
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,819 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
شبیهسازی موجشکن نیمهاستوانهای در حالت غیریکنواخت در آب کم عمق | ||
مدل سازی در مهندسی | ||
مقاله 13، دوره 18، شماره 60، خرداد 1399، صفحه 183-199 اصل مقاله (2.57 M) | ||
نوع مقاله: مقاله مکانیک | ||
شناسه دیجیتال (DOI): 10.22075/jme.2019.17549.1707 | ||
نویسندگان | ||
بابک احمدپور1؛ محمد احمدزاده طلاتپه* 2؛ محمدرضا نگهداری3 | ||
1دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران | ||
2دانشگاه دریانوردی و علوم دریایی چابهار | ||
3دانشکده مهندسی دریا، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران | ||
تاریخ دریافت: 31 فروردین 1398، تاریخ بازنگری: 23 شهریور 1398، تاریخ پذیرش: 27 شهریور 1398 | ||
چکیده | ||
موجشکنها سازههای ساحلی و فراساحلی هستند که از بنادر و سواحل در برابر امواج و جریانهای ساحلی محافظت میکنند. موجشکنها با کاهش ارتفاع موج و در نتیجه انرژی موج، نیروی موج را قبل از رسیدن به سواحل یا بنادر کاهش میدهند. ارتفاع موج در نزدیکی سواحل و در آب کم عمق نسبت به آب عمیق بیشتر میباشد. در این مطالعه، با توجه به پرهزینه و زمانبر بودن آزمایش یک نمونه موج شکن، نحوهی شبیهسازی به وسیلهی نرمافزار استار مورد بررسی قرار گرفته است. برای این منظور، موجشکن نیمهاستوانهای در سه حالت بدون سرعت جریان برای مدل، با سرعت جریان برای مدل و با سرعت جریان برای نمونه اصلی شبیهسازی میشود. فضای شبیهسازی در شرایط غیریکنواخت، آب با عمق متوسط، خط آب بالاتر از سازه و با استفاده از حل کنندهی RANS میباشد. در نهایت، نتایج حاصل از شبیهسازی با نتایج عددی و آزمایشگاهی گذشته مورد صحتسنجی و مقایسه قرار گرفته است. نتایج شبیهسازی دارای همخوانی خوبی با نتایج عددی و آزمایشگاهی میباشند. در نتیجه، از مدلهای فیزیکی و حوزه شبیهسازی مدل شده میتوان برای شبیهسازی سازههای ثابت دریایی استفاده نمود. استفاده از موجشکن نیمهاستوانهای در آبهای عمیق با مشکلاتی همچون افزایش فضا و مصالح مصرفی روبرو میشود که برای رفع این مشکل موجشکن نیمهاستوانهای مرکب مدل و مورد بررسی قرار گرفته است. بر اساس نتایج بدست آمده، درگ وارده بر این سازه نسبت به سازه اولیه افزایش یافته اما با توجه به طراحی، سازه فضای کمتری را اشغال و مناسب استفاده در آب-های عمیق نیز میباشد. | ||
کلیدواژهها | ||
موج شکن؛ شبیه سازی؛ نرم افزار استار | ||
عنوان مقاله [English] | ||
Simulation study of a semi_circular Caisson Breakwater in a Non-uniform State in a Shallow Water Situation | ||
نویسندگان [English] | ||
Babak Ahmadpoor1؛ mohammad ahmadzadehtalatapeh2؛ Mohammadreza Negahdari3 | ||
1Marine Engineering Department, Chabahar Maritime University,Iran | ||
3Marine Engineering Department, Chabahar Maritime University | ||
چکیده [English] | ||
Breakwater is a coastal-offshore structure which is used to protect the harbors and shores from waves and coastal streams. Breakwaters decrease the height of the waves and reduce the energy of the waves before reaching the harbors. The height of the streams near harbors with shallow waters is very high in comparison to deep waters situation. Due to the time consuming and high cost of experimental study of a typical breakwater, the present study was conducted via the Star CCM Software. To this end, the composite semi-circular breakwater was modeled under three different water line conditions. The simulation space for all the three conditions was the RANS equations. The results were compared and verified by the numerical and experimental results. It was found that the simulation results are in acceptable agreement with the reported experimental and numerical results. Therefore, the physical modeling and simulation field of the studied structure can be employed for simulation of the static coastal-offshore structures. The use of semi-circular breakers in deep waters encounter with problems such as required space and construction materials. Therefore, a composite semi-circular breaker was modeled and investigated to tackle these problems. Based to the results, the drag on composite semi-circular breaker increases in comparison with the original structure; however, due to the design specifications of the structure, the semi-circular breaker occupies less space and is suitable for application in deep waters. | ||
کلیدواژهها [English] | ||
Breakwater, Simulation, Star CCM+ | ||
مراجع | ||
]1 [سعید ذوالفقاریفر و فرشاد تورنگ، «مروری برتاریخچه موجشکنها و انواع آن»، همایش سراسری فناوری و تکنولوژی مهندسی عمران، معماری، برق و مکانیک، 17 آذر 1395. ]2 [میثم کوزهگر و فرهود آذرسینا، «تأثیر دامنه موج، ارتفاع موج و طول محفظه هوا در ضریب بازتاب موج در موجشکنهای کیسونی»، شانزدهمین همایش صنایع دریایی، 11 و 12 آذر 1393. ]3 [محسنعلی شایانفر، مصطفی خانزاده، محمدمهدی معمارپور و مهرداد کیمیایی، «برآورد مقاومت نهایی سکوهای ثابت فولادی با استفاده از تحلیل بار افزون استاتیکی و دینامیکی تحت بارگذاری امواج»، مجله مدلسازی در مهندسی، دوره 8، شماره 21، تابستان 1389، صفحه 1-14. ]4 [معصومه بهرامی و رضا آقایاری، «بررسی رفتار و شکلپذیری برشی تیرهای عمیق بتن مسلح تقویتشده با FRP»، مجله مدلسازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 213-226. ]5 [محمدرضا معرفزاده، «یک مدل استوکستیکی خوردگی سازههای فولادی در معرض آب دریا»، مجله مدلسازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 67-81. ]6 [میثم کوزهگر، فرهود آذرسینا و آرمین رهپیک، «محاسبه تأثیر دامنه موج، ارتفاع موج و طول محفظه هوا در ضریب بازتاب موج در موجشکنهای کیسونی»، شانزدهمین همایش صنایع دریایی، 11 و 12 آذر 1393. [7] K. Tanimoto, S. Takahashi, "Japanese Experiences on Composite Breakwaters", Workshop on Wave Barriers in Deep Waters, Port and Harbour Research Institute, Yokosuka, Japan, 1994, pp. 1-22. [8] H. Sasajim, T. Koizuka, and H. Sasyama, "Field Demonstration Test of a Semicircular Breakwater", Proceeding of HYDROPORT 94", International Conference on Hydro- Technical Engineering for Port and Harbor Construction, port Harbour Research Institute, Yokosuka, Japan, 1994, pp. 593-610. [9] Y. Goda and Y. Suzuki, "Estimation of Incident and Reflected Waves in Random Wave Experiments", Coastal Engineering Proceedings, Hawaii, 1976, pp. 828-845. [10] S. Xie, "Wave Forces on Submerged Semi-circular Breakwater and Similar Structures", China Ocean Engineering, Vol. 13, 1999, pp. 63–72. [11] D.H. Jia, "Numerical Model for the Semi-Circular Breakwater", Navigation Engineering. Ministry of Communication of China (in Chinese), 1999. [12] S. Xie, "Design of Semi-circular Breakwaters and Estuary", Tsinghua University Press, Beijing, 2001, pp. 90–95. [13] M. Isaacson, J. Baldwin, N. Allyn and S. Cowdell, "Wave Interactions with Perforated Breakwater", Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, No. 5, 2000, pp. 229–235. [14] A.T. Chwang and T.L. Yip, "Perforated Wall Breakwater with Internal Horizontal Plate", Journal of Engineering Mechanics, Vol. 126, No. 5, 2000, pp. 533–538. [15] B. Teng, X.T. Zhang and D.Z. Ning, "Interaction of Oblique Waves with Infinite Number of Perforated Caissons", Ocean Engineering, Vol. 31, 2004, pp. 615–632. [16] D.S. Jeng, "Wave-induced Sea Floor Dynamics", ASME Vol. 56, No. 4, 2003, pp. 407–429. [17] X.F. Chen, Y.C. Li and B. Teng, "Numerical and Simplified Methods for the Calculation of the Total Horizontal Wave Force on a Perforated Caisson with a Top Cover", Coastal Engineering, Vol. 54, 2007, pp. 67–75. [18] Y. Liu, Y. Li and B. Teng, "Wave Interaction with a Perforated Wall Breakwater with a Submerged Horizontal Porous Plate", Ocean Engineering, Vol. 34, 2007, pp. 2364-2373. [19] D. Yuan and J. Tao, "Wave Forces on Submerged, Alternately Submerged, and Emerged Semicircular Breakwaters", Coastal Engineering, Vol. 48, 2003, pp. 75-93. [20] Recommended Practice Det Norske Veritas DNV-RP-C205, Environmental Condition and Environmental Loads, October 2010. [21] T. Tezdogan, A. Incecik and O. Turan, "Full-scale Unsteady RANS Simulations of Vertical Ship Motions in Shallow Water", Ocean Engineering, Vol. 123, 2016, pp. 131-145. [22] J.C. Date and S.R. Turnock, "A Study into the Technique Needed to Accurately Predict Skin Friction Using RANS Solver with Validation Against Froudes Historical Flat Plate Experimental Data", Southampton, UK, University of Southampton, 1999. [23] J. Choi and Y. Sung, "Numerical Simulations Using Momentum Source Wave-maker Applied to RANS Equation Model", Coastal Engineering, Vol. 56, 2009, pp. 1043-1060. [24] L. Larsson, F. Stern and M. Visonneau, "CFD in Ship Hydrodynamics- Results of the Gothenburg 2010 Workshop", Computational Methods in Marine Engineering IV (MARINE 2011), 2011, pp. 17-36. [25] S.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J.Z. Zhu, "A New k-ε Eddy-viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation", Computers Fluids, Vol. 24, 1995, pp.227-238. [26] International Towing Tank Conference (ITTC), Ocean Engineering Committee, Final report and recommendation to the 27th ITTC. In: Proceedings of the 27th ITTC, Copenhagen, 2014. | ||
آمار تعداد مشاهده مقاله: 382 تعداد دریافت فایل اصل مقاله: 255 |