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Abstract

Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted
modular inequality with variable exponent p(.) for the Hardy operator restricted to non-increasing
function which is ∫ ∞

0

(
1

x

∫ x

0

f(t)dt)p(x)v(x)dx ≤ C

∫ ∞
0

f(x)p(x)u(x)dx,

is studied. We show that the exponent p(.) for which these modular inequalities hold must have
constant oscillation. Also we study the boundedness of integral operator Tf(x) =

∫
K(x, y)f(x)dy

on Lp(.) when the variable exponent p(.) satisfies some uniform continuity condition that is named
β-controller condition and so multiple interesting results which can be seen as a generalization of the
same classical results in the constant exponent case, derived.
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1. Introduction

In any literature on variable exponent functional inequalities, there is a noticeable attention to the
boundedness of Hardy type inequalities.

In 2001, Pick and Ruzicka, proved that the uniform continuity condition on p which is

|p(x)− p(y)| ≤ C

− ln |x− y|
, |x− y| ≤ 1

2
; (1.1)
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is quite necessary for Hardy-Littelwood maximal operator (H.L.M.O) to be bounded on Lp(.); [8].
So this condition appears to be natural in the study of variable exponent Lp(.) spaces. The main
property to consider the condition (1.1) is that the uniform continuity condition on p is equivalent

by |B|p−B−p+B ≤ C for all open ball B, some fixed constant C > 0, p+
B = ess supx∈B p(x) and

p−B = ess infx∈B p(x).
In 2003, Cruze-uribe, Fiorenza and Neugebauer, obtained that uniform continuity condition (1.1)

and moreover

|p(x)− p(y)| ≤ C

ln(e+ |x|)
; x, y ∈ Ω, |y| ≥ |x|, (1.2)

is sufficient for the boundedness of H.L.M.O on Lp(.)(Ω), where Ω is any open subset of Rn, and is
not necessarily bounded; [2].

By overcoming to the boundedness of H.L.M.O, the boundedness of varied operators such as
potential type and fractional operators in the space Lp(.) is now, one of the interesting topics in
related to this generalized type of Lebesgue spaces, for example see [4, 6, 7, 9]. In this paper firstly
we study a weighted modular inequalities with variable exponent for the Hardy operator restricted
to non-increasing function which is∫ ∞

0

(
1

x

∫ x

0

f(t)dt)p(x)v(x)dx ≤ C

∫ ∞
0

f(x)p(x)u(x)dx (1.3)

We show that the exponent p(.) for which these modular inequalities hold must have constant
oscillation, i.e., ϕp(.),u(δ) = p+

Bδ∩sptu − p−Bδ∩sptu should be constant where Bδ = (0, δ). This result
generalized the main result of Boza and Soria in [1]. After wards by introducing a more generalization
of uniform continuity on p to 0 < p(x) − p(y) < α(x) which α has β-controller condition that
introduced in the following we can derive the corresponding norm inequality of (1.3) with u = v = 1
which p has no necessarily constant oscillation. Also we generalize the classic general theorems about
the boundedness of the integral operator Tf(x) =

∫
K(x, y)f(x)dy on Lp(.) under some appropriate

conditions on p(.) and K(., .) which theorem 3.4 to 3.6 appertain to this. Finally we conclude two
special weighted integral inequalities∫ ∞

0

(

∫ y

0

yν(
x

x+ yµ
)

1
p− f(x)dx)p(y)dy ≤ C

∫ ∞
0

f(x)p(x)dx,

where − 1
p+
< ν+1

1−µ < 0 and∫ ∞
0

(

∫ y

0

yν(
x

yµ
)λ−θe−

x
λyµ f(x)dx)p(y)dy ≤ C

∫ ∞
0

f(x)p(x)dx;

where θ = ν+1
1−µ and λ > 1

p−
and C is independent on f in both of them.

2. Preliminaries

We refer to [3] for the basic information about variable exponent spaces. But we mention briefly,
some of the main properties of variable exponent Lebesgue spaces that are used in the following. Let
Ω be an open subset of RN with N ≥ 2, p ∈ L∞(Ω) and p− ≥ 1. The variable exponent Lebesgue
space Lp(.)(Ω) is defined by

Lp(.)(Ω) = {u : u : Ω −→ R is measurable,

∫
Ω

|u|p(x)dx <∞};

which is considered by the norm |u|Lp(.)(Ω) = inf {σ > 0 :
∫

Ω
|u
σ
|p(x)dx ≤ 1}.

We summarize the main properties of Lp(.)(Ω) by the following items:
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(i) The space (Lp(x)(Ω), |.|Lp(x)(Ω)) is a separable, uniform convex Banach space, and its conjugate

space is Lq(x)(Ω), where 1
q(x)

+ 1
p(x)

= 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

|
∫

Ω

uvdx| ≤ (
1

p−
+

1

q−
)|u|Lp(x)(Ω)|u|Lq(x)(Ω);

which we named generalized Holder inequality.

(ii) If Ω is bounded, p1, p2 ∈ C(Ω) and 1 < p1(x) ≤ p2(x) for any x ∈ Ω, then there is a continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

(iii)

min(|u|p
−

Lp(.)(Ω)
, |u|p

+

Lp(.)(Ω)
) ≤ ρ(u) ≤ max(|u|p

−

Lp(.)(Ω)
, |u|p

+

Lp(.)(Ω)
);

which ρ(u) =
∫

Ω
|u|p(x)dx and p+ := ess supx∈Ω p(x).

Now we state some new definition which is named β-controller condition.

Definition 2.1. Let α is a measurable function on Ω and β ∈ Lp(.)(Ω) with β+ < 1. We say that
α admits the β-controller condition on (Ω; p(.)) provided β(x)−α(x) ∈ L∞(Ω).

For example 1
lnx

admits the 1
x
- controller condition on ((3

2
,+∞); 2).

3. The main results

Let p : (0,∞)→ (0,∞) such that 0 < p− ≤ p+ <∞ and a positive weight function u, moreover let
Bδ = (0, δ) and ϕp(.),u(δ) = p+

Bδ∩sptu − p
−
Bδ∩sptu, which is called, local oscillation of p; then we have

the following theorem.

Theorem 3.1. [1]. If there exists a positive constant C such that the inequality∫ ∞
0

(
1

x

∫ x

0

f(t)dt)p(x)u(x)dx ≤ C

∫ ∞
0

f(x)p(x)u(x)dx (3.1)

for any positive and non-increasing function f to be held then p has necessarily constant local
oscillation.

By the same method similar to [1] we can generalize the above result, as following theorem which
two weighted functions are involved.

Theorem 3.2. Let u, v be two positive weight functions and p : (0,∞) −→ (0,∞) such that 0 <
p− ≤ p+ <∞. If there exists a positive constant C such that∫ ∞

0

(
1

x

∫ x

0

f(t)dt)p(x)v(x)dx ≤ C

∫ ∞
0

f(x)p(x)u(x)dx, (3.2)

then for any r, s > 0 we have∫ ∞
r

(
r

s
)p(x)v(x)dx ≤ C

∫ r

0

(
1

sp(x)
)(u(x) + xp(x)v(x))dx,

and so p has constant local oscillation.
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Proof . For r, s > o let fr,s(x) = 1
s
χ(0,r)(x). Then (3.2) is equivalent by∫ r

0

(
x

s
)p(x)v(x)dx+

∫ +∞

r

(
r

s
)p(x)v(x)dx ≤ C

∫ r

0

(
1

s
)p(x)u(x)dx. (3.3)

If p has no constant local oscillation then there exists δ1 > 0 such that for

α = esssup{p(x);x ∈ (0, δ1) ∩ (sptu ∪ sptv)}

and
p+
u,v = esssup{p(x);x ∈ (0,+∞) ∩ (sptu ∪ sptv)}

we have α < p+
u,v or there exists δ2 > 0 such that for

β = essinf{p(x);x ∈ (0, δ2) ∩ (sptu ∪ sptv)}

and
p−u,v = essinf{p(x);x ∈ (0,+∞) ∩ (sptu ∪ sptv)}

we have β > p−u,v.
When α < p+

u,v then for ε > 0, |{x ≥ δ1;x ∈ sptu ∪ sptv, p(x) ≥ α + ε}| > 0. Now by letting
r = δ1 and s < min{1, δ1} in (3.3) we obtain

(
δ1

s
)α+ε

∫
x≥δ1,p(x)>α+ε

v(x)dx ≤ C(
1

s
)α

∫ δ1

0

(u(x) + xp(x)v(x))dx

which by tending s→ 0 get to contradiction. By similar arguments when β > p−u,v for ε > 0 we have
|{x ≥ δ2;x ∈ sptu ∪ sptv, p(x) ≤ β − ε}| > 0. Now by letting r = δ2 and s > max{1, δ2} in (3.3) we
deduce

(
δ2

s
)β−ε

∫
x≥δ2,p(x)<β−ε

v(x)dx ≤ C(
1

s
)β

∫ δ2

0

(u(x) + xp(x)v(x))dx

which by tending s→∞ get to contradiction. �

When p > 1 is a constant value, the modular inequality
∫

Ω
f(x)pdx ≤ C

∫
Ω
g(x)pdx and the norm

inequality ‖f‖Lp(Ω) ≤ C‖g‖Lp(Ω) are equivalent for any domain Ω, whereas these are not true for
general function p(.) > 1. When p : Ω → [1,∞) is not constant function, the modular inequality
shows the corresponding norm inequality but the inverse is not true in general case. So from this
point of view, we can consider the next theorem that present the norm inequality corresponding to
(3.1) for some p with not necessarily constant local oscillation.

Theorem 3.3. Suppose that p : (0,+∞) → [1,∞), α is measurable function with β-controller con-
dition on ((0,+∞); p(.)) where

p(y)− p−(Bx) < α(y); y ≤ (0, x], (3.4)

and
α(y) ≤ c

| ln y|
, 0 < y < 1; (3.5)

where c is a positive constant and p−(Bx) = p−Bx = essinf{p(y); y ∈ Bx = (0, x)}. Then the Hardy

operator Sf(x) = 1
x

∫ x
0
f(y)dy is bounded in Lp(.)(0,+∞), i.e.; there exist C > 0 such that

‖Sf‖Lp(.)(0,∞) ≤ C‖f‖Lp(.)(0,∞); f ∈ Lp(.)(0,+∞).
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Proof . Fix f ∈ Lp(.)(0,∞) with ‖f‖ = ‖f‖Lp(.)(0,∞) = 1. Let p̃(t) := p(t)
p−

then for any x ∈ (0,+∞),

p̃−(Bx) ≥ 1. By applying Jensen inequality we obtain

I :=

∫ ∞
0

(
1

x

∫ x

0

f(y)dy)p(x)dx ≤
∫ ∞

0

(
1

x

∫ x

0

f(y)p̃
−(Bx)dy)

p(x)

p̃−(Bx)dx

=

∫ ∞
0

(
1

x
(

∫
B+
x

+

∫
B−x

)f(y)p̃
−(Bx)dy)

p(x)

p̃−(Bx)dx

≤ C[

∫ ∞
0

(
1

x

∫
B+
x

f(y)p̃
−(Bx)dy)

p(x)

p̃−(Bx)dx+

∫ ∞
0

(
1

x

∫
B−x

f(y)p̃
−(Bx)dy)

p(x)

p̃−(Bx)dx]

:= I1 + I2

where B+
x := Bx ∩ {y; f(y) ≥ β(y)} and B−x := Bx ∩ {y; f(y) < β(y)}. Since ‖f‖ = 1, when x < 1,

by applying Holder inequality we obtain∫ x

0

f(y)p̃(y)dy < x
p−−1

p− (

∫ x

0

f(y)p(y)dy)
1
p− ≤ 1;

and for x > 1 we have
1

x

∫ x

0

f(y)p̃(y)dy ≤ (
1

x

∫ x

0

f(y)p(y)dy)
1
p− ≤ 1.

Hence

I1 ≤
∫ ∞

0

(
1

x

∫
B+
x

f(y)p̃(y)β(y)p̃
−(Bx)−p̃(y)dy)

p(x)

p̃−(Bx)dx ≤ C

∫ ∞
0

(
1

x

∫
B+
x

f(y)p̃(y)dy)
p(x)

p̃−(Bx)dx

= C[

∫ 1

0

(
1

x

∫
B+
x

f(y)p̃(y)dy)
p(x)

p̃−(Bx)dx+

∫ ∞
1

(
1

x

∫
B+
x

f(y)p̃(y)dy)
p(x)

p̃−(Bx)dx]

= C [

∫ 1

0

(
1

x
)

p(x)

p̃−(Bx)
−p−

(
1

x

∫ x

0

f(y)p̃(y)dy)p
−
dx+

∫ ∞
1

(
1

x

∫ x

0

f(y)p̃(y)dy)p
−
dx];

By using the growth conditions on p, we observe

(
1

x
)

p(x)

p̃−(Bx)
−p− ≤ (

1

x
)(p(x)−p−(Bx)) ≤ (

1

x
)

C
| ln x| ≤ C.

So I1 ≤ C
∫∞

0
( 1
x

∫ x
0
f(y)p̃(y)dy)p

−
dx. On the other hand,

I2 ≤
∫ ∞

0

(
1

x

∫
B−x

β(y)p̃
−(Bx)dy)

p(x)

p̃−(Bx)dx ≤ C

∫ ∞
0

β(x)p(x)dx.

Thus

I ≤ C

∫ ∞
0

(
1

x

∫ x

0

f(y)p̃(y)dy)p
−
dx+ C

∫ ∞
0

β(x)p(x)dx;

which is bounded by using the boundedness of Hardy operator in Lp
−

(0,∞) and considering β ∈
Lp(.)(0,∞). Hence ‖Sf‖ ≤ C for any f ∈ Lp(x)(0,∞) with ‖f‖ = 1. Now suppose f ∈ Lp(.)(0,∞)
with ‖f‖ 6= 1 then define g = f

‖f‖ so g ∈ Lp(.)(0,∞) and ‖g‖ = 1. Hence by the first part of the proof

we have ‖Sf‖ = ‖‖f‖Sg‖ = ‖f‖‖Sg‖ ≤ C‖f‖. �

When p is constant , andK is a measurable function on Ω1×Ω2 ⊂ RN×RN , with
∫

Ω1
|K(x, y)|dx ≤

C for a.e y ∈ Ω2 and
∫

Ω2
|K(x, y)|dy ≤ C for a.e x ∈ Ω1; then the integral operator Tf(x) =∫

K(x, y)f(y)dy is converge absolutely for a.e x ∈ Ω2 and ‖Tf‖Lp(Ω1) ≤ C‖f‖Lp(Ω2); [5]. Now we
present similar result for non constant p.
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Theorem 3.4. Let Ω1,Ω2 be two measurable subsets of RN . p : RN → [1,∞) and α is a measurable
function with β- controller condition on (Ω1; p(.)) where

0 < p(x)− p(y) < α(x)

for any x ∈ Ω1, y ∈ Ω2. K is a measurable function on Ω1 × Ω2 and there exist C1 > 0 such that∫
|K(x, y)|dy ≤ C1 for a.e. x ∈ Ω1 and

∫
|K(x, y)|dx ≤ C1 for a.e. y ∈ Ω2. If f ∈ Lp(.)(Ω1), the

integral operator

Tf(y) =

∫
Ω1

K(x, y)f(x)dx

converges absolutely for a.e. y ∈ Ω2 and ‖Tf‖Lp(.)(Ω2) ≤ C‖f‖Lp(.)(Ω1).

Proof . By applying Holder inequality for fixed y ∈ Ω2 we have,

I :=

∫
Ω2

(

∫
Ω1

|K(x, y)f(x)|dx)p(y)dy ≤
∫

Ω2

(

∫
Ω1

|K(x, y)|dx)
p(y)

p′(y) (

∫
Ω1

|K(x, y)f(x)p(y)|dx)dy.

Let Ω+
1 := Ω1 ∩ {x; f(x) ≥ β(x)} and Ω−1 := Ω1 ∩ {x; f(x) < β(x)}. So

I ≤ C

∫
Ω2

(

∫
Ω1

|K(x, y)f(x)p(y)|dx)dy = C

∫
Ω2

(

∫
Ω+

1

+

∫
Ω−1

)(|K(x, y)f(x)p(y)|dx)dy =: I1 + I2.

Thus

I1 =
∫

Ω2

∫
Ω+

1
|K(x, y)f(x)p(x)||f(x)|p(y)−p(x)dxdy ≤ C

∫
Ω+

1
|f(x)|p(x)(

∫
Ω2
|K(x, y)|dy)dx

≤ C
∫

Ω1
|f(x)|p(x)dx.

And

I2 <

∫
Ω2

∫
Ω−1

|K(x, y)β(x)p(y)|dxdy ≤ C

∫
Ω−1

|β(x)|p(x)(

∫
Ω1

|K(x, y)|dy)dx ≤ C.

Hence
∫

Ω2
(
∫

Ω1
|K(x, y)f(x)|dx)p(y)dy ≤ C

∫
Ω1
|f(x)|p(x)dx. �

In the case p is a constant value and K is a Lebesgue measurable function on (0,∞) × (0,∞),
such that K(λx, λy) = λ−1K(x, y), for all λ > 0; Tf(x) =

∫∞
0
K(x, y)f(y)dy is bounded operator

on Lp(0,∞) provided that
∫∞

0
K(x, y)x−

1
pdx < ∞; [5]. In the following theorem by additional

assumptions we present a counterpart result in variable exponent case.

Theorem 3.5. Let K be a measurable function on (0,∞)×(0,∞) such that K(λx, λy) = λ−1K(x, y)
for all λ > 0 and for any y > 0, K(., y) ∈ Lq+(0,∞) (q is conjugate exponent of p).

Suppose {wi}ni=1 is a finite family of measurable sets which is a finite cover for [0,∞), i.e.;
[0,∞) ⊂ ∪ni=1wi, p : R→ [1,∞) is a measurable function such that

p(y)− pi ≤
c

ln(1 + ry)
for all y ∈ wi, 1 ≤ i ≤ n; (3.6)

where pi = infy∈wi p(y) and ry = sup{x;K(x, y) ≤ 1} <∞.
Define Tf(y) =

∫∞
0
K(x, y)f(x)dx, then T is bounded operator from Lp(.)(0,∞)∩ni=1 L

pi(0,∞) in

to Lp(.)(0,∞) provided that∫ ∞
0

K(t, 1)(t
− 1
p−χ(0,1)(t) + t

− 1
p+χ(1,∞)(t))dt <∞.
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Proof . It is enough to prove the boundedness of modular operator ρLp(.)(o,∞)(Tf(.)).

ρLp(.)(o,∞)(Tf(.)) =
∫∞

0
(
∫∞

0
|K(x, y)f(x)|dx)p(y)dy

≤
n∑
i=1

∫
wk

(

∫ ∞
0

|K(x, y)f(x)|dx)p(y)−pi+pidy. (3.7)

Let us to show the uniform estimate below,

Ii,y := (

∫ ∞
0

|K(x, y)f(x)|dx)p(y)−pi ≤ C; for any y ∈ wi, 1 ≤ i ≤ n. (3.8)

We have, ∫ ∞
0

|K(x, y)f(x)|dx ≤ C‖K(., y)‖q(.)‖f‖p(.) ≤ C(

∫ ∞
0

|K(x, y)|q(x)dx)θ

≤ C(ry + ‖K(., y)‖q
+

Lq+
)θ ≤ C(ry + 1)θ

where 1
q+
≤ θ ≤ 1

q−
. Thus

Ii,y ≤ C(ry + 1)θ(p(y)−pi) ≤ C(ry + 1)
cθ

ln(1+ry) ≤ C.

Using the estimate (3.8) in (3.7) we obtain

ρLp(.)(o,∞)(Tf(.)) ≤ C
n∑
i=1

∫
wi

(

∫ ∞
0

|K(x, y)f(x)|dx)pidy.

For any i, pi is constant, so we may apply the Minkowski inequality for integrals after an appropriate
change of variable. Indeed,

J :=
∑n

i=1

∫
wi

(
∫∞

0
|K(x, y)f(x)|dx)pidy =

∑n
i=1

∫
wi

(
∫∞

0
|K(t, 1)f(ty)|dt)pidy

≤
∑n

i=1(
∫∞

0
(
∫
wi
K(t, 1)pif(ty)pidy)

1
pi dt)pi =

∑n
i=1(

∫∞
0
K(t, 1)t

−1
pi (

∫
twi
f(x)pidx)

1
pi dt)pi

≤ (
∫∞

0
(K(t, 1)(t

− 1
p−χ(0,1)(t) + t

− 1
p+χ(1,∞)(t))dt)

θ(
∑n

i=1

∫∞
0
f(x)pidx) ≤ C;

which p− ≤ θ ≤ p+. �

Theorem 3.6. Let K be a measurable function on [0,∞)× [0,∞) which K(yµz, y) = yνK(z, 1) for
fixed µ > 1, ν > −1. Suppose that for any x, y which 0 < x < y; 0 < p(x) − p(y) < α(x) is held
where α is a measurable function with β- controller on ([0,∞); p(.)).

Consider the integral operator

Tf(y) =

∫ y

0

|K(x, y)f(x)|dx.

Then Tf is defined a.e. and T is bounded operator in Lp(.)(0,∞) provided that∫ ∞
0

(
(z

ν+1
1−µK(z, 1))p

+
+ (z

ν+1
1−µK(z, 1))p

−

z
)dz <∞. (3.9)
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Proof . By applying Jensen inequality we have

I :=

∫ ∞
0

(

∫ y

0

|K(x, y)f(x)|dx)p(y)dy

=

∫ ∞
0

(
1

y

∫ y

0

|yK(x, y)f(x)|dx)p(y)dy ≤
∫ ∞

0

1

y

∫ y

0

|yK(x, y)f(x)|p(y)dxdy.

Let Ω+
y := [0, y] ∩ {x; f(x) ≥ β(x)} and Ω−y := [0, y] ∩ {x; f(x) < β(x)}. So

I :=

∫ ∞
0

1

y
(

∫
Ω+
y

+

∫
Ω−y

)|yK(x, y)f(x)|p(y)dxdy =: I1 + I2.

for the first equality we have,

I1 ≤ C

∫ ∞
0

1

y

∫
Ω+
y

|yK(x, y)|p(y)|f(x)|p(x)dxdy.

Use the change of variable x := yµz thus

I1 ≤ C
∫∞

0
1
y

∫ y1−µ
0
|yK(yµz, y)|p(y)|f(yµz)|p(yµz)yµdzdy

≤ C
∫∞

0

∫ z 1
1−µ

0
|yν+1K(z, 1)|p(y)|f(yµz)|p(yµz)yµ−1dydz

≤ C
∫∞

0

∫ z 1
1−µ

0
|( t
z
)
ν+1
µ K(z, 1)|p( µ

√
t
z

)|f(t)|p(t) 1
µz
dtdz.

Since ν+1
µ
> 0 and t < z

1
1−µ the last inequality leads to

≤ C

∫ ∞
0

(
(z

ν+1
1−µK(z, 1))p

+
+ (z

ν+1
1−µK(z, 1))p

−

z
)dz

∫ ∞
0

f(t)p(t)dt ≤ C

∫ ∞
0

f(t)p(t)dt.

For the second integral, I2 we have

I2 ≤
∫∞

0
1
y

∫
Ω−y
|yK(x, y)f(x)|p(y)dxdy ≤

∫∞
0

1
y

∫
Ω−y
|yK(x, y)|p(y)|β(x)|p(y)dxdy

≤ C
∫∞

0
1
y

∫
Ω−y
|yν+1K( x

yν
, 1)|p(y)|β(x)|p(x)dxdy

Now, by replacement x
yµ

=: z, change the order of integral and so let yµz = t we have ;

I2 ≤ C

∫ ∞
0

∫ z
1

1−µ

0

|( t
z

)
ν+1
µ K(z, 1)|p( µ

√
t
z

)|β(t)|p(t) 1

µz
dtdz.

Thus by hypothesis on β and (3.9), and the same discussion as in the first integral we obtained the
desired result; I2 <∞. �

Remark 3.7. If K(z, 1) ≤ 1, it suffice to take∫ ∞
0

(
(zp

+ ν+1
1−µ + zp

− ν+1
1−µ )K(z, 1)p

−

z
)dz <∞. (3.10)

instead of (3.9) in Theorem 3.6.
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Corollary 3.8. Let p as in Theorem 3.6 and consider the integral operator

Tf(y) =

∫ y

0

yν(
x

x+ yµ
)

1
p− f(x)dx.

for fixed µ and ν which − 1
p+
< ν+1

1−µ < 0. Then T is bounded operator on Lp(.)[0,∞), i.e.;∫ ∞
0

(

∫ y

0

yν(
x

x+ yµ
)

1
p− f(x)dx)p(y)dy ≤ C

∫ ∞
0

f(x)p(x)dx,

for some positive constant C.

Proof . let K(x, y) = yν( x
x+yµ

)
1
p− so K(yµz, y) = yνK(z, 1) which K(z, 1) = ( z

1+z
)

1
p− . By Remark

3.7 it is suffice to show that (3.10) is held.

∫∞
0

( (z
p+ ν+1

1−µ+z
p− ν+1

1−µ )K(z,1)p
−

z
)dz =

∫∞
0

(z
p+ ν+1

1−µ+z
p− ν+1

1−µ

z+1
)dz =: Im + Ik.

Where p+ ν+1
1−µ =: m and p− ν+1

1−µ =: k hence −1 < m, k < 0. By calculation we deduce

Im =
∫∞

0
zm

z+1
dz = (

∫ 1

0
+
∫∞

1
) z

m

z+1
dz =

∫∞
1

z−1−m

z+1
dz +

∫∞
1

zm

z+1
dz = J−1−m + Jm.

Since −1 < m < 0 so −1 + 1
n+1

< m for some integer n ≥ 2 and hence

Jm =
∫∞

1
zm

z+1
dz <

∫∞
1

z
−1+ 1

n+1

z+1
dz = (n+ 1)

∫∞
1

1
rn+1

< n+1
n−1
≤ 3.

Note that the last equality deduced from the change of variable z = rn+1.
The similar argument can be done for J−1−m and so for Ik. Thus we get the desired result. �

Corollary 3.9. By assuming the condition on p as in Theorem 3.6, there exist C > 0 such that∫ ∞
0

(

∫ y

0

yν(
x

yµ
)λ−θe−

x
λyµ f(x)dx)p(y)dy ≤ C

∫ ∞
0

f(x)p(x)dx;

where θ = ν+1
1−µ and λ > 1

p−
is a positive constant.

Proof . By considering K(x, y) := yν( x
yµ

)λ−θe−
x
λyµ , it is obvious that the homogeneity property of

K is satisfied. Moreover

I =

∫ ∞
0

zp
+θK(z, 1)p

+

z
= (

∫ 1

0

+

∫ ∞
1

)(zp
+λ−1e−

p+

λ
zdz) =: I1 + I∞.

Since λ > 1
p−

, I1 <
∫ 1

0
e−

p+

λ
z < ∞ and λ > 0 by Limiting comparison test with

∫∞
1

1
z2
dz we obtain

I∞ <∞. So I is finite and hence, the same result is hold for the second part of (3.9). Now the result
follows from Theorem 3.6. �
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