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Abstract

We introduce a new iterative scheme for finding a common element of the solutions set of a generalized
mixed equilibrium problem and the fixed points set of an infinitely countable family of nonexpansive
mappings in a Banach space setting. Strong convergence theorems of the proposed iterative scheme
are also established by the generalized projection method. Our results generalize the corresponding
results in the literature.
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1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping T : C → C is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F (T ) the set of a fixed point
of T .

Let f : C × C → R be a bifunction, A : C → E∗ a mapping, and ϕ : C → R a real-valued
function. The generalized mixed equilibrium problem is to find x ∈ C such that

f(x, y) + 〈Ax, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.1)

The solutions set of (1.1) is denoted by GMEP (f, A, ϕ).
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If A ≡ 0, then the generalized mixed equilibrium problem (1.1) reduces to the following mixed
equilibrium problem: finding x ∈ C such that

f(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.2)

Problem (1.2) was introduced by Ceng and Yao [7]. The solutions set of (1.2) is denoted by
MEP (f, ϕ).

If f ≡ 0, then the generalized mixed equilibrium problem (1.1) reduces to the following mixed
variational inequality problem: finding x ∈ C such that

〈Ax, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.3)

The solutions set of (1.3) is denoted by V I(C,A, ϕ).
If ϕ ≡ 0, then the mixed equilibrium problem (1.2) reduces to the following equilibrium problem:

finding x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C. (1.4)

The solutions set of (1.4) is denoted by EP (f).
If f ≡ 0, then the mixed equilibrium problem (1.2) reduces to the following convex minimization

problem: finding x ∈ C such that

ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.5)

The solutions set of (1.5) is denoted by CMP (ϕ).
The problem (1.1) is very general in the sense that it includes, as special cases, optimization

problems, variational inequalities, minimax problems, Nash equilibrium problem in noncooperative
games and others; see for instance, [5, 11, 13, 20].

For solving the equilibrium problem, let us assume that:
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) for all x ∈ C, f(x, .) is convex and lower semicontinuous.

In 1953, Mann [19] introduced the following iterative procedure to approximate a fixed point of
a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.6)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in (0,1).
However, we note that Mann’s iteration process (1.6) has only weak convergence, in general; for

instance, see [4, 14, 27].
Let C be a nonempty, closed and convex subset of a Banach space E and let {Tn} be sequence of

mappings of C into itself such that
⋂∞

n=1 F (Tn) 6= ∅. Then {Tn} is said to satisfy the NST-condition
if for each bounded sequence {zn} ⊂ C,

lim
n→∞

‖zn − Tnzn‖ = 0

implies ωw(zn) ⊂
⋂∞

n=1 F (Tn), where ωw(zn) is the set of all weak cluster points of {zn}; see [3, 21, 22].



Approximating Fixed Points for Nonexpansive Mappings and ...3 (2012) No. 2,49-58 51

In 2008, Takahashi et al. [33] has adapted Nakajo and Takahashi [23]’s idea to modify the
process (1.6) so that strong convergence is guaranteed. They proposed the following modification for
nonexpansive mappings in a Hilbert space: x0 ∈ H, C1 = C, u1 = PC1x0 and

yn = αnun + (1− αn)Tnun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(1.7)

where 0 ≤ αn ≤ a < 1 for all n ∈ N and PK is a metric projection from a Hilbert space H onto a
nonempty, closed and convex subset K of H. They proved that if {Tn} satisfies the NST-condition,
then {un} generated by (1.7) converges strongly to a common fixed point of {Tn}∞n=1.

Xu [36] introduced the following iterative scheme for finding a fixed point of a nonexpansive
mapping in a Banach space: x0 = x ∈ C and

Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Dnx, n ≥ 0,

(1.8)

where coD denotes the convex closure of the set D, {tn} is a sequence in (0,1) with tn → 0, and
ΠCn∩Dn is a generalized projection from a Banach space E onto Cn ∩Dn. Then, he proved that the
sequence {xn} generated by (1.8) converges strongly to a fixed point of T .

Very recently, Kimura and Nakajo [16], by using the Mosco convergence technique, obtained strong
convergence theorems in a Banach space. They also proposed the following algorithm: x1 = x ∈ C
and 

Cn = co{z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},
Dn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Dnx, n ≥ 1,

(1.9)

where {tn} is a sequence in (0,1) with tn → 0 as n → ∞. They proved that if {Tn} satisfies the
NST-condition, then the sequence {xn} generated by (1.9) converges strongly to a common fixed
point of {Tn}∞n=1.

The problem of finding a common element of the fixed points set and the solutions set of an
equilibrium problem in the framework of Hilbert spaces and Banach spaces has been studied by
many authors; for instance, see [8, 9, 24, 25, 26, 29, 30, 32, 35, 37] and the references therein.

Motivated and inspired by Xu [36], Kimura and Nakajo [16], we introduce a new hybrid projection
algorithm for finding a common element of the solutions set of a generalized mixed equilibrium
problem and the fixed points set of an infinitely countable family of nonexpansive mappings in the
framework of Banach spaces.

2. Preliminaries and lemmas

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is said to be strictly convex if for any x, y ∈ U ,

x 6= y implies
∥∥∥x+ y

2

∥∥∥ < 1.

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any
x, y ∈ U ,

‖x− y‖ ≥ ε implies
∥∥∥x+ y

2

∥∥∥ < 1− δ.
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It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function
δ : [0, 2]→ [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}
.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said to be
smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is attained uniformly
for x, y ∈ U . The normalized duality mapping J : E → 2E∗

is defined by

J(x) = { x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for all x ∈ E. It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E; see [31] for more details.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E. In a Hilbert space H, we have φ(x, y) = ‖x− y‖2 for all x, y ∈ H.

Lemma 2.1 (Kamimura and Takahashi [15]). Let E be a uniformly convex and smooth Banach
space and let {xn}, {yn} be two sequences of E. If φ(xn, yn)→ 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0 as n→∞.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty, closed
and convex subset of E. The generalized projection mapping, introduced by Alber [1], is a mapping
ΠC : E → C, that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(y, x),
that is, ΠCx = x̄, where x̄ is the solution to the minimization problem

φ(x̄, x) = min{φ(y, x) : y ∈ C}.

In fact, we have the following result.

Lemma 2.2 (Alber [1]). Let C be a nonempty, closed and convex subset of a real reflexive, strictly
convex, and smooth Banach space E and let x ∈ E. Then, there exists a unique element x0 ∈ C such
that φ(x0, x) = min{φ(z, x) : z ∈ C}.

The existence and uniqueness of the operator ΠC follows from the properties of the functional φ and
strict monotonicity of the duality mapping J ; for instance, see [1, 2, 10, 15, 31]. In a Hilbert space,
ΠC is coincident with the metric projection.

Lemma 2.3 (Alber [1] and Kamimura and Takahashi [15]). Let C be a nonempty, closed and con-
vex subset of a smooth Banach space E and x ∈ E. Then x0 = ΠC x if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.4 (Alber [1] and Kamimura and Takahashi [15]). Let C be a nonempty, closed and con-
vex subset of a reflexive, strictly convex and smooth Banach space E and let x ∈ E. Then

φ(y,ΠC x ) + φ(ΠC x , x ) ≤ φ(y , x ) ∀y ∈ C .
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Lemma 2.5 (Bruck [6]). Let C be a bounded, closed and convex subset of a uniformly convex Ba-
nach space E. Then, there exists a strictly increasing convex continuous function γ : [0,∞)→ [0,∞)
such that γ(0) = 0 and

γ
(∥∥∥T( n∑

i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥) ≤ max
1≤j≤k≤n

(‖xj − xk‖ − ‖Txj − Txk‖)

for all n ∈ N, {x1, x2, ..., xn} ⊂ C, {λ1, λ2, ..., λn} ⊂ [0, 1] with
∑n

i=1 λi = 1 and nonexpansive
mapping T of C into E.

Lemma 2.6 (Blum and Oettli [5]). Let C be a closed and convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C×C to R which satisfies conditions (A1)-
(A4), and let r > 0 and x ∈ E. Then there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

The following result can be found in [38].

Lemma 2.7 (Zhang [38]). Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space E. Let A : C → E∗ be a continuous and monotone mapping, let
f be a bifunction from C × C to R satisfying (A1)-(A4) and let ϕ be a lower semicontinuous and
convex function from C to R. For all r > 0 and x ∈ E, there exists z ∈ C such that

f(z, y) + 〈Az, y − z〉+ ϕ(y) +
1

r
〈y − z, Jz − Jx〉 ≥ ϕ(z), ∀y ∈ C.

Define a mapping Sr : E → 2C as follows:

Sr(x) = {z ∈ C : f(z, y) + 〈Az, y − z〉+ ϕ(y) +
1

r
〈y − z, Jz − Jx〉 ≥ ϕ(z), ∀y ∈ C}.

Then, the followings hold:
(1) Sr is single-valued;
(2) Sr is firmly nonexpansive-type mapping; [18], i.e., for all x, y ∈ E,

〈Srx− Sry, JSrx− JSry〉 ≤ 〈Srx− Sry, Jx− Jy〉;

(3) F (Sr) = GMEP (f, A, ϕ);
(4) GMEP (f, A, ϕ) is closed and convex.

3. Main Results

In this section, we prove the strong convergence theorem for finding a common element of the
fixed points set for nonexpansive mappings and the solutions set of a generalized mixed equilibrium
problem in Banach spaces.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty,
closed and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)-(A4), A :
C → E∗ a continuous and monotone mapping, and ϕ a lower semicontinuous and convex function
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from C to R. Let {Ti}∞i=1 be a sequence of nonexpansive mappings of C into itself such that F :=⋂∞
i=1 F (Ti) ∩GMEP (f, A, ϕ) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ C, D0 = C,
Cn =

⋂∞
i=1 co{z ∈ C : ‖z − Tiz‖ ≤ tn‖xn − Tixn‖}, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈Srnxn − z, Jxn − JSrnxn〉 ≥ 0}, n ≥ 1,
xn+1 = ΠCn∩Dnx0, n ≥ 0,

where {tn} and {rn} are sequences satisfying the conditions:
(C1) {tn} ⊂ (0, 1) and limn→∞ tn = 0;
(C2) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then, the sequence {xn} converges strongly to ΠFx0.

Proof . First, we show that the sequence {xn} is well-defined. It is easy to verify that Cn ∩Dn is
closed and convex and F ⊂ Cn for all n ≥ 0. Since D0 = C, we also have F ⊂ C0 ∩ D0. Suppose
that F ⊂ Ck−1 ∩Dk−1 for k ≥ 2. It follows from Lemma 2.7 (2) that

〈Srkxk − Srku, Jxk − JSrkxk − (Ju− JSrku)〉 ≥ 0,

for all u ∈ F . This implies that

〈Srkxk − u, Jxk − JSrkxk〉 ≥ 0,

for all u ∈ F . Hence F ⊂ Dk. By the mathematical induction, we get that F ⊂ Cn ∩ Dn for each
n ≥ 0. By Lemma 2.7 (4), we know that F :=

⋂∞
i=1 F (Ti)∩GMEP (f, A, ϕ) is nonempty, closed and

convex. Then there exists a unique element w ∈ F such that w = ΠFx0. Since F ⊂ Cn−1 ∩ Dn−1
and xn = ΠCn−1∩Dn−1x0, we have

φ(xn, x0) ≤ φ(w, x0), n ≥ 1. (3.1)

Since xn = ΠCn−1∩Dn−1x0 and xn+1 ∈ Dn ⊂ Dn−1, we have

φ(xn, x0) ≤ φ(xn+1, x0), n ≥ 1. (3.2)

From (3.1) and (3.2) we can conclude that limn→∞ φ(xn, x0) exists.
Next, we show that limm,n→∞ φ(xm, xn) = 0. From xn = ΠCn−1∩Dn−1x0 and xm ∈ Dm−1 ⊂ Dn−1

for m > n ≥ 1, we have by Lemma 2.4

φ(xm, xn) + φ(xn, x0) ≤ φ(xm, x0).

This implies that

φ(xm, xn) ≤ φ(xm, x0)− φ(xn, x0).

Hence limm,n→∞ φ(xm, xn) = 0. By Lemma 2.1, we obtain

lim
m,n→∞

‖xm − xn‖ = 0.

In particular, we also have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

Thus {xn} is a Cauchy sequence in C. By the completeness of E and the closedness of C, we have
xn → v ∈ C.



Approximating Fixed Points for Nonexpansive Mappings and ...3 (2012) No. 2,49-58 55

Next, we show that v ∈
⋂∞

i=1 F (Ti). Since xn+1 ∈ Cn and tn > 0, there exists m ∈ N,
{λ0, λ1, ..., λm} ⊂ [0, 1] and {y0, y1, ..., ym} ⊂ C such that

m∑
j=0

λj = 1,
∥∥∥xn+1 −

m∑
j=0

λjyj

∥∥∥ < tn, and ‖yj − Tiyj‖ ≤ tn‖xn − Tixn‖

for each j = 0, 1, ...,m and i ∈ N. Put M = supn≥0 ‖xn − w‖. We note that ‖yj − Tiyj‖ ≤
tn‖xn − Tixn‖ ≤ 2tn‖xn − w‖ ≤ 2tnM for each j = 0, 1, ...,m and i ∈ N. Since {xn} is bounded, by
Lemma 2.5, we have

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+
∥∥∥xn+1 −

m∑
j=0

λjyj

∥∥∥+
∥∥∥ m∑

j=0

λjyj −
m∑
j=0

λjTiyj

∥∥∥
+
∥∥∥ m∑

j=0

λjTiyj − Ti(
m∑
j=0

λjyj)
∥∥∥+

∥∥∥Ti( m∑
j=0

λjyj)− Tixn
∥∥∥

≤ ‖xn − xn+1‖+ tn +
m∑
j=0

λj‖yj − Tiyj‖

+ γ−1
(

max
0≤j≤k≤m

(‖yj − yk‖ − ‖Tiyj − Tiyk‖)
)

+
∥∥∥ m∑

j=0

λjyj − xn
∥∥∥

≤ ‖xn − xn+1‖+ tn + (2tnM)
m∑
j=0

λj

+ γ−1
(

max
0≤j≤k≤m

(‖yj − Tiyj‖+ ‖yk − Tiyk‖)
)

+
(
‖

m∑
j=0

λjyj − xn+1‖+ ‖xn − xn+1‖
)

≤ 2‖xn − xn+1‖+ tn + 2tnM

+ γ−1(4Mtn) + tn

= 2‖xn − xn+1‖+ (2 + 2M)tn + γ−1(4Mtn).

It follows from (3.3) and (C1) that

lim
n→∞

‖xn − Tixn‖ = 0,

for all i ∈ N. Thus v ∈
⋂∞

i=1 F (Ti).
Next, we show that v ∈ GMEP (f, A, ϕ). By the construction of Dn, we see from Lemma 2.3

that Srnxn = ΠDn−1xn. Since xn+1 ∈ Dn ⊂ Dn−1, we obtain

φ(Srnxn, xn) ≤ φ(xn+1, xn)→ 0,

as n→∞. From Lemma 2.1, we have

lim
n→∞

‖Srnxn − xn‖ = 0.

Since xn → v, we have Srnxn → v as n→∞. Since J is uniformly norm-to-norm continuous on the
bounded set, we have

lim
n→∞

‖JSrnxn − Jxn‖ = 0.
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By (C2) we also have

lim
n→∞

‖JSrnxn − Jxn‖
rn

= 0. (3.4)

For each y ∈ C, we see that

f(Srnxn, y) + 〈ASrnxn, y − Srnxn〉+ ϕ(y) +
1

rn
〈y − Srnxn, JSrnxn − Jxn〉 ≥ ϕ(Srnxn).

By using the same argument as in the proof of [28], we can verify that

f(v, y) + 〈Av, y − v〉+ ϕ(y) ≥ ϕ(v), ∀y ∈ C.

This shows that v ∈ GMEP (f, A, ϕ) and hence v ∈ F :=
⋂∞

i=1 F (Ti) ∩GMEP (f, A, ϕ).
Finally, we show that v = w = ΠFx0. Since xn+1 = ΠCn∩Dnx0, we have

〈Jx0 − Jxn+1, xn+1 − z〉 ≥ 0 ∀z ∈ Cn ∩Dn.

Since F ⊂ Cn ∩Dn, we also have

〈Jx0 − Jxn+1, xn+1 − z〉 ≥ 0 ∀z ∈ F. (3.5)

By taking limit in (3.5), we obtain that

〈Jx0 − Jv, v − z〉 ≥ 0 ∀z ∈ F.

By Lemma 2.3, we can conclude that v = ΠFx0 = w. This completes the proof. �
If we take Ti = I for all i ∈ N in Theorem 3.1, then we obtain the following result.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty,
closed and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)-(A4),
A : C → E∗ a continuous and monotone mapping, and ϕ a lower semicontinuous and convex
function from C to R such that GMEP (f, A, ϕ) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ C, D0 = C,
Dn = {z ∈ Dn−1 : 〈Srnxn − z, Jxn − JSrnxn〉 ≥ 0}, n ≥ 1,
xn+1 = ΠDnx0, n ≥ 0.

If {rn} ⊂ (0,∞) and lim infn→∞ rn > 0, then the sequence {xn} converges strongly to ΠGMEP (f,A,ϕ)x0.

If we take f ≡ 0, A ≡ 0 and ϕ ≡ 0 in Theorem 3.1, we obtain the following result.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty,
closed and convex subset of E. Let {Ti}∞i=1 be a sequence of nonexpansive mappings of C into itself
such that F :=

⋂∞
i=1 F (Ti) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ C,
Cn =

⋂∞
i=1 co{z ∈ C : ‖z − Tiz‖ ≤ tn‖xn − Tixn‖},

xn+1 = ΠCnx0, n ≥ 0.

If {tn} ⊂ (0, 1) and limn→∞ tn = 0, then the sequence {xn} converges strongly to ΠFx0.

Remark 3.4. Theorem 3.1 also can be applied to find solutions of mixed equilibrium problems, mixed
variational inequality problems, convex minimization problems and so on.
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