K (G5, DIV B (@) P9 dady

Now, by replacement y% =: z, change the order of integral and so let y*z =t we have ;

nee[ [ S IG R DPDIS0P0 ded
0 0

Thus by hypothesis on £ and (3.9)), and the same discussion as in the first integral we obtained the
desired result; I, < co. [

Remark 3.7. If K(z,1) <1, it suffice to take

(P 4 P K (2, 1)
/ S - DEE D" 0 e (3.10)
0

instead of (3.9) in Theorem [3.6]
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Corollary 3.8. Let p as in Theorem .6 and consider the integral operator

X 1
7 S

Tf(y)z/oyy”(

for fixed p and v which —p% < %ﬁ < 0. Then T is bounded operator on LP1)[0, 00), i.c.;

| v raanyay < c [ g

for some positive constant C'.

1

Proof . let K(x,y) = y”(mfu)p% so K(y*z,y) = y*K(z,1) which K(z,1) = (

. By Remark
it is suffice to show that (3.10)) is held.

)’

oo (P 42 Pk () o (P g
fo ( 2 ——)dz = fo P Ydz =: Iy, + Ii.
Where p™ Tf; =:m and p‘% : k hence —1 < m, k < 0. By calculation we deduce

0o Lm 1 00N\ ™M 00 yz—1-m 00 ,m
L= [° 2ode = (fy + [ Ende = [P 52 de + [ 2ode = T + e

Since —1 <m < 0so —1+ n_+1 < m for some integer n > 2 and hence

J, = 2 d<f "“ :(n+1)f1°orn1+1<g—j}§3.

Note that the last equality deduced from the change of variable z = "+
The similar argument can be done for J_;_,, and so for I;. Thus we get the desired result. [

Corollary 3.9. By assuming the condition on p as in Theorem [3.6], there exist C > 0 such that

O E O ) o P W) RTRYCEn
e FladapWiy < ¢ [ fopea

vl ognd X > p—l_ 1S a positive constant.

where 0 = :
1

Proof . By considering K(z,y) := y”(y%))‘*oe_wi“, it is obvious that the homogeneity property of
K is satisfied. Moreover

p+9K
I:/ z / / )(2P A e Zdz)—ll—i—f
0

Since A > =t L < fo * < oo and A > 0 by Limiting comparison test with f1 Zl dz we obtain
Iy < 0. So I is finite and hence7 the same result is hold for the second part of (3 . Now the result
follows from Theorem [3.6. [
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