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Abstract

Tight frames are very similar to orthonormal bases and can be used as a good alternative to them.
Scaling frames are introduced as a method to transform a general frame to a tight one. This paper
investigates in under what conditions the tensor product of two frames is a scalable frame. We
expand some results concerning frame operations of eigenvalues to tensor product of Hilbert spaces.
Finally, we will show that if one of the frames is scalable, better conditions are obtained for the
approximation of tensor product of frames that is not scalable.
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1. Introduction

If a signal is represented as a vector and transmitted by sending the sequence of coefficients of
its representation then using an orthonormal basis to analyze and later reconstruct the signal can be
problematic. One of the problems is that the coefficients are lost during the transmission and the
reconstruction does not occur correctly. As a solution to this problem redundancy is introduced in
frames so that it might be possible to reconstruct a signal if some coefficients are lost. Frame theory
is a standard methodology in applied mathematics and engineering and works as an alternative to
orthonormal bases in Hilbert spaces which has many advantages. Frames have had a tremendous
impact on applications due to their unique ability to deliver redundant, yet stable expansions. The
idea of redundancy is the crucial property in various applications [1]. The study of frames began in
1952 with their introduction by Duffin and Schaeffer [6] and then has been expanded by Daubechies
and et al. [5].
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Tight frames are very similar to orthonormal bases and can be used as a good alternative to
them [12]. Also, tight frames can be characterized by those frames which possess optimal numerical
stability properties which can give fast convergence and recovery. All such applications require the
associated algorithms to be numerically stable, which the subclass of tight frames satisfies optimally.
This observation raises the question on how to carefully modify a given frame (which might be
suitable for a particular application) in order to generate a tight frame. Since a frame is typically
designed to accommodate certain requirements of an application, this modification process should
be as careful as possible in order not to change the properties of the frame too drastically.

Trying to be as careful as possible, the most noninvasive approach seems to merely scale each
frame vector, i.e., multiply it by a scalar. Indeed, almost all frame properties one can think of such
as erasure resilience or sparse expansions are left untouched by this modificationite [10]. In 2013,
Kutyniok [9] considered a general frame to generate a tight frame by rescaling its frame vectors and
showed whether a given frame is scalable.

Due to the high utilization of tensor product in approximation theory, sampling theory, wavelets
and ...[8]. This paper investigates conditions under which the tensor product of two frames is a
scalable frame and is organized as follows: In Section 2 we collect results and notations that we need.
In Section 3 we consider the frames and scalable frames in Hilbert spaces and extend some of the
known results about tensor product of frames to scalable frames. Through an example, we show that
the tensor product of a frame and a scalable frame is not generally scalable.

Scalablity of frames in measured by

r(Φ) =
upper frame bound of Φ

lower frame bound of Φ
(1.1)

that is the same condition number of the matrix and is defined as the ratio of the largest singular
value and the smallest singular value of Φ. Section 4.1 is devoted to some results concerning eigen-
values of frame operations to tensor product of Hilbert spaces and some properties of the optimal
upper and lower frame bounds.

Finally, we prove that if one of the frames is scalable, better conditions are obtained for the
approximation of tensor product of frames that is not scalable.

2. Notaion and Preliminaries

We begin with a brief of important and usefull definitions related to the frames, tensor product
of frames. We refer to [4] and [7] for better understanding.

Throughout the paper, H and K are Hilbert spaces with infinite dimension, also HM and KM

are M -dimensional Hilbert spaces. As usual we denote the algebra of all bounded linear operators
on H and K by B(H) and B(K) respectively. We always use E1 = {el}∞l=1, E2 = {uk}∞k=1 to denote
orthonormal bases for H and K, respectively.



Scalable frames in tensor product of Hilbert spaces11 (2020) No. 2,149-159 151

Definition 2.1. A family of vectors Φ = {φi} is a frame in Hilbert space H if there are constants
0 < A ≤ B <∞ so that for each f ∈ H

A∥f∥2 ≤
∑
i

|⟨f, φi⟩|2 ≤ B∥f∥2. (2.1)

The numbers A and B are called the frame bounds. A frame is called A-tight frame if A = B,
when A = B = 1 it is called a Parseval frame. One often also write Φ for the N ×M matrix whose
i-th column is the vector φi. It is well known that Φ is A-tight if and only if

S := ΦΦ∗ =
M∑
i=1

siφiφ
∗
i = AIN , (2.2)

where IN is the identity matrix in Hilbert space HN , and S is the frame operator of the frame
{φi}[4].

2.1. Tensor product of Hilbert spaces

Tensor product in recent decades has been highly regarded. For example tensor product suggests
a natural language for expressing algorithms of digital signal processing based on matrix factorization
[7]. Some tensor product properties that they needed to study this section is given below [4, 8].

Let H and K be Hilbert spaces with scalar products ⟨, ⟩H, and ⟨, ⟩K respectively. A mapping
f : H → K is said to antilinear if

f(ax+ by) = af(x) + bf(y).

The operator norm of an antilinear map T is defined as in the linear case:

∥T∥ = sup∥x∥=1∥Tx∥.

The adjoint of a bounded map T is defined by

⟨T ∗x, y⟩K = ⟨Ty, x⟩H for all x ∈ H, y ∈ K.

Note that the map T → T ∗ is linear rather than antilinear. Suppose T is an antilinear map
from K into H and E1 , E2 are orthonormal bases for H and K, respectively. Then by the Parseval
identity ∑

j

∥Tuj∥2 =
∑
i

∥T ∗ei∥2.

This shows that
∑

j ∥Tuj∥2 is independent of the choice of basis E2.
Now, the tensor product of H and K is the set H⊗K of all antilinear maps T : K → H such that∑

j ∥Tuj∥2 < ∞ for every orthonormal basis E2 of Hilbert space K. The space H ⊗K is a Hilbert

space [7] with the norm ∥|T |∥2 =
∑

j ∥Tuj∥2 and associated inner product

⟨Q, T ⟩ =
∑
j

⟨Quj, Tuj⟩. (2.3)

Let x, x′ ∈ H and y, y′ ∈ K and λ is scalar,then it is defined the map x⊗ y as follows
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(x⊗ y)(y′) = ⟨y, y′⟩x,∀y′ ∈ K. (2.4)

Let T ∈ H⊗K, then by (2.3)

∥|T |∥ = ∥|T ∗|∥ (2.5)

∥|x⊗ y|∥ = ∥x∥∥y∥ (2.6)

⟨x⊗ y, x′ ⊗ y′⟩ = ⟨x, x′⟩⟨y, y′⟩. (2.7)

Also, for all U,U ′ ∈ B(H) and V, V ′ ∈ B(K) we have

U ⊗ V ∈ B(H⊗K) and ∥U ⊗ V ∥ = ∥U∥∥V ∥ (2.8)

(U ⊗ V )(x⊗ y) = Ux⊗ V y for all x ∈ H , y ∈ K, [7]. (2.9)

Theorem 2.2. [8] Let {φi} , {ψj} be frames for H and K with frame bounds A1, B1 and A2, B2,
respectively. Then φi ⊗ ψj is a frame for H⊗K with frame bounds A1A2, B1B2.

3. Scalable frame for tensor product of Hilbert spaces

It is desirable to construct tight frames by just scaling each frame vector as it is noninvasive, and
frame properties such as erasure resilience or sparse expansions are left untouched by this modifica-
tion. This procedure is called frame scaling [9].

In 2013, Kutyniok [9] considered a general frame to generate a tight frame by rescaling its frame
vectors and showed whether a given frame is scalable. Most of the centralization was on identifying
frames whose vectors can be rescaled resulting in a tight frame.

A frame Φ = {φi} for H is said to be scalable if there exists a collection of scalars ci ≥ 0 such
that {ciφi} is a Parseval frame. If ci > 0 for all i = 1, ..., then Φ is called positively scalable. If there
exists δ > 0, such that ci ≥ δ for all j ∈ J , then Φ is called strictly scalable.

By (2.2), a frame is scalable if and only if there exists ci ≥ 0 for i = 1, ...,M such that

IN =
M∑
i=1

c2iφiφ
∗
i . (3.1)

It is shown through an example tensor product of a scalable frame with a frame which is not
generally scalable.

Example 3.1. Okoudjou [11] by considering convex polytopes associated to scalable frames suggests
that this matrix produces:

[
1 cos2θ2 ... cos2θM
0 sin2θ2 ... sin2θM

]
. (3.2)
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He showed that in the case M = 3 by putting conditions for θk, the frame can be scalable.

a. If we put θ2 =
π

2
, θ3 =

2π

3
in (4.4), we get the following scalable frame:

Φ1 =

1 −1 −1

2

0 0 −
√
3

2

 (3.3)

Figure 1: A scalable frame with 3 vectors in R2. The original frames are in blue, the frames obtained by
scaling are in red.

b. If we put θ2 =
π

6
, θ3 =

π

3
in (4.4), we get the following frame which is not scalable:

Φ2 =

1 1

2

−1

2

0

√
3

2

√
3

2

 (3.4)

Figure 2: A non scalable frame with 3 vectors in R2. The original frames are in blue, the frames obtained
by the scalable ones do not exist.
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It is simply demonstrated that Φ1 ⊗ Φ2 not scalable.

In the next theorems, we put a condition on a frame until the tensor product with a scalable
frame is scalable frame for H⊗K. We have a scalable frame for H, we need conditions on another
frame for K so that tensor product of frames is scalable frame for H⊗K.

Theorem 3.2. Suppose {φi} is a Scalable frame for H and let {ψj} is a tight frame for K. Then
{φi ⊗ ψj} is scalable frame for H⊗K.

Proof . Let {ψj} be a tight frame and there exists scalars ci ≥ 0 , i = 1, ... such that {ciφi} is a
Parseval frame.

For all T ∈ H⊗K of (2.3) we have

⟨T, ciφi ⊗ ψj⟩ =
∑
k

⟨Tuk, (ciφi ⊗ ψj)(uk)⟩

=
∑
k

⟨Tuk, ⟨ψj, uk⟩ciφi⟩ =
∑
k

⟨ψj, uk⟩⟨Tuk, ciφi⟩,

since T is antilinear map

= ⟨
∑
k

< ψj, uk >Tuk, ciφi⟩ = ⟨T (
∑
k

⟨ψj, uk⟩uk), ciφi⟩ = ⟨Tψj, ciφi⟩.

Finally, since {ciφi} is a Parseval frame so

∑
i

∑
j

|⟨T, ciφi ⊗ ψj⟩|2 =
∑
i

∑
j

|⟨Tψj, ciφi⟩|2 =
∑
j

∥Tψj∥2. (3.5)

By using the Parseval identity, we have

∥Tψj∥2 =
∑
l

|⟨Tψj, el⟩|2 =
∑
l

|⟨T ∗el, ψj⟩|2.

Since {ψj} is tight frame for K, then we have∑
j

∥Tψj∥2 =
∑
j

∑
l

|⟨Tψj, el⟩|2 =
∑
l

∑
j

|⟨T ∗el, ψj⟩|2

A
∑
l

∥T ∗el∥2 = A
∑
k

∥Tuk∥2 = A|∥T∥|2,

by (3.5) ∑
i

∑
j

|⟨T, ciφi ⊗ ψj⟩|2 = A|∥T∥|2,

now,
1

A

∑
i

∑
j

|⟨T, ciφi ⊗ ψj⟩|2 = |∥T∥|2,

therefore ∑
i

∑
j

|⟨T, ci
A
φi ⊗ ψj⟩|2 = |∥T∥|2,

set
ci
A

= di thus {φi ⊗ ψj} is scalable frame. □
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Corollary 3.3. Let {φi} , {ψj} be two frames in H , K. The frame {φi ⊗ψj} is scalable frame for
H⊗K if any one of the following conditions holds:

(a) If {φi} is a Parseval frame for H and {ψj} is a scalable frame for K.

(b) If {φi} is a scalable frame for H and {ψj} is a scalable frame for K.

The following theorem states that from the effect of scalable frame in the tensor space on a unit
sphere, from each of the spaces H and K can be found scalable frames for spaces H and K.

Theorem 3.4. Let {Ti} is scalable frame for H⊗K. Then for each 0 ̸= x0 ∈ H and 0 ̸= y0 ∈ K ,

{Ti(y0)
∥y0∥

} and {T
∗
i (x0)

∥x0∥
} are scalable frame for H and K, respectively.

Proof . We assume that {Ti} is scalable frame for H⊗K then there exists scalars ci ≥ 0 , i = 1, ...
such that {ciTi} is the Parseval frame. Let x ∈ H, by (2.3) we have

⟨x⊗ y0, Ti⟩ =
∑
j

⟨x⊗ y0(uj), Tiuj⟩

by (2.4) ∑
j

⟨⟨y0, uj⟩x, Tiuj⟩ =
∑
j

⟨x, ⟨y0, uj⟩Tiuj⟩

= ⟨x,
∑
j

⟨y0, uj⟩Tiuj⟩ (Ti is an antilinear map)

= ⟨x, Ti(
∑
j

⟨y0, uj⟩uj)⟩ = ⟨x, Tiyo⟩.

Since {ciTi} is Parseval frame, then∑
i

|⟨x, ciTiy0⟩|2 =
∑
i

|⟨x⊗ y0, ciTi⟩|2 = |∥x⊗ y0∥|2 = ∥x∥2∥y0∥2.

So, ∑
i

|⟨x, ciTiy0
∥y0∥

⟩|2 = ∥x∥2.

Thus {ciTi(y0)
∥y0∥

} is Parseval frame for H. Similarly, since for all y ∈ K

⟨y, T ∗
i x0⟩ = ⟨x0, Tiy⟩ = ⟨x0 ⊗ y, Ti⟩.

Therefore {T
∗
i (x0)

∥x0∥
} is also a scalable frame for K. □

The following theorem proves that adjoint of scalable frames in tensor product of Hilbert spaces
is also a scalable frame.

Theorem 3.5. Suppose {Ti} is a scalable frame for H⊗K then {T ∗
i } is scalable frame for K⊗H.

Proof . Since the sequence {Ti} is scalable frame forH⊗K then there exists scalars ci ≥ 0 , i = 1, ...
such that {ciTi} is Parseval frame for H⊗K. By using (2.5) and Parseval identity it is clear that

⟨T ∗, Tn⟩ = ⟨T, T ∗
n⟩

then ∑
i

|⟨T ∗, ciTi⟩|2 = ∥|T ∗|∥2 = ∥|T |∥2 =
∑
i

|⟨T, ciT ∗
i ⟩|2.

Therefore {T ∗
i } is scalable frame for K⊗H. □
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4. Non scalable of tensor product of frames

Example 3.1, part (b) shows that all frames are not scalable frames. By (3.1) if a frame is not
scalable frame, then

IN ̸=
M∑
i=1

s2iφiφ
∗
i .

When a frame is not scalable, scalars {si}Mi=1 should be found such that {siφi}Mi=1 is as tight as
possible. This should naturally mean that {siφi}Mi=1 is the best condition in the sense that the ratio
of upper and lower frame bounds is the closest to 1. Chen [3] studies the case when a frame is not
scalable by measuring

min∥In −
M∑
i=1

s2iφiφ
∗
i ∥F (4.1)

and the minimal ellipsoid of the convex hull of the frame vectors, where ∥.∥F is the Frobenious norm.
However, it is not clear whether solving (4.1) gives the best conditioned frame. Recently, in [2] has
studied the case in which a frame is not scalable by measuring

min r(
M∑
i=1

s2iφiφ
∗
i ) (4.2)

where for a given frame Φ = {φi}Mi=1, r(Φ) =
upper frame bound of Φ

lower frame bound of Φ
, which is the same as the

ratio of the largest singular value and the smallest singular value of Φ.

4.1. Tensor product of eigenvalues

A completely different application of eigenvectors and eigenvalues is that they can be used in a
theory of systems in diffrential equations [4]. Due to in (4.2) properties of eigenvalues are required,
some results are developed concerning eigenvalues of frame operators to Hilbert spaces tensor product
and some properties of the optimal upper and lower frame bounds [4].

Let Q be a bounded operator, then the trace of Q is defined by

TrQ =
N∑
i=1

⟨Qei, ei⟩. (4.3)

Let (φi)
M
i=1 be a frame for HL, denote (λi)

L
i=1 the eigenvalues for S. Then

L∑
i=1

λi =
M∑
i=1

∥φi∥2. (4.4)

Theorem 4.1. Let (φi)
M
i=1 and (ψj)

N
j=1 be frames for Hilbert spaces HL and HK with frame operators

S1, S2 having normalized eigenvectors (ei)
L
i=1 , (uj)

k
j=1 and respective eigenvalues (λi)

L
i=1 , (γj)

K
j=1.

Then for all j = 1, 2, ..., N , i = 1, 2, ...,M we have

Tr(S1 ⊗ S2) =
M∑
i=1

N∑
j=1

∥φi ⊗ ψj∥2.
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Proof . Assume that (φi)
M
i=1 and (ψj)

N
j=1 be frames for HL and HK , respectively. The spaces HL,

HK have orthonormal bases consisting of eigenvectors (ei)
L
i=1 , (uj)

K
j=1 for S1, S2. We denote the

corresponding eigenvalues by (λi)
L
i=1 , (γj)

K
j=1, then we have

M∑
i=1

N∑
j=1

∥φi ⊗ ψj∥2 =
M∑
i=1

N∑
j=1

⟨φi ⊗ ψj, φi ⊗ ψj⟩

=
M∑
i=1

N∑
j=1

⟨φi, φi⟩⟨ψj, ψj⟩ =
M∑
i=1

∥φi∥2
N∑
j=1

∥ψj∥2.

By using (4.3) and (4.4) we have

=
L∑
i=1

λi

K∑
j=1

γj = TrS1TrS2 (4.5)

also,

L∑
i=1

λi

K∑
j=1

γj =
L∑
i=1

⟨λiei, ei⟩
K∑
j=1

⟨γjuj, uj⟩

=
L∑
i=1

⟨S1ei, ei⟩
K∑
j=1

⟨S2uj, uj⟩

=
L∑
i=1

K∑
j=1

⟨S1ei ⊗ S2uj, ei ⊗ uj⟩

=
L∑
i=1

K∑
j=1

⟨(S1 ⊗ S2)(ei ⊗ uj), ei ⊗ uj⟩

= Tr(S1 ⊗ S2). (4.6)

Then the equations (4.5) and (4.6) imply that

Tr(S1 ⊗ S2) =
M∑
i=1

N∑
j=1

∥φi ⊗ ψj∥2 = TrS1TrS2.

This completes the proof. □
Convergence rate in numerical algorithms involving a strictly positive definite matrix depends

heavily on the condition number of the matrix, which is defined as the ratio between the largest
eigenvalue λmax and the smallest eigenvalue λmin, Christensen [4] considers the case of the frame
operator, these eigenvalues correspond to the optimal frame bounds. We will expand its theorem to
tensor product space.

Theorem 4.2. Let (φi)
M
i=1 and (ψj)

N
j=1 be frames for HL and HK, respectively with frame operators

S1, S2 having eigenvalues λ1 ≥ ... ≥ λL and λ′1 ≥ ... ≥ λ′K. Then λ1λ
′
1 conicides with the optimal

upper frame bound and λLλ
′
K is the optimal lower frame bound for {φi ⊗ ψj}i,j that i = 1, ...,M and

j = 1, ..., N .
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Proof . Assume that {ej}Lj=1 and {ej}Kj=1 are normalized eigenvectors corresponding to eigenvalues

{λi}Li=1 and {λ′j}Kj=1, respectively. Also f1 ∈ HL , f2 ∈ HK ,

f1 =
L∑

j=1

⟨f1, ej⟩ej, f2 =
K∑
j=1

⟨f2, ej⟩ej

and,

Sf1 =
L∑

j=1

⟨f1, ej⟩Sej, Sf2 =
K∑
j=1

⟨f2, ej > Sej

so
M∑
i=1

N∑
j=1

|⟨f1 ⊗ f2, φi ⊗ ψj⟩|2 =< (S1 ⊗ S2)(f1 ⊗ f2), (f1 ⊗ f2)⟩

= ⟨(S1f1 ⊗ S2f2), (f1 ⊗ f2)⟩ = ⟨S1f1, f1⟩⟨S2f2, f2⟩

=
L∑
i=1

λi|⟨f1, ei⟩|2
K∑
j=1

λ′j|⟨f2, ej⟩|2 ≤ λ1λ
′
1∥f1 ⊗ f2∥2.

Therefore λ1λ
′
1 is an upper frame bound. Similarly, the lower bound is proved. □

.

4.2. Optimaly conditioned on tensor product of scaled frames

In particular, Casazza [2] and Chen [3] have shown that the problem of minimizing the condition
number of a scaled frame (4.2) is equivalent to solving the minimization problem

min∥In −
M∑
i=1

s2iφiφ
∗
i ∥2, (4.7)

where ∥.∥2 is the operator norm of a matrix. They have shown that the optimal solution to
(4.1) does not even have to be a frame, and so it would yield an undefined condition number for the
corresponding system.

In Example 3.1, we simply see that the tensor product of a frame and a scalable frame (Φ1 ⊗Φ2)
is not generally scalable. We consider optimally conditioned of tensor product of two frames. If
tensor product of frame (φi)

M
i=1 with scalable frame (ψj)

N
j=1 are not scalabe, then how ”not scalable”

is a frame can be measured by measuring

min∥In ⊗ Im −
M∑
i=1

N∑
j=1

s2jφiφ
∗
i ⊗ ψjψ

∗
j∥2, (4.8)

where ∥.∥2 is the operator norm of a matrix that is equivalent the problem of minimizing the
condition number

min r(
M∑
i=1

s2jφiφ
∗
i ⊗ ψjψ

∗
j ). (4.9)

The next theorem states that better conditions for the approximation of non-scalable tensor
product of two frames Φ , Ψ are obtained if one of these frames is scalable.
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Proposition 4.3. Let Φ = (φi)
M
i=1 be a frame in HL and Ψ = (ψj)

N
j=1 be scalable frame in HK.

Then

min∥IL ⊗ IK −
M∑
i=1

N∑
j=1

s2jφiφ
∗
i ⊗ ψjψ

∗
j∥2 ≤ min∥IL −

M∑
i=1

φiφ
∗
i ∥2.

Proof .

min∥IL ⊗ IK −
M∑
i=1

N∑
j=1

s2jφiφ
∗
i ⊗ ψjψ

∗
j∥2

≤ ∥IL ⊗ (IK −
N∑
j=1

s2jψjψ
∗
j )∥2 + ∥(IL −

M∑
i=1

φiφ
∗
i )⊗ IK∥2

= ∥IL∥2∥IK −
N∑
j=1

s2jψjψ
∗
j∥2 + ∥IL −

M∑
i=1

φiφ
∗
i ∥2∥IK∥2

since Ψ = (ψj)
N
j=1 is scalable frame ∥IK −

∑N
j=1 s

2
jψjψ

∗
j∥2 = 0 then,

min∥IL ⊗ IK −
M∑
i=1

N∑
j=1

s2jφiφ
∗
i ⊗ ψjψ

∗
j∥2 ≤ min∥IL −

M∑
i=1

φiφ
∗
i ∥2.

This completes the proof. □
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