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Abstract

In this paper, the authors investigate a new subclass of meromorphic functions associated with q-
Analogue of Liu-Srivastava operator and differential subordination. Some properties in the form of
coefficient inequality, Integral representation, Radii of starlikeness and convexity, and partial sum
concept are introduced.
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1. Introduction

Studying the theory of analytical functions has been an area of concern for many researchers. A
more specific field is the study of inequalities in complex analysis. Literature review indicates lots of
studies based on the classes of analytical functions. The q-Analogue of Liu-Srivastava operator and
differential subordination a very important aspect in complex function theory study.
The q-analogue of derivative and integral operators were introduced by Jackson [6, 7] along with
some applications of q-calculus.Purohit and Raina [15], Juma, Abdulhussain and Al-khafaji [8] used
fractional q-calculus operator investigating certain classes of functions which are analytic in the open
disk. Kanas and Raducanu [9] gave the q-analogue of Ruscheweyh differential operator using the
concepts of convolution and then studied some of its properties. More applications of this operator
can be seen in the paper [2].
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The theory of q-analogues or q-extensions of classical formulas and functions based on the observation
that

lim
q→1

1− qα

1− q
= α, |q| < 1,

therefore the number 1−qα

1−q
is sometimes called the basic number [α]q. In this work we derive q-

analogue of Liu-Srivastava operator and employ this new differential operator to define an integral
operator for meromorphic functions.
Let Σ denote the class of meromorphic functions of the type

f(z) =
1

z
+

+∞∑
k=1

akz
k−1, (1.1)

which are analytic in the punctured open disk

U∗ = {z ∈ C : 0 < |z| < 1}.

If f ∈ Σ is given by (1.1) and g ∈ Σ given by

g(z) =
1

z
+

+∞∑
k=1

bkz
k−1,

then the Hadamard product (or convolution) f ∗ g of f and g is defined by

(f ∗ g)(z) = 1

z
+

+∞∑
k=1

akbkz
k−1 = (g ∗ f)(z).

The q-shifted factorial is defined for w, q ∈ C as a product of n factors by:

(w, q)n =

{
1 , n = 0

(1− w)(1− wq) . . . (1− wqn−1) , n ∈ N = {1, 2, . . . }.
(1.2)

In view of the relation (1.2), we get

limq→1−
(qw, q)n
(1− q)n

= (w)n. (1.3)

where (w)n = w(w+1) · · · (w+ n− 1) is the familiar Pochhammer symbol. For complex parameters

αi, βj, (i = 1, · · · , t, j = 1, · · · ,m, αi ∈ C, βj ∈ C\{0,−1,−2, · · · }),

the q-hypergeometric function is the q-Analogue of the hypergeometric function and it is introduced
as follow:

Ψ(α1, . . . , αt, β1, . . . , βm, q, z) =
∞∑
k=0

(α1, q)k . . . (αt, q)k
(q, q)k(β1, q)k . . . (βm, q)k

×
[
(−1)kq(

k
2)
]1+m−t

zk, (1.4)
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where
(
k
2

)
=

k(k − 1)

2
, q ̸= 0, t > m + 1 (t,m ∈ N0 = N ∪ {0}) and (w, q)k is the q-analogue of

the Pochhammer symbol (w)k defined in (1.2) see [4].
For z ∈ U = {z ∈ C : |z| < 1}, |q| < 1 and t = m + 1, the q-Analogue of the hypergeometric
function defined in (1.4) takes the from

tΦm(α1, . . . , αt, β1, . . . , βm, q, z) =
∞∑
k=0

(α1, q)k . . . (αt, q)k
(q, q)k(β1, q)k . . . (βm, q)k

zk, (1.5)

which converges absolutely in the open unit disk U.
Also corresponding to the function defined in (1.5), consider

1

z
tΦm(α1, . . . , αt, β1, . . . , βm, q, z) =

1

z
+

∞∑
k=0

(α1, q)k+1 . . . (αt, q)k+1

(q, q)k+1(β1, q)k+1 . . . (βm, q)k+1

zk

= tGm(α1, . . . , αt, β1, . . . , βm, q, z). (1.6)

Now we consider the linear operator

Lt
m(α1, . . . , αt, β1, . . . , βm, q) : Σ −→ Σ

by

Lt
m(α1, . . . , αt, β1, . . . , βm, q)f(z) = tΦm(α1, . . . , αt, β1, . . . , βm, q, z) ∗ f(z)

=
1

z
+

+∞∑
k=1

X t
m(k)akz

k, (1.7)

where

X t
m(k) =

(α1, q)k+1 . . . (αt, q)k+1

(q, q)k+1(β1, q)k+1 . . . (βm, q)k+1

, (1.8)

see [3].
For the sake of simplicity we write

Lt
m(α1, . . . , αt, β1, . . . , βm, q)f(z) = Lt

m[αi, βj, q]f(z). (1.9)

In special case, when

αi = qαi , βj = qβj , αi > 0, βj > 0 (i = 1, . . . , t, j = 1, . . . ,m, t = m+ 1)

and q → 1, the operator
Lt

m[αi, βj, q]f(z) = Ht
m[αi]f(z),

was introduced by Liu and Srivastara [11].
Also for t = 2, m = 1, α2 = q and q → 1 the operator investigated in [10].
Let f(z) and g(z) be analytic in U∗, then we say that f(z) is subordinate to g(z), if there exists an
analytic function w(z) with w(0) = 0 and | w(z) |< 1, such that f(z) = g(w(z)).
We denote this subordination by f(z) ≺ g(z).
We denote the subclass Σαt,βm

q (A,B,C, θ) of Σ consisting of function f ∈ Σ for which

− z[Lt
m[αi, βj, q]f(z)]

′′

[Lt
m[αi, βj, q]f(z)]

′ ≺ 2
1 + Az

1 +Bz
, (1.10)

where
A = B + (C −B)(1− θ), 0 ≤ θ < 1,−1 ≤ B < C ≤ 1 and − 1 ≤ B < A ≤ 1.

several other classes studied by various authors, for example see [1], [12] and [13].
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2. Main Results

In this section, we obtain coefficient bounds and some properties for the class Σαt,βm
q (A,B,C, θ).

Theorem 2.1. Let f(z) ∈
∑

, then f(z) ∈ Σαt,βm
q (A,B,C, θ) if and only if

+∞∑
k=1

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)ak < 2(C −B)(1− θ), (2.1)

where X t
m(k) is given in (1.8).

The result is sharp for the function F (z) given by

F (z) =
1

z
+

2(C −B)(1− θ)

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

zk, k = 1, 2, . . . , (2.2)

and X t
m(k) is given in (1.8).

Proof . Let f(z) ∈ Σαt,βm
q (A,B,C, θ), then the subordination relation (1.9) or equivalently∣∣∣∣ z[Lt

m[αi, βj, q]f(z)]
′′
+ 2[Lt

m[αi, βj, q]f(z)]
′

zB[Lt
m[αi, βj, q]f(z)]

′′ + 2(B + (C −B)(1− θ)[Lt
m[αi, βj, q]f(z)]

′

∣∣∣∣ < 1, (2.3)

holds true , therefore by making use of (1.8) and (1.9) we have∣∣∣∣ ∑+∞
k=1 k

2X t
m(k)akz

k−1

−2(C −B)(1− θ)z−2 +
∑+∞

k=1 k(B(k − 1) + 2A)X t
m(t)azz

k−1

∣∣∣∣ < 1.

Since ℜ(z) ≤ |z| for all z, therefore

ℜ
{ ∑+∞

k=1 k
2X t

m(k)akz
k−1

2(C −B)(1− θ)z−2 −
∑+∞

k=1 k(B(k − 1) + 2A)X t
m(t)akz

k−1

}
< 1.

By letting z → 1 through real values, we conclude∑+∞
k=1[k

2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)ak < 2(C −B)(1− θ),

where X t
m(k) is defined in (1.8).

Conversely, let (2.1) holds true, it we let z ∈ ∂U∗, where ∂U∗ denotes the boundary of U∗, then we
have ∣∣∣∣ z[Lt

m[αi, βj, q]f(z)]
′′
+ 2[Lt

m[αi, βj, q]f(z)]
′

zB[Lt
m[αi, βj, q]f(z)]

′′ + 2(B + (C −B)(1− θ)[Lt
m[αi, βj, q]f(z)]

′

∣∣∣∣
≤

∑+∞
k=1 k

2X t
m(k) | ak |

2(C −B)(1− θ)−
∑+∞

k=1 k(B(k − 1) + 2A)X t
m(k) | ak |

< 1,

(by (2.1)).
Thus by the maximum modulus theorem we conclude f(z) ∈ Σαt,βm

q (A,B,C, θ). □
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Remark 2.2. Theorem 2.1 shows that if f(z) ∈ Σαt,βm
q (A,B,C, θ), then

| ak |≤
2(C −B)(1− θ)

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

, k = 1, 2, . . . , (2.4)

where X t
m(k) is given in (1.8).

Now we obtain integral representation for Lt
m[αi, βj, q]f(z).

Theorem 2.3. if f(z) ∈ Σαt,βm
q (A,B,C, θ) then

Lt
m[αi, βj, q]f(z) =

∫ z

0

exp

{∫ z

0

2[(B + (C −B)(1− θ))M(ν)− 1]

ν(1−BM(ν))
dν

}
dω (2.5)

where | M(z) |< 1.

Proof . since f(z) ∈ Σαt,βm
q (A,B,C, θ), so (2.1) holds true or equivalently we have

|M(z)| =
∣∣∣∣ z[Lt

m[αi, βj, q]f(z)]
′′
+ 2[Lt

m[αi, βj, q]f(z)]
′

zB[Lt
m[αi, βj, q]f(z)]

′′ + 2(B + (C −B)(1− θ))[Lt
m[αi, βj, q]f(z)]

′

∣∣∣∣ < 1.

Hence
[Lt

m[αi, βj, q]f(z)]
′′

[Lt
m[αi, βj, q]f(z)]

′ =
2[(B + (C −B)(1− θ))M(ν)− 1]

z(1−BM(ν))
,

where | M(z) |< 1, z ∈ U∗.
After integration we get the required result. □

3. Radii and partial sum properties

In the last section we introduce Radii of starlikeness and convexity. Also partial sum property is
considered.

Theorem 3.1. if f(z) ∈ Σαt,βm
q (A,B,C, θ) then,

(i) f is meromorphically univalent starlike of order λ(0 ≤ λ < 1) in disk |z| < R1, where

R1 = inf
k

{
(1− λ)[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t

m(k)

2(C −B)(1− θ)(k + 2− λ)

} 1
k+1

, (3.1)

and X t
m(k) is given in (1.8).

(ii) f is meromerphically univalent convex of order λ(0 ≤ λ < 1) in disk |z| < R2 where

R2 = inf
k

{
(1− λ)[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t

m(k)

2k(C −B)(1− θ)(k + 2− λ)

} 1
k+1

. (3.2)

X t
m(k) is given in (1.8).

Proof . (i) For starlikeness it is enough to show that∣∣zf(z)′
f(z)

+ 1
∣∣ < 1− λ.
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but ∣∣∣∣zf(z)′f(z)
+ 1

∣∣∣∣ = ∣∣∣∣∑+∞
k=1(k + 1)akz

k+1

1 +
∑+∞

k=1 akz
k+1

∣∣∣∣ ≤ ∑+∞
k=1(k + 1)ak|z|k+1

1−
∑+∞

k=1 ak|z|k+1
≤ 1− λ,

or ∑+∞
k=1

k + 2− λ

1− λ
ak|z|k+1 ≤ 1.

By using (2.4), we obtain

+∞∑
k=1

k + 2− λ

1− λ
ak|z|k+1

≤
+∞∑
k=1

2(C −B)(1− θ)(k + 2− λ)

(1− λ)[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

|z|k+1

≤ 1.

So, it is enough to suppose

|z|k+1 ≤ (1− λ)[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

2(C −B)(1− θ)(k + 2− λ)
.

(ii) For convexity by using the fact that ”f is convex if and only if zf
′
is starlike” and by an easy

calculation we conclude the required result. □

Theorem 3.2. Let f(z) ∈
∑

, and define

S1(z) =
1

z
, Sm(z) =

1

z
+

m−1∑
k=1

akz
k, (m = 2, 3, . . . ). (3.3)

Also suppose
∑+∞

k=1 dkak ≤ 1, where

dk =
[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t

m(k)

2(C −B)(1− θ)
,

then

ℜ
{

f(z)

Sm(z)

}
> 1− 1

dm
, (3.4)

and

ℜ
{
Sm(z)

f(z)

}
>

dm
1 + dm

. (3.5)

Proof . Since
∑+∞

k=1 dkak ≤ 1, they by Theorem 2.1, f(z) ∈ Σαt,βm
q (A,B,C, θ).

Also by k ≥ 1, we conclude and {dk} is an increasing sequence, therefore we obtain

m−1∑
k=1

ak + dm

+∞∑
k=m

ak ≤ 1. (3.6)

Now by putting

V (z) = dm

[
f(z)

Sm(z)
− (1− 1

xm

)

]
,
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and making use of (3.6) we obtain

ℜ
{
V (z)− 1

V (z) + 1

}
≤

∣∣∣∣V (z)− 1

V (z) + 1

∣∣∣∣ = ∣∣∣∣ dmf(z)− dmSm(z)

dmf(z)− dmSm(z) + 2Sm(z)

∣∣∣∣
=

∣∣∣∣∣∣∣
dm

∑+∞
k=m akz

k

dm
∑+∞

k=m akzk + 2(
1

z
+
∑m−1

k=1 akzk)

∣∣∣∣∣∣∣
≤ dm

∑+∞
k=m |ak|

2−
∑m−1

k=1 |ak| − dm
∑+∞

k=m |ak|
≤ 1.

By a simple calculation we conclude ℜ{V (z)} > 0, therefore ℜ
{
V (z)

dm

}
> 0, or equivalently

ℜ
{

f(z)

Sm(z)
− (1− 1

dm
)

}
> 0,

and this gives the first inequality in(3.4).
For the second inequality (3.5), we consider

W (z) = (1 + dm)

[
Sm(z)

f(z)
− dm

1 + dm

]
,

and by using (3.6) we have

∣∣∣∣W (z)− 1

W (z) + 1

∣∣∣∣ ≤ 1, and hence ℜ{W (z)} > 0, therefore ℜ
{

W (z)

1 + dm

}
> 0,

or equivalently

ℜ
{
Sm(z)

f(z)
− dm

1 + dm

}
> 0,

and this shows the second inequality in (3.5). So the proof is complete. □

4. Neighborhoods and Hadamard product

In this section, we start by introducing the δ−neighborhood of a function f ∈ Σ, for more
detils see [5, 14, 16, 17]. To do this, we assume that −1 ≤ B < A ≤ 1, −1 ≤ B < C ≤ 1,
A = B + (C − B)(1 − θ), 0 ≤ θ < 1 and δ ≥ 0. Define δ−neighborhood of a function f ∈ Σ of the
from of (1.1) as:

Nδ(f) =

{
g(z) : g(z) =

1

z
+
∑+∞

k=1 bkz
k−1 ∈ Σ and M ≤ δ

}
,

where, for i = 1, · · · , t, j = 1, · · · ,m, αi ∈ C, βj ∈ C\{0,−1,−2, · · · }, we have

M =
+∞∑
k=1

[k2(1 +B) + k(|B|+ 2(C −B)(1− θ))]X t
m(k)

2(C −B)(1− θ)
|ak − bk|,

and

X t
m(k) =

(α1, q)k+1 · · · (αt, q)k+1

(q, q)k+1(β1, q)k+1 · · · (βm, q)k+1

.
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Theorem 4.1. Let the function f(z) defined by (1.1) be in the class Σαt,βm
q (A,B,C, θ). If f(z)

satisfies the following condition:

f(z) + νz−1

1 + ν
∈ Σαt,βm

q (A,B,C, θ) , (ν ∈ C, |ν| < δ, δ > 0),

then Nδ(f) ⊂ Σαt,βm
q (A,B,C, θ).

Proof . By using (2.3), we obtain f ∈ Σαt,βm
q (A,B,C, θ) if and only if,

z[Lt
m[αi, βj, q]f(z)]

′′
+ 2[Lt

m[αi, βj, q]f(z)]
′

zB[Lt
m[αi, βj, q]f(z)]

′′ + 2(B + (C −B)(1− θ)[Lt
m[αi, βj, q]f(z)]

′ ̸= 1,

which is equivalent to

(f ∗Q)(z)

z−1
̸= 0 , (z ∈ U∗), (4.1)

where

Q(z) =
1

z
+

+∞∑
k=1

ekz
k−1 , (z ∈ U∗),

such that

ek =
[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t

m(k)

2(C −B)(1− θ)
. (4.2)

It follows from (4.2) that

|ek| =
∣∣∣ [k2(1 +B) + k(B + 2(C −B)(1− θ))]X t

m(k)

2(C −B)(1− θ)

∣∣∣
≤ [k2(1 +B) + k(|B|+ 2(C −B)(1− θ))]X t

m(k)

2(C −B)(1− θ)
.

Since
f(z) + νz−1

1 + ν
∈ Σαt,βm

q (A,B,C, θ) by (4.1), we get(f(z) + νz−1

1 + ν
∗Q

)
(z)

z−1
̸= 0. (4.3)

Now assume that
∣∣∣(f ∗Q)(z)

z−1

∣∣∣ < δ. Then, by (4.3), we get∣∣∣ 1

1 + ν

(f ∗Q)(z)

z−1
+

ν

1 + ν

∣∣∣ ≥ 1

|1 + ν|
(|ν| − 1)

∣∣∣(f ∗Q)(z)

z−1

∣∣∣ > |ν| − δ

|1 + ν|
≥ 0.

This is a contradiction with |ν| < δ. Therefore
∣∣∣(f ∗Q)(z)

z−1

∣∣∣ ≥ δ. Now, if we suppose that g(z) =

1

z
+
∑+∞

k=1 bkz
k−1 ∈ Nδ(f) then∣∣∣(f − g)(z) ∗Q)(z)

z−1

∣∣∣ = ∣∣∣ +∞∑
k=1

(ak − bk)ekz
k−1

∣∣∣ ≤ +∞∑
k=1

|ak − bk||ek||zk−1|

≤ |zk−1| ×
+∞∑
k=1

[k2(1 +B) + k(|B|+ 2(C −B)(1− θ))]X t
m(k)

2(C −B)(1− θ)
|ak − bk| ≤ δ.
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Thus, we have

(g ∗Q)(z)

z−1
̸= 0 , (z ∈ U∗),

which implies that g ∈ Σαt,βm
q (A,B,C, θ). So Nδ(f) ⊂ Σαt,βm

q (A,B,C, θ). □

Theorem 4.2. If f(z), g(z) ∈ Σαt,βm
q (A,B,C, θ) then Hadamard product of f and g defined by

f ∗ g(z) = 1

z
+

+∞∑
k=1

akbkz
k−1

is in the class Σαt,βm
q (A,B,C, ϕ) such that

ϕ ≤ 1−

[
k2(1 +B) + k(B + 2(C −B)(1− θ))

]2
X t

m(k)

4k(C −B)2(1− θ)
+

k(1 +B) + kB

2(C −B)
.

Proof . Since f(z), g(z) ∈ Σαt,βm
q (A,B,C, θ), so by Theorem (2.1), we have

+∞∑
k=1

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)ak < 2(C −B)(1− θ),

and
+∞∑
k=1

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)bk < 2(C −B)(1− θ).

Therefore, we must find the smallest ϕ such that

+∞∑
k=1

[k2(1 +B) + k(B + 2(C −B)(1− ϕ))]X t
m(k)akbk < 2(C −B)(1− θ).

By using the Cauchy-Schwarts inequality, we have

+∞∑
k=1

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

√
akbk < 2(C −B)(1− θ). (4.4)

Now, it is enough to show that

[k2(1 +B) + k(B + 2(C −B)(1− ϕ))]X t
m(k)akbk

≤ [k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

√
akbk,

which is equivalent to √
akbk ≤

[k2(1 +B) + k(B + 2(C −B)(1− θ))]

[k2(1 +B) + k(B + 2(C −B)(1− ϕ))]
. (4.5)

But from equation (4.4), we have√
akbk ≤

2(C −B)(1− θ)

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

. (4.6)
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In view of equations (4.5) and (4.6), this is equivalent to showing that

2(C −B)(1− θ)

[k2(1 +B) + k(B + 2(C −B)(1− θ))]X t
m(k)

≤ [k2(1 +B) + k(B + 2(C −B)(1− θ))]

[k2(1 +B) + k(B + 2(C −B)(1− ϕ))]
,

which yields the following inequality

2(C −B)(1− θ)[k2(1 +B) + k(B + 2(C −B)(1− ϕ))]

≤
[
k2(1 +B) + k(B + 2(C −B)(1− θ))

]2
X t

m(k).

Therefore

ϕ ≤ 1−

[
k2(1 +B) + k(B + 2(C −B)(1− θ))

]2
X t

m(k)

4k(C −B)2(1− θ)
+

k(1 +B) + kB

2(C −B)
.

This completes the proof of the theorem. □

References

[1] H. Aldweby and M. Darus, univalence of a new General integral operator associated with the q-Hypergeometric
functions, I. J. Math. Math. sci., (2013), Article ID 769537, 5 pages.

[2] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr.
Appl. Anal., 2014(2014), Article ID 958563, 6 pages.

[3] H. Aldweby and M. Darus, Integral operator defined by q-Analogue of Liu- Srivastara operator, stud. Unir. Babes
- Bolyai Math. 58(4)(2013), 529–537.

[4] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Limited, Chichester, (1983).
[5] A. W. Goodman, univalent functions and analytic curves, Proc. Amer. Math. Soc., 8(3)(1975), 598–601.
[6] F. H. Jackson, On q-definite integrals, The Quarterly J. Pure Appl. Math., 41(1910), 193–203.
[7] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909),

253–281.
[8] A. R. S. Juma, M. S. Abdulhussain and S. N. Al-khafaji, Certain subclass of p−valent meromorphic Bazilevic

function defined by fractional q−calculus operators, Int. J. Nonlinear Anal. Appl., 9(2018), 223–230.
[9] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014),

1183–1196.
[10] J. L. Liu and H. M. Srivastara, A linear operator and associated families of meromorphically multivalent functions,

J. Math. Anal. appl., 259(2)(2001), 566–581.
[11] J. L. Liu and H. M. Srivastara, meromorphically multivalent functions associated with the generalized hyperge-

ometric functions, Mathematical and Computer Modeling, 39(1)(2004), 21–34.
[12] A. Mohammed and M. Darus, a new Integral operator for meromorphic functions, Acta unirersitatis Apulensis,

24(2010), 231– 238.
[13] A. Mohammed and M. Darus, Starlikeness properties of a new Integral operator for meromorphic functions, J.

Appl. Math., (2011), Article ID 804150, 8 pages.
[14] S. S. Miller and P. T. Mocanu, Differentail Subordinateions: Theory and Applications. Marcel Dekker, New York,

(2000).
[15] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q- caluulus

operators, Math. Scand., 109(2011), 55–70.
[16] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4)(1981), 521–527.
[17] J. Stankiwicz, Neighorhoods of Meromorphic function and Hadamard products, Ann. Polon. Math., 66(1985),

317–331.


	Introduction
	Main Results
	Radii and partial sum properties
	Neighborhoods and Hadamard product

