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Abstract

In this paper, the authors investigate a new subclass of meromorphic functions associated with ¢-
Analogue of Liu-Srivastava operator and differential subordination. Some properties in the form of
coefficient inequality, Integral representation, Radii of starlikeness and convexity, and partial sum
concept are introduced.

Keywords: Meromorphic function, ¢g-Analogue of Liu-Srivastava operator, Coefficient bounds,
Radii properties, Partial sum, Neighborhoods, Hadamard product.
2010 MSC: 30C45; 30C50.

1. Introduction

Studying the theory of analytical functions has been an area of concern for many researchers. A

more specific field is the study of inequalities in complex analysis. Literature review indicates lots of
studies based on the classes of analytical functions. The ¢-Analogue of Liu-Srivastava operator and
differential subordination a very important aspect in complex function theory study.
The g-analogue of derivative and integral operators were introduced by Jackson [B, [] along with
some applications of g-calculus.Purohit and Raina [I5], Juma, Abdulhussain and Al-khafaji [R] used
fractional g-calculus operator investigating certain classes of functions which are analytic in the open
disk. Kanas and Raducanu [9] gave the g-analogue of Ruscheweyh differential operator using the
concepts of convolution and then studied some of its properties. More applications of this operator
can be seen in the paper [2].
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The theory of g-analogues or g-extensions of classical formulas and functions based on the observation
that
. 1—4q"
lim
=1 1—gq

=a, gl <1,

therefore the number % is sometimes called the basic number [a],. In this work we derive ¢-

analogue of Liu-Srivastava operator and employ this new differential operator to define an integral
operator for meromorphic functions.
Let X denote the class of meromorphic functions of the type

+o0
1
2) = - + Z apz" 1, (1.1)
k=1

which are analytic in the punctured open disk
U'={ze€C: 0<|z| <1}

If f € X is given by (D) and g € 3 given by

then the Hadamard product (or convolution) f * g of f and g is defined by

(f*9)(= =—+Zakbk2 = (9= f)(2).

The g¢-shifted factorial is defined for w,q € C as a product of n factors by:

1 s n=>0
(w, @) = {(1 —w)(1—wq)...(1—wqg*1) , neN={L2,...}. 2

In view of the relation (2), we get
, (4 _
Mg 0 = (W) (1.3)

where (w), = w(w+1) -+ (w+n—1) is the familiar Pochhammer symbol. For complex parameters
Qy, 5]7 (Z: ]-7 7t7 jzla ,m, ay E(:7 Bj EC\{07_17_27})7

the g-hypergeometric function is the g-Analogue of the hypergeometric function and it is introduced
as follow:

1 t ms G, N al’ (at7Q)k
(a1, .., 00, B,y s @, 2 ,CZ; 517) o

x[(-1) ]Hm =3 (1.4)
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k(k—1
where (}) = %, q#0, t>m+1 (t,m € Ny =NU{0}) and (w, q) is the g-analogue of
the Pochhammer symbol (w) defined in (IZ2) see [4].
For z€e U={z2€ C: |z|] <1}, |¢f <1 and t = m + 1, the g-Analogue of the hypergeometric

function defined in (I2) takes the from

= (1, @)k - - - (o, Q) k
®ma{7"'7a7/67"'7/8m7Q7 Z’ 15
Bl gD e e =

which converges absolutely in the open unit disk U.
Also corresponding to the function defined in (ICH), consider

o0

1 1 CY17 k+1 --(at;Q)k-H k
— P (aq, .oy, By By @, 2) =— + z
5 t m( 1 y gy M1 y Mmoo Yy P kzo q q i1 61; )k+1 o (Bm; q>k+1

tgm ai, . 7ataﬁ17"'7/8m7Q7Z)' (16)

Now we consider the linear operator
L(aq,. .00 81, Bmyq) 2 — X

by
Eer(Oél? s 7at7ﬁ17 e 767)17 Q)f(z) = tq) (ala , Ol 617 T 7/8m7q7 Z) * f<Z>
1 +o0 , i
==+ Xn (ke (1.7)
k=1
where ( ) ( )
Xt (k) = 1,q)k+1 -+ - (Ot )1 ’ 18
( ) (Q7 q)k-i—l(ﬁla Q)k—f—l cee (5m7 Q)k’-i-l ( )
see [3].
For the sake of simplicity we write

‘cfn(ala s 704157517 s >ﬁm7Q)f(Z) = ﬁin[a’wﬁ]adf(z) (19)
In special case, when
a;=q" Bi=q¢Y a;>0,8>0 (i=1,...,t j=1,....,m t=m+1)

and ¢ — 1, the operator
Lralai, B, ) f(2) = Hyylau] f(2),
was introduced by Liu and Srivastara [I1].
Also for t =2, m =1, ay = ¢ and ¢ — 1 the operator investigated in [I0].
Let f(z) and g(z) be analytic in U*, then we say that f(z) is subordinate to g(z), if there exists an
analytic function w(z) with w(0) = 0 and | w(z) |< 1, such that f(z) = g(w(z)).
We denote this subordination by f(z) < g(z).
We denote the subclass E;”’Bm(A, B, C,0) of ¥ consisting of function f € 3 for which

B 2[Lh oy, By, 4 f(2)] . 21 + Az
[LL, [, By, q) f(2)] 1+ Bz’

(1.10)

where

A=B+(C—-B)(1-0),0<0<1,-1<B<C<1and —1<B<A<L.

several other classes studied by various authors, for example see [0], [I2] and [I3].
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2. Main Results

In this section, we obtain coefficient bounds and some properties for the class Zg‘tﬁm(A, B,C.0).

Theorem 2.1. Let f(z) € Y , then f(z) € £2Pm(A, B, C,0) if and only if

f[k?(l + B) + k(B +2(C — B)(1 - 0))| X", (k)ay < 2(C — B)(1 - 0), (2.1)

k=1

where X (k) is given in (IR).
The result is sharp for the function F(z) given by

2(C— B)(1-10) &

PO+ B T hBT20C B —XL)~ F=b2e (2.2)

F(z) :%—f—

and Xt (k) is given in (CR).

Proof . Let f(z) € X8 (A, B,C,0), then the subordination relation (I9) or equivalently
q

ALk fou, By, A )]+ 2Ll o, 5, 61 )] . 0
2BILY [aw, B, alf (2)]" + 2(B + (C = B)(L = 0)[L},[oi, By, ql f(2)] | '
holds true , therefore by making use of (IC8) and () we have
’ S kEXE (k)agzF 1
—2(C' — B)(1 = 0)22 + 3 k(B(k — 1) + 2A) X! (t)a, 2k~ '

Since R(z) < |z| for all z, therefore

. { i KX (Rag2! } .
2(C = B)Y(1—0)272 = Y5 k(B(k — 1) + 24) Xt (t)ayzh—1 '

By letting 2 — 1 through real values, we conclude
iK1+ B) + k(B +2(C — B)(1—0))] X!, (k)a, < 2(C — B)(1 —0),

where X! (k) is defined in (CR).
Conversely, let (1) holds true, it we let z € JU*, where JU* denotes the boundary of U*, then we
have

Ll 55, 4l () + 2AL0 o, B, 4L ()]
<BIL [0 By, ) f () +2(B + (C— B)(1 - 0)[Lhyla, 57, 4l ()]
) £ R () | |
= 2(C - B)(1—0) — 5,5 KB — 1) + 24) X0, (k) | ax |

(by (21)).
Thus by the maximum modulus theorem we conclude f(z) € £24F~(A, B,C,0). O

<1,
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Remark 2.2. Theorem 271 shows that if f(z) € £0Pm(A, B,C,0), then

o l< 2(C' — B)(1 - 0)
= [R2(1+ B) + k(B +2(C — B)(1 — 0))] X%, (k)’

k=1,2,..., (2.4)

where X (k) is given in (IR).
Now we obtain integral representation for £, [a;, 55, q]f(2).

Theorem 2.3. if f(z) € £ (A, B,C,0) then

: [ 2[(B+(C=B)(1-0)M(v) —1]
L, lai, Bi,qlf(2) —/0 exp{/o S = BM{)) dV} dw (2.5)

where | M(z) |< 1.
Proof . since f(z) € £ (A, B,C,0), so (Z0) holds true or equivalently we have

2[Lhalo, By, al f(2)]” + 2(L0 [, By, a) f ()]
ZBILL [ai, B, dlf (2)]" + 2(B + (C = B)(1 = 0))[£], [0, 85, ).f ()]

’

< 1.

(M(2)] =

Hence

"

[Lolai, B, alf(2)] _ 2[(B+(C — B)(1—0))M(v) — 1
[£hle, By, a1 £ (2)] z(1 = BM(v)) ’
where | M(z) |< 1, ze U"
After integration we get the required result. [

3. Radii and partial sum properties

In the last section we introduce Radii of starlikeness and convexity. Also partial sum property is
considered.

Theorem 3.1. if f(z) € Xa%Pm(A, B, C,0) then,

(i) f is meromorphically univalent starlike of order (0 < X\ < 1) in disk |z| < Ry, where

(A= NE2(1+ B) + k(B +2(C — B)(1 — 0))]X¢, (k)| 71
Rl_mf{ 200 —=B)(1—-0)(k+2—)\) } ) (3.1)

and X! (k) is given in (IR).
(i1) f is meromerphically univalent convez of order A(0 < X\ < 1) in disk |z| < Re where

(A= Nk2(1+ B) + k(B +2(C — B)(1 — 0))]X¢, (k)| 7
Ry —mf{ 2%(C —B) (1 —0)(k+2— N } : (3.2)

X (k) is given in ().

m

Proof . (i) For starlikeness it is enough to show that

‘Zf(z)/
f(2)

+1l<1-=A
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but
2f(2) 1‘ _[ZES G+ Da SR a2
f(z) L+ apzbtt | 7 1= azfrt — ’
or
9 _
i %akwﬂ“ <1
By using (24), we obtain
400
k4+2—X
D N
k=1
<§ Q(C_B)<1_‘9)(k+2_/\) ‘Z|k+1
T = (1-N[k(1+ B) + k(B +2(C - B)(1-0))1X}, (k)
<1

So, it is enough to suppose

(1= N[E2(1 + B) + k(B + 2(C' — B)(1 — 6))) X" (k)
2AC—B)1—0)(k+2—N) '

’Z’k+1 <

(44) For convexity by using the fact that ” f is convex if and only if zf is starlike” and by an easy

calculation we conclude the required result. [J

Theorem 3.2. Let f(z) € >, and define

Also suppose ZZS drap, < 1, where

[k*(1+ B) + k(B + 2(C — B)(1 — 0))] X! (k)

i = 2(C — B)(1—0) ’
then f( ) .
%{%uﬁ>1‘@“
and

Sm(2) } dy,
R > :
{ f(2) 1 +dp,
Proof . Since > diay, < 1, they by Theorem P, f(z) € sovhm(A, B, C,0).
Also by k > 1, we conclude and {d}} is an increasing sequence, therefore we obtain

m—1 +o0
ay + dpy, Z ap <1
k=1 k=m

Now by putting

(3.4)

(3.5)
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and making use of (B8) we obtain

%{M} . ‘M‘ donf (2) = dmS(2)

Viz)+1) — |V(2)+1 A f(2) — S (2) + 2S50(2)
_ dm Z+°°
d Z akzk+2( Zk 1 Akz )
< dn Y12 |ak| <1
2= 300 lan] = di 32025, land
. . V(z) .
By a simple calculation we conclude R {V(z)} > 0, therefore R > 0, or equivalently
f(2) 1
R —(1——)r >0
{ Sm(2) ( dm> 7
and this gives the first inequality in(B4).
For the second inequality (B33), we consider
S (2) dm,
=(1+dn —
W =) 5 -

and by using (B8) we have

%’ < 1, and hence ® {W(z)} > 0, therefore { 1”;_(21} -0

W )

and this shows the second inequality in (83). So the proof is complete. [

or equivalently

4. Neighborhoods and Hadamard product

In this section, we start by introducing the d—neighborhood of a function f € 3, for more
detils see [B, 04, 06, I7]. To do this, we assume that -1 < B < A <1, -1 < B < C <1,
A=B+(C—-B)(1-0),0<60<1andd > 0. Define 6—neighborhood of a function f € 3 of the
from of (CT) as:

Ns(f) = {g(z) cg(z) = % + 3 hZF e S and M < (5},

where, fori=1,--- ¢, j=1,---,m, a; € C, g; € C\{0,—1,-2,---}, we have

Y Z [k2(1+ B) + k(|B| + 2(C — B)(1 — 6))] X", (k)

2(C = B)(1—0) 2 = bil,

and

(01, Q)k+1 Tt (Oét, Q)k—i-l
(k) = .
KB = e Den Bro s~ (Boms s
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Theorem 4.1. Let the function f(z) defined by (IT) be in the class $9%°" (A, B,C,0). If f(2)
satisfies the following condition:
flz) +va!
1+v
then N5(f) C Xo+#m (A, B,C,90).

Proof . By using (233), we obtain f € Eg‘t’ﬂm (A, B,C,0) if and only if,
Z[ﬁin[aia ﬁja Q]f(z)]” + Q[E%[Oé’u Bja Q]f(z)],
zBIL [ai, By, al f(2)]" + 2(B + (C = B)(1 = 0)[£1,[ci, By, a f(2)]

which is equivalent to

(f*Q)(2) Q)( )

€ XaPm(A,B,C,0) , (veC,|v|<6,6>0),

7 1,

#0 , (z€U"), (4.1)

such that
[k*(1+ B)+ k(B +2(C — B)(1 — 9))]an(k;)

2(C — B)(1—0) (4.2)

Cr —

It follows from (E72) that
[k*(1+ B) + k(B +2(C — B)(1 — 0))] X!, (k)
2(C = B)(1-9)
[F*(1+ B) + k(|B| +2(C — B)(1 — 6))]X,,(k)
B 2(C = B)(1-90) ‘
f() v
1

+ v

lex] =

Since e x2vhm (A, B,C,0) by (E), we get

(L Q)

1+v
-1

£0. (4.3)
Now assume that ’W‘ < 0. Then, by (B33), we get
z

(f+Q)(z) v

V| -
>
‘1+u z71 1+u‘—11+u|

1)
> > 0.
11+ v|

(vl - 1)|
(f = Q)

This is a contradiction with |v| < ¢. Therefore ‘ > 0. Now, if we suppose that g(z) =

1
; + Z;:{ bkzkfl c N(;(f) then

Z
)(f g ’_‘Z ak_bk ekzk 1‘<Z|ak_bk||ek||zk 1|

+00 179 _ t
< 1) x Z[k (1+ B) + k(1B| +2(C = B)(1 = 0))1X;, (k)

2C—B)1-0) ai = bi] < 0.

k=1
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Thus, we have

Q) 4y e

which implies that g € X947 (A, B, C,0). So Ns(f) C Xa+Pm(A, B,C,0). O
Theorem 4.2. If f(2),9(z) € Eg‘t’ﬂm(A, B, C,0) then Hadamard product of f and g defined by

1 & .
f * g(Z) = ; + Zakbkzk !
k=1
is in the class X2+°m (A, B,C, ¢) such that

[k2(1 + B) 4+ k(B+2(C — B)(1 - 9))] 2an(k) k(1+ B) + kB
4k(C = B)2(1—0) 2(C — B)

¢<1-

Proof . Since f(z),g(z) € £2%Pn(A, B, C,0), so by Theorem (2), we have

+00
> [K*(1+ B) + k(B +2(C — B)(1 - 0))]X},(k)ar < 2(C — B)(1—0),
k=1

and
—+o0

> (K (14 B)+ k(B +2(C — B)(1 - 0))]X}, (k)b < 2(C — B)(1—90).
k=1
Therefore, we must find the smallest ¢ such that

io[kQ(l + B) + k(B +2(C — B)(1 — ¢))| X% (K)awbs < 2(C — B)(1 — 6).

k=1

By using the Cauchy-Schwarts inequality, we have

f[k?@ + B) + k(B +2(C — B)(1 — 0)] X", (k)\/axbs < 2(C — B)(1 — 0). (4.4)

Now, it is enough to show that

[k*(14 B) + k(B +2(C — B)(1 — ¢))] X%, (k)axby

< [K*(1+ B) + k(B +2(C — B)(1 — 0))) X}, (k)\/ axbr,
which is equivalent to

[k*(1+ B) + k(B +2(C — B)(1 - 0))]
[k2(1+ B)+ k(B+2(C — B)(1—9))]

But from equation (E4), we have

2(C — B)(1 - 6)
V by < [K2(1+ B) + k(B + 2(C — B)(1 — 0))| XL (k) (4.6)
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In view of equations (E3H) and (E4), this is equivalent to showing that

2(C' — B)(1 - 0)
K21+ B) + k(B + 2(C — B)(1 — 0))] XL (k)
K2(1+ B) + k(B +2(C — B)(1 - 0))]
K2(1+ B) + k(B +2(C — B)(1—¢))]’

[
=

which yields the following inequality

2(C — B)(1 —0)[kK*(1+ B) + k(B +2(C — B)(1 — ¢))]
< [0+ B) + k(B +2(C - BY(1-0))] "Xt (k).

Therefore

[k2(1 +B) + k(B +2(C~B)(1 - 9))] X(k) k(1 + B) + kB

p<1- IE(C — BRI —0) T B

This completes the proof of the theorem. [
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