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Abstract
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u+ V (x)u+ φu = m(x)|u|q−2|u|+ f(x, u), x ∈ Ω,

(−∆t)φ = u2, x ∈ Ω,
u = φ = 0, x ∈ ∂Ω,

where s, t ∈ (0, 1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x, u) is
linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence
of non-trivial solutions with the help of the variational methods.
Keywords: Fractional Schrödinger-Poisson systems, Non-trivial solutions, Variational methods.

1. Introduction

The fractional Schrödinger equation was introduced by Laskin [1] in the context of fractional quantum
mechanics for the study of particles on stochastic fields modeled by Lévy processes. The operator
(−∆)s can be seen as the infinitesimal generator of Lévy stable diffusion processes (see Applebaum
[2]).

The aim of this paper is to investigate the existence of non-trivial solutions for the following
fractional Schrödinger-Poisson system (−∆s)u+ V (x)u+ φu = m(x)|u|q−2|u|+ f(x, u), x ∈ Ω,

(−∆t)φ = u2, x ∈ Ω,
u = φ = 0, x ∈ ∂Ω,

(1.1)
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where s, t ∈ (0, 1], 2t + 4s > 3, 1 < q < 2, Ω is a bounded smooth domain of R3, (−∆s) is the
fractional Laplacian and f(x, u) is linearly bounded in u at infinity that satisfying some conditions
we will precise later.

When s = t = 1 and V = m ≡ 1 the equation (1.1) reduces to Schrödinger-Poisson equation,
which describes quantum particles and is related to the study of nonlinear stationary Schrödinger
equations interacting with the electromagnetic field generated by the motion [3, 4].
In a recent paper [5] the following Schrödinger-Poisson system was studied

−∆u+ V (x)u+ λφu = K(x)|u|q−2u+ f(x, u), in R3,

−∆φ = u2, lim
|x|→∞

φ(x) = 0, in R3,
(1.2)

where 1 < q < 2, λ > 0 is a parameter and f(x, u) is linearly bounded in u at infinity.

Fractional Schrödinger-Poisson equations have attracted some attention in recent years. If we
only consider the first equation in (1.1) and assume that φ = 0, then it reduces to a fractional
Schrödinger equation, which is a fundamental equation in fractional quantum mechanics [5, 6].

Recently, some authors proposed a new approach called perturbation method to study the quasi-
linear elliptic equations, see [7, 8]. Kexue Li in [9] studied the nonlinear fractional Schrödinger-
Poisson system {

(−∆s)u+ u+ φu = f(x, u), in R3,
(−∆t)φ = u2, in R3,

(1.3)

and by using the perturbation method and mountain pass theorem, obtained the existence of non-
trivial solutions. Motivated by the above works, we study the existence and multiplicity of solutions
for the problem (1.1).

Before stating our main results, we give the following assumptions on m, V and f .

(H1) m(x) ∈ L
2

2−q (Ω); and m(x) > 0 for x ∈ Ω

(H2) V ∈ C(Ω,R) and infΩ V (x) ≥ V0 > 0

(H3) For every x ∈ Ω and u ∈ R, there exist constants C1 > 0 and p ∈ [2, 2∗s) such that

|f(x, u)| ≤ C1(|u|+ |u|p−1),

where 2∗s =
6

3−2s
is the fractional critical Sobolev exponent;

(H4) There exists C > 0 such that∣∣∣∣f(x, u)u

∣∣∣∣ ≤ C, for all x ∈ Ω, u ∈ R and u ̸= 0.

(H5) f(x, u) = o(|u|), |u| → 0, uniformly on Ω;
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(H6) There exists µ > 4 such that

0 < µF (x, u) ≤ uf(x, u)

holds for every x ∈ Ω and u ∈ R\{0}, where F (x, u) =
∫ u

0
f(x, s)ds;

Throughout this paper, C > 0 will be used indiscriminately to denote a suitable positive constant
whose value may change from line to line and we will use o(1) for a quantity which goes to zero.
Moreover, we use ∥.∥p to denote the usual norm on Lp(Ω) for 1 < p < +∞. Our main results reads
as follows.

Theorem 1.1. Suppose that (H1)− (H5) hold. Then there exists M > 0 such that for every m with
∥m∥ 2

2−q
< M , problem (1.1) has a nontrivial solution at negative energy.

Theorem 1.2. Suppose that (H1)− (H6) hold., problem (1.1) has a nontrivial solution at negative
energy.

Corollary 1.3. Suppose that (H1) − (H6) hold. Then there exists M > 0 such that for every m
with ∥m∥ 2

2−q
< M , problem (1.1) has at least two nontrivial solutions.

The reminder of this paper is organized as follows. In section 2, we present a suitable variational
framework for our problem. In section 3, we prove Theorems 1.1-1.2.

2. Variational setting and preliminaries

For p ∈ [1,∞), we denote by Lp(Ω) the usual Lebesgue space with the norm ∥u∥p =
(∫

Ω
|u|pdx

) 1
p .

For any p ∈ [1,∞) and s ∈ (0, 1), we recall some definitions of fractional Sobolev spaces and the
fractional Laplacian (−∆)s, for more details, we refer to [10]. Hs(Ω) is defined as follows

Hs(Ω) =

{
u ∈ L2(Ω) :

∫
Ω

(1 + |ξ|2s)|Fu(ξ)|2dξ < ∞
}

with the norm

∥u∥Hs =
(
|Fu(ξ)|2 + |ξ|2s|Fu(ξ)|2

) 1
2 , (2.1)

where Fu denotes the Fourier transform of u. By S(Ω), we denote the Schwartz space of rapidly
decaying C∞ functions in Ω. For u ∈ S(Ω) and s ∈ (0, 1), (−∆)s is defined by

(−∆)sf = F−1(|ξ|2s(Ff)), ∀ξ ∈ Ω.

By Plancherel’s theorem, we have ∥Fu∥2 = ∥u∥2, ∥|ξ|sFu∥2 = ∥(−∆)
s
2u∥. Then by (2.1), we get the

equivalent norm

∥u∥Hs =

(∫
Ω

(|(−∆)
s
2u(x)|2 + |u(x)|2)dx

) 1
2

.
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For s ∈ (0, 1), the fractional Sobolev space Ds,2(Ω) is defined as follows

Ds,2(Ω) =
{
u ∈ L2∗s(Ω) : |ξ|sFu(ξ) ∈ L2(Ω)

}
,

which is the completion of C∞
0 (Ω) with respect to the norm

∥u∥Ds,2 =

(∫
Ω

|(−∆)
s
2u|2dx

) 1
2

=

(∫
Ω

|ξ|2s|Fu(ξ)|2dξ
) 1

2

.

Lemma 2.1. (Theorem 2.1 in [11]). For any s ∈ (0, 3
2
), Ds,2(Ω) is continuously embedded in L2∗s(Ω),

i.e., there exists cs > 0 such that(∫
Ω

|u|2∗sdx
)2/2∗s

≤ cs

∫
Ω

|(−∆)
s
2u|2dx, u ∈ Ds,2(Ω).

We consider the variational setting of (1.1). From Theorem 6.7 and Corollary 7.2 in [10], it is known
that the space Hs(Ω) is continuously embedded in Lq(Ω) for any q ∈ [1, 2∗s] and the embedding
Hs(Ω) ↪→ Lq(Ω) is locally compact for q ∈ [1, 2∗s).
If 2t+4s > 3, then Hs(Ω) ↪→ L

12
3+2t (Ω). For u ∈ Hs(Ω), the linear operator Tu : Dt,2(Ω) → R defined

as

Tu(v) =

∫
Ω

u2vdx.

By Hölder inequality and Lemma 2.1,

|Tu(v)| ≤ ∥u∥212/(3+2t)∥v∥2∗t ≤ C∥u∥2Hs∥v∥Dt,2 . (2.2)

Set

η(u, v) =

∫
Ω

(−∆)
t
2u · (−∆)

t
2vdx, u, v ∈ Dt,2(Ω).

It is clear that η(u, v) is bilinear, bounded and coercive. The Lax-Milgram theorem implies that for
every u ∈ Hs(Ω), there exists a unique φt

u ∈ Dt,2(Ω) such that Tu(v) = η(φu, v) for any v ∈ Dt,2(Ω),
that is ∫

Ω

(−∆)
t
2φt

u(−∆)
t
2vdx =

∫
Ω

u2vdx. (2.3)

Therefore, (−∆)tφt
u = u2 in a weak sense. Moreover,

∥φt
u∥Dt,2 = ∥Tu∥ ≤ C∥u∥2Hs . (2.4)

Since t ∈ (0, 1] and 2t+4s > 3, then 12
3+2t

∈ (2, 2∗s). From Lemma 2.1, (2.2) and (2.3), it follows that

∥φt
u∥2Dt,2 =

∫
Ω

|(−∆)
t
2φt

u|2dx =

∫
Ω

u2φt
udx ≤ ∥u∥2 12

3+2t
∥φt

u∥2∗t ≤ C∥u∥2 12
3+2t

∥φt
u∥Dt,2 . (2.5)

Then

∥φt
u∥Dt,2 ≤ C∥u∥2 12

3+2t
. (2.6)
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For x ∈ Ω, we have

φt
u(x) = ct

∫
Ω

u2(y)

|x− y|3−2t
dy, (2.7)

which is the Riesz potential [12], where

ct =
Γ(3−2t

2
)

π3/222tΓ(t)
.

Assume that the potential V (x) satisfies the condition (V1). Let

E =

{
u ∈ Hs(Ω) :

∫
Ω

(|(−∆)
s
2u|2 + V (x)u2)dx < ∞

}
.

Then E is a Hilbert space with the inner product

⟨u, v⟩E =

∫
Ω

(
(−∆)

s
2u(−∆)

s
2v + V (x)uv

)
dx

and the norm ∥u∥E = ⟨u, u⟩
1
2
E. By Lemma 2.3 in [13], it is known that E is compactly embedded in

Lp(Ω) for 2 ≤ p < 2∗s and continuously embedded in Lp(Ω) for p ∈ [1, 2∗s]. Substituting φt
u in (1.1),

we have the fractional Schrödinger equation

(−∆)su+ V (x)u+ φt
uu = m(x)|u|q−2|u|+ f(x, u), x ∈ Ω, (2.8)

The energy functional I : E → R corresponding to problem (2.8) is defined by

I(u) =
1

2

∫
Ω

(|(−∆)
s
2u|2 + V (x)u2)dx+

1

4

∫
Ω

φt
uu

2dx− 1

q

∫
Ω

m(x)|u|qdx−
∫
Ω

F (x, u)dx.

It is easy to see that I is well defined in E and I ∈ C1(E),R), and

⟨I ′(u), v⟩ =
∫
Ω

(
(−∆)

s
2u(−∆)

s
2v + V (x)uv + φt

uuv −m(x)|u|q−2uv − f(x, u)v
)
dx, v ∈ Hs(Ω).

(2.9)

Definition 2.2.
(1) We call (u, φ) ∈ E ×Dt,2(Ω) is a weak solution of (1.1) if u is a weak solution of (2.8).

(2) We call u is a weak solution of (2.8) if∫
Ω

(
(−∆)

s
2u(−∆)

s
2v + V (x)uv + φt

uuv −m(x)|u|q−2uv − f(x, u)v
)
dx = 0,

for any v ∈ Hs(Ω).

Definition 2.3. We say a C1 functional I satisfies Palais-Smale condition
(
(PS) condition for

short
)

if any sequence {un} ⊂ H1(R3) such that

I(un) being bounded, I ′(un) → 0, as n → 0 (2.10)

admits a convergent subsequence, and such a sequence is called a palais-Smale sequence
(
(PS)

sequence
)
.
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Lemma 2.4. Assume that (H1), (H2) and (H4) hold. Then any (PS) sequence of I is bounded in
E.

Proof . We modify the proof of [14, 15]. Let {un} be a (PS) sequence of I. By contradiction,
let ∥un∥ → ∞. Write vn = un

∥un∥ , then we may assume that there exists v ∈ E such that, up to
subsequence,

vn ⇀ v in E, vn → v a.e x ∈ Ω, and vn → v in L2
loc(Ω). (2.11)

Firstly, we claim that v = 0. In fact , since ∥un∥ → ∞, by (2.10), we have

⟨I ′(un), un⟩
∥un∥4

= o(1),

that is
o(1) =

1

∥u∥2
+

∫
Ω

φt
vnvn

2dx−
∫
Ω

m(x)|un|q

∥un∥4
dx−

∫
Ω

f(x, un)un

∥un∥4
dx. (2.12)

By Sobolev and Hölder inequalities, we have∫
Ω

m(x)|un|qdx ≤ ∥m∥ 2
2−q

∥un∥q2 ≤ C∥m∥ 2
2−q

∥un∥q. (2.13)

Hence ∫
Ω

m(x)|un|q

∥un∥4
dx → 0. (2.14)

By (H4), we get that∫
Ω

|f(x, un)un|
∥un∥4

dx =

∫
Ω

∣∣∣∣f(x, un)

un

∣∣∣∣ u2
n

∥un∥4
dx ≤ C

∥un∥2
→ 0. (2.15)

Combining with (2.12)-(2.15), we obtain that∫
Ω

φt
vnv

2
ndx ≥ 0.

By Fatou’s Lemma, we have∫
Ω

|(−∆)
t
2φt

v|2dx =

∫
Ω

φt
vv

2dx ≤ lim
n→∞

∫
Ω

φt
vnv

2
ndx = 0

then 2.5-2.6 implies that v = 0.

Next, from the fact that v = 0, we deduce a contradiction which implies the boundedness of {un}
in E. Since the embedding E ↪→ L2(Ω) is compact, we have vn → 0 in L2(Ω). Hence (H4) yields that∫

Ω

f(x, un)

un

|vn|2dx ≤ C

∫
Ω

|vn|2dx → 0. (2.16)

It follows from (2.14), (2.16) and ⟨I′(un),un⟩
∥un∥2 = O(1), we have

O(1) = 1 +

∫
Ω

φt
un
vn

2dx−
∫
Ω

m(x)|un|q

∥un∥2
dx−

∫
Ω

f(x, un)

un

|v2ndx

= 1 +O(1)

which is contradiction. The proof is completed. □
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Lemma 2.5. Under the assumptions of Lemma 2.4 and (H3) any (PS) sequence of I has a convergent
subsequence in E.

Proof . Let {un} be a (PS) sequence of I. We show that {un} possesses a strong convergent
subsequence. Since {un} is bounded in E

(
Lemma 2.4

)
, we may assume that for some u ∈ E, up to

a subsequence, un ⇀ u in E. By the fact that the embedding E ↪→ Lp(Ω) is compact for p ∈ [2, 2∗s),
it is easy to see that

un → u in Lp(Ω), p ∈ [2, 2∗s]. (2.17)
By (2.9), we get

∥un − u∥2E = ⟨I ′(un)− I ′(u), un − u⟩ −
∫
Ω

(φt
un
un − φt

uu)(un − u)dx

+

∫
Ω

(m(x)|un|q−1 −m(x)|u|q−1)(un − u) +

∫
Ω

(f(x, un)− f(x, u))(un − u)dx. (2.18)

Clearly, we have

⟨I ′(un)− I ′(u), un − u⟩ → 0 as n → ∞. (2.19)

By the generalization of Hölder inequality, Lemma 2.1 and (2.6), it follows that∣∣∣∣∫
Ω

φt
un
un(un − u)dx

∣∣∣∣ ≤ ∥φt
un
∥2∗t ∥un∥ 12

3+2t
∥un − u∥ 12

3+2t

≤ C∥φt
un
∥Dt,2∥un∥ 12

3+2t
∥un − u∥ 12

3+2t

≤ C∥un∥3 12
3+2t

∥un − u∥ 12
3+2t

≤ C∥un∥3E∥un − u∥ 12
3+2t

.

Similarly, ∣∣∣∣∫
Ω

φt
uu(un − u)dx

∣∣∣∣ ≤ C∥u∥3E∥un − u∥ 12
3+2t

.

We have∣∣∣∣∫
Ω

(φt
un
un − φt

uu)(un − u)dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

φt
un
un(un − u)dx

∣∣∣∣+ ∣∣∣∣∫
Ω

φt
uu(un − u)dx

∣∣∣∣ → 0 as n → ∞.

(2.20)

By (H3), Hölder inequality and Minkowski inequality,∣∣∣∣∫
Ω

(f(x, un)− f(x, u))(un − u)dx

∣∣∣∣
≤ C1

∫
Ω

(|un|+ |u|)|un − u|dx+ C1

∫
Ω

(|un|p−1 + |u|p−1)|un − u|dx

≤ C1∥|un|+ |u|∥2∥un − u∥2 + C1∥|un|p−1 + |u|p−1∥ p
p−1

∥un − u∥p
≤ C1(∥un∥2 + ∥u∥2)∥un − u∥2 + C1(∥un∥p−1

p + ∥u∥p−1
p )∥un − u∥p

≤ C(∥un∥E + ∥u∥E)∥un − u∥2 + C(∥un∥p−1
E + ∥u∥p−1

E )∥un − u∥p → 0 as n → ∞. (2.21)
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By (H1) and Hölder inequality

∣∣∣∣ ∫
Ω

(m(x)|un|q−1 −m(x)|u|q−1)(un − u)dx
∣∣ ≤ ∫

Ω

|m(x)|
∣∣|un|q−1 − |u|q−1

∣∣∣∣|un − u|dx (2.22)

≤ ∥m∥ 2
2−q

∥∥∥∥|un|q−1 − |u|q−1

∥∥∥∥
2

∥un − u∥2 → 0. (2.23)

By (2.18), (2.19), (2.20), (2.21) and (2.22), we see that {un} converges strongly in E and the
proof is completed.

□

3. Existence and multiplicity results

In this section, under the assumptions on m,V and f , we give the proof of Theorems 1.1-1.2. By
(H3) and (H5), for any ε > 0, there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|p−1, x ∈ Ω, u ∈ R.

Then
|F (x, u)| ≤ ε

2
|u|2 + Cε

p
|u|p (3.1)

for some p ∈ (2, 2∗s)

Lemma 3.1. Suppose that (H1)− (H5) hold. Then There exists M > 0 and ρ > 0 such that for all
m with ∥m∥ 2

2−q
< M,

I(u) > 0, for u ∈ E with ∥u∥ = ρ.

Proof . It is known that E is continuously embedded into Lq(Ω) for q ∈ [2, 2∗s] (2
∗
s = 6

3−2s
), then

∥u∥q ≤ C0∥u∥E. Since p ∈ (2, 2∗s), by (2.13) and (3.1) we have

I(u) =
1

2
∥u∥2 + 1

4

∫
Ω

φt
uu

2dx− 1

q

∫
Ω

m(x)|u|qdx−
∫
Ω

F (x, u)dx

≥ 1

2
∥u∥2 +−1

q
∥m∥ 2

2−q
∥u∥q − ε

∫
Ω

u2dx− Cε

∫
Ω

|u|pdx

≥ C1∥u∥2 − C2∥m∥ 2
2−q

∥u∥q − Cε∥u∥p

≥
(
C1 − C2∥m∥ 2

2−q
∥u∥q−2 − Cε∥u∥p−2

)
∥u∥2.

(3.2)

Let

J(t) = C1 − C2∥m∥ 2
2−q

tq−2 − Cεt
p−2, for t > 0.

Since 1 < q < 2 < p, the function J(t) achieves its maximum on (0,∞) at t0 > 0. Moreover,
there exists M > 0 such that for |m| 2

2−q
< M , we have

max
t∈(0,∞)

J(t) = J(t0) > 0.

By ρ = t0, the proof will be completed.
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□ Proof of Theorem 1.1. By Lemma 3.1 , we define

Bρ = {u ∈ E : ∥u∥ ≤ ρ}, ∂Bρ = {u ∈ Ω : ∥u∥ = ρ}.

Then we have
I
∣∣
∂Bρ

> 0. (3.3)

Clearly I ∈ C1(Bρ,R), hence I is lower semicontinuous and bounded from below on Bρ. Let

c1 = inf{I(u) : u ∈ Bρ} > −∞.

By (H1), we can choose v ∈ C∞
0 (Ω). Since m(x) > 0 on Ω and 1 < q < 2, it is easy to obtain

I(tv) < 0, for t small.

Thus c1 < 0. Now by (3.3), Lemma 2.5 and Ekeland’s variational principle, c1 can be achieved
at some inner point u1 ∈ Bρ and u1 is a critical point of I. □

Lemma 3.2. Under the assumotions of Theorem 1.1 there exists e ∈ E with ∥e∥E > ρ such that
Iλ(e) < 0 for fixed λ ∈ (0, 1], where ρ is the same as in Lemma 3.1.
Proof . By (H6), there exists a constant C > 0 such that

F (x, u) ≥ C|u|µ, u ∈ R. (3.4)

By (2.4), (2.5), ∫
Ω

φt
uu

2dx = ∥φt
u∥2Dt,2 ≤ C∥u∥4Hs . (3.5)

For ξ > 0 and v ∈ C∞
0 (Ω), by (3.4) and (3.5), we have

I(ξv) ≤ ξ2

2
∥v∥2 + ξ4

4

∫
Ω

φt
vv

2dx−
∫
Ω

F (x, ξv)dx

≤ ξ2

2
∥v∥2 + Cξ4

4
∥v∥4Hs − Cξµ∥v∥µµ → −∞

as ξ → +∞. Define a path h : [0, 1] → E by h(η) = ηξv. For ξ large enough, we get

∥h(1)∥E =

(∫
R3

(
|(−∆)

s
2h(1)|2 + V (x)h2(1)

)
dx

) 1
2

> ρ and I(h(1)) < 0.

Choose e = h(1), we obtain the conclusion. □

Proof of Theorem 1.2. From Lemma 2.5, I satisfies the (PS) condition. By Lemma 3.1, 3.2
and Mountain Pass Theorem (Theorem 2.2 of [16]) we show that problem (1.1) has a nontrivial
solution at positive energy. □

Proof of Corollary 1.3. It is a direct consequence of Theorem 1.1 and Theorem 1.2. □
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