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Abstract

In this article, we present a recursive algorithm to obtain a series of refinements of the classical
Young inequality. These inequalities conduce to equalities whenever the number of the iteration in
the recursive algorithm tends to infinity. Also these refinements applied to establish some improved
reverse Young and matrix Young inequalities with Hilbert- Schmidt norm.
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1. Introduction And Preliminarily

The known classical Young inequality for two scalars assert that if a,b > 0 and v € [0,1] then
va + (1 —v)b > a’b'~?. This inequality may be written in the form ab < % + % which p,¢ > 0 and
+.=1

In the literature, there are a lot of researches specially in the last decade which improved the
Young inequality to a sharper version in the scalar or matrix form. F. Kittaneh and Y. Manasrah in
[6] presented a refinement of the Young inequality by the following theorem.

D =

Theorem 1.1. [6]. Ifa,b >0 and v € [0,1] then
va+ (1 —v)b > a’b'™ + min{v,1 — v}(va — Vb)2. (1.1)

M. Sababheh and D. Choi in [§] discussed a refinement of the Young and the reversed Young in-
equalities as follows.
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Theorem 1.2. [§]. Let a,b> 0, v € [0,1] and N € N then
va+ (1 —v)b>

. ooi—1_ . . J—1_p .
7’j+1 k; 2 k; kj+1 2 kj—1

5 ])(afb 27 —a 27 b 27 )2

N
a4 Y (1) o (1)
j=1

Where r; = [27v] and k; = [27"1v]. Moreover for a,b >0, v >0 and N € N

20-1_1 1

N
(14+v)a—vb<a™b™ —uv Z 2N Va—a @ bv)2
=1

Obviously, from ([1.1]) we insert that,
(va + (1 —v)b)? > a®p*1 7Y, (1.2)

for a,b > 0 and v € [0,1]. Hirzallah and Kittaneh in [4], obtained a sharper version of (1.2)) as
follows,

(va + (1 —v)b)? > a®b*=Y) + (min(v, 1 — v))?(a — b)>. (1.3)

These types of inequalities, which involve the square of the terms are noteworthy for the sake of

their application in the 2- norms matrix inequalities. Let us to denote the space of n X n complex

matrixes by M, (C) with Hilbert-Schmidt norm ||.||s which for every A = [a;;] € My(C), ||All2 =
(22,1 lay?)3.

A matrix version of the young inequality, that is
0(AYXB'™") < p(vAX + (1 —v) X B)

where A, B, X € M, (C) and A, B are semidefinite positive, for some specified functions ¢ is studied;
for example in [I], ¢ is defined by ¢(A) := A;(A) (j -th eigenvalue of A when the set of eigenvalues
are arranged by A\ (A) > ... > Ay(A)); in [5] ¢ is defined by ¢(A) := det(A) and in [3] ¢ is defined
by ©(A) := [[A]l2.

In this paper we describe a recursive algorithm which develops a series of refinements on the
Young and the reversed Young inequalities and leads to its application in the matrix form. These
inequalities are notable since, if the number of the iteration of the algorithm tends to infinity the
difference of the both sides of the inequalities tend to zero and so we get equalities.

2. Main results

Theorem 2.1. Suppose that a,b > 0 and v € [0,1] such that for some n € N and integer k €

n) . n—1 —
{1,2,...,27M .= 22"} Bl <y < 2. Then

va+ (1 —v)b>a’™" +Gi (v, a,b) + ... + Gl pmy (v, @, 0); (2.1)

in which by letting k = m x 2f0=Y 4 r with m € {0,...,2/"D — 1} and r € {1,...,2/"D} the
Jollowing recursive formula describes Gy, ;.

n—1 . ; .
Gm—i—l,i(U?a:b)a 1<:< f(n - 1)7
Gri(v,a,b) = mi1 2/ (1) m 2Dy
AT of(n—1) of(n—1) of(n—1) of(n—1)

Gl gy o —m,a b ,a b ); i> f(n—1).
(2.2)

where G} 1 (v,a,b) == v(y/a—vb)? and G}, (v,a,b) := (1 — v)(va — vb)>.
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Example 2.2.
a’b' " + v(y/a — Vb)? + 20(aibi — b2)?; 0<v<1;
vat(1—op> @0 Ve VB + (1 = 20)(axbi — b2)?; jSvsg
T ) a4+ (1 —v)(va— Vb2 + (20— 1)(az — aibi)?; 1 <v<3;
a’b' =" 4+ (1 —v)(va— V) + (2 — 2v)(a? —aibs)?; 2 <w <1

Remark 2.3. Theorem 15 the recursive expression of the first inequality of the Theorem
indeed our approach to get the recursive formulation is more comprehensible although is more complez.

Remark 2.4. For every n, generate 27 inequalities where each of them holds for v belongs
to a sub interval of [0,1]. By increasing n to n + 1 each of them refines to 2/ other inequalities

and so by n+ 1 we obtain (2/™)? inequalities. Note that (2/(M)2 = 2/(n+1),

For simplicity, let me to name the inequality ({2.1)), which is dependent on v, a, b, n, k, by Inq(v, a,b,n, k).
Proof .(Proof of the Theorem . If v € [0, 1] then

va+ (1 —v)b—v(va—Vb)? = 20Vab + (1 — 2v)b,
so by applying inequality 1’ for 2v, v/ab instead of v, a respectively, we obtain
20Vab + (1 — 20)b > a’b' ™ + min(2v, 1 — 20)(\/ Vab — Vb)?.
Therefore,
va+ (1 —v)b > a’b'™" + v(v/a — Vb)? + min(2v, 1 — 2v)(\/ Vab — Vb)?. (2.3)

Similarly for v € [1,1] we have va + (1 —v)b — (1 —v)(y/a — Vb)2 = (20 — 1)a + (2 — 2v)Vab, and
by applying inequality 1) for 2v — 1, v/ab instead of v, b respectively, we obtain

(2v — Da + (2 — 20)Vab > a’b* ™" + min(2v — 1,2 — 2v)(va — \/ Vab)>.
Thus

va+ (1 —v)b>a’b""" + (1 —v)(va— Vb)? +min(2v — 1,2 — 2v)(va — \/ Vab)?. (2.4)

We see that Gi’i(v,a, b) has a regularity which one can find it out in the following table. For
abbreviation denote G} (v, a,b) by G} ;.

G%,l = %,1 =v(va - \/1_7)2 G%,Q = %1(2%@%6%7[)) = 27](@%64 —b2)?

G3, =Gl =v(ya—Vb)? | G5, =G}, (2v,a7b7,b) = (1 — 2v)(aibi — bz)?
G311 =G5 =1 -v)(Va— Vb)? G3,=G1,(20 — 1,a,a2b2) = (2v — 1)(az — a1b1)?
G2, = Gl = (1= v)(Va— VB | Gy = GL,(20 — 1,a,a3b}) = (2= 20)(a} — alb})?

The table of the functions G ;
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Let us to denote
R(v,a,b,2,1) :=va+ (1 —v)b— Gi,(v,a,b) — Giz(v, a,b). (2.5)

We readily check that R(v,a,b,2,1) = dvathi + (1 — 4v)b. Hence by applying the inequalities
1} and 1’ with 4v, a1h1 instead of v, a respectively we deduce four below inequalities.

dvaibi + (1 — 4v)b >

a’b~? + 4v(a 2haT — b2)? + 81)(@2‘14()2‘74 — b2)? 0<v< s,

a’b' =" + dv(a27ba - 6%3)2 + §1 — 8v) (a2 b2t — b3)?; . L<uv<k 26)
a’b ™ + (1 — 4v)(a azbat — bf) (8v — 1)(asbs — a?b%)g; l<v<
a’b' = 4 (1 — 4v)(a2 b5 — b3)? + (2 — 8v)(asbs —a27ba1)?; 2 <o <1

By applying these results in the inequality (2.5)), a group of four inequalities produced which is a
refinement of the the first line of the inequalities in the example as follows.

va+ (1 —v)b>

1

("D + v(v/a — VD)2 + 20(aibi — b))% + dv(a27b" — b3)? + Su(a27baT — b2)2;

0<v< 4
a0 + v(v/a — Vb)? + 20(aibt — b2)? + 4v(a b3 — b3)2 + (1 — 8v) (a2 baT — b3)%;

s <v<g;
@b oA = VB 4 20(a3bE b2 + (1= dv)(a2 b5 — b3)” + (Su — 1)(asb — azbar)?
s <v <
b +v(v/a — VB)? + 20(aibi — b3)? + (1 — 4v)(a7b — b3)* + (2 — 8v)(asbi — a7 baF)%
. 13—6 <v< }1.

Similarly one can compute
R(v,a,b,2,2) == va+ (1 —v)b— G2, (v, a,b) — G3,(v,a,b) = (4v — 1)a2b? + (2 — 4v)atbi. (2.7)

So, by applying the inequalities 1} and 1} with 4v — 1, a%b%, aibi instead of v, a, b respectively
we deduce a group of four inequalities which if we apply them in (2.7) a group of four inequalities
will be produced which is a refinement of the second inequality in the example as follows.

va+ (1 —v)b>

(0= + v(v/a — V) + (1 — 20)(aibi — b)2 + (dv — 1)(a2bF — a2 b3t )2
+(8v — 2)(azTbet — q38b3%)2; Loy < d
@b + v(y/a — VB)? + (1 — 2v)(atbi — b3)? + (dv — 1)(a22 b2 — a3 b2s)?2
Spd _ gy 5 <y< S,
+(3 — 8v)(a2*h b2% )% L, 16 =>V> 16
a’b " + v(v/a — Vb): + (1 — 20)(aibi — b2)? + (2 — ) (a2 b2? — a3 b2 )?
+(8v — 3)(a b3z — qaThar)2; S <p< I
@b + v(y/a — V)2 + (1 — 20)(aibt — b3)% + (2 — 4v)(a22b2? — a25b38)?
+(4 — 81})(@2%62% a?%‘b??‘)Q, T <v<3.
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If we follow, in the same way on
R(v,a,b,2,3) :==va+ (1 —v)b—G3;(v,a,b) — G3,(v,a,b) = (4v — 2)aibi + (3 — 4v)a2b?

and R(v,a,b,2,4) =va+ (1 —v)b— G, (v,a,b) — Gi,(v,a,b) = (4v — 3)a + (4 — 4v)aib1,

then two groups of four inequalities will be produced which the first one is a refinement of the third
inequality in the example and the second one is a refinement of the fourth inequality in the
example 2.2 Indeed,

va+ (1 —v)b>

(D' + (1 — v)(va— VB)2 + (20 — 1)(a? — aibi)? + (4v — 2)(as7h3 — a37ha7 )?
+(8v — 4)(azThet — q37ha7 )2 l<yp< 2y
ab' v + (1 — v)(va — vb)? + + (20— 1)(a 2 —aibi); + (dv — 2)(a25b2F — q37h3z)? Y
3 1 1
+(5— &Mm%ﬂ—ﬁ%?ﬂ L wSvsSyg
@b+ (1= 0)(va— vb)? + (20 — 1)(az — aibhi)’ + (3 — 4v) (a2 b2 — az?h2?)?
+(8v — 5)(@231)213 — ozz“}bz‘gﬂf)2 10 « ) < 1L,
Ll 16 — 7 — 167
b + (1 - v)(Va— vb)* + (2v - 1)( 2 —aibi)? 4 (3 — 40) (a2 b2 — a7 b )?
\ (6 — 8v) (b — azTha)?; U<
and
va+ (1 —v)b>
(057 4 (1= 0)(va = VB + (2= 20)(af — aib)? + (40 = 3)(a} —aF0)?
+(8v — 6)(a2Tb2" — a27b2" )% P<u<
a%P“+u—vx¢‘—¢a%+@—zm<l—a%32+@v—am%_a%ﬁg2
(7 — 80)(a3ThaT — a2¥b3 )2, 18 g e
’ 16 — 7 — 16”
a%kw+u—vx¢‘—¢a%+@—2m(f—a%b%+u_4m@2_aﬁmq2
(8v — 7)(a% — a27bar)?; L wSvsSg
a4 (L= 0)(Va = V) (2 20)(at — 0B+ (4 dv)(a} - aFbH)?
+(8 — 8v)(a2 — a3tba1)? D<v<l

\

In the table of the functions G} ;, as follows, the regularity that produce Gf; for k € {1,...,16} and

i € {1,...,4} is comprehensible. In this recursive approach if for n € N, k& € {1,2,...,2/™} and

v E [2f<n , 2f’fn)) we consider the corresponding inequality Ing(v, a, b, n, k) which is

va+ (1 =v)b>a’'™" + Giy(v,a,b) + ... + G oy (0, @, D);

one can readily check that
R(v,a,b,n,k) :=va+ (1 —v)b— Gy — ... = Gy () =

e of(n)_p k=1 2f(W k-1

(ﬂmv—w—n)ﬁﬁbmm+4L4ﬂwv_w—m»2m% A1

of (n) g r—1 aof(n)_ (k—1)
f(n) f(n) F(n) 7(n)
(k—1),a*™"b ™ o ?

respectively instead of v,a,b and so apply their results on
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Ing(v,a,b,n, k), consequently Ing(v,a,b,n,k) refines to a group of 27" inequalities that each of
them are sharper than Ing(v,a,b,n, k) on a sub interval of 275, 755). Moreover the first f(n) +

terms of these new inequalities are similar to Ing(v, a,b,n, k). Indeed, by applying Ing(v, a,b, n,])
with 2/(Wy — (k — 1) instead of v, we have f(i) < 2f(")v —(k—-1)< ﬁ or equivalently

4+ (k—1)2/0m —1 -
2f(n+1) -

j+ (k—1)2/™
2f(n+1)

Hence by applying Ing(v,a,b,n,j) on R(v,a,b,n, k) with above manner, Ing(v,a,b,n + 1,(k —
1)27( + 5) will be obtained. By this explanation the formula (2.2) would be clear and so the proof
is completed. []

Gil = G%,l G?,2 = G%,Q Gi:& = G%,l(4v7 aib%, b) G14 = G%2(4U7 a%b%, b)
G3,=G3, | G3,=G3, | G35 =G3,(4v,a7b3,b) G5, = G3,(4v,aibi,b)

G3, =G, | G, =G3, | Gis=G2 (4v,a7b1,b) G3, = G3,(4v,aibi,b)

Gi 1= Gil G22 = G%2 Gi:& = Gil(élv, a%b%, b) G?14 = Gi2(4v, a%b%, b)

G, =G3, | G2, =G3, | G2, =G2 (40— 1,aibi,aibi) | G2, = G3},(4v —1,a%bi,bi)
G, =G3, | Gi,=G3, | Giy=G3 (4v—1,aibi,aibi) | G}, = G},(4v — 1,aibi,aibi)
Gi,=G3, | G3,=G3, | G2y =G3, (40— 1,aibi,aibi) | G3, = G3,(4v — 1,aibi,aibi)
G3,=G3, | G3,=G3, | G33=G3 (40— 1,aibi,aibi) | GI, = G3,(4v — 1,aibi,aibi)
G3,=G3, | Gs,=G3, | Gy =G2 (40— 2,a7bi,azb3) | G}, = G},(4v —2,aibi,azb?)
G?O,l = G?m G?O,Q = G%g Gi’o,:s = G%,1(4U -2, a%bi, a%b%) G?0,4 = G%,2(4U -2, a%b%, a%b%)
G:fl,l = G§,1 G?IQ = G%,z G?I,S = G§,1(4U 2, a%bi, a%b%) G?1,4 = G3,2(4U -2, a%b%, a%b%)
G?z 1= G%J G?m = G%,z G?zs = Gi 1 (4v =2, a%bi, a%b%) G124 = G§2(4U 2, a%b%, a%b%)
G?S,l = G?m G?Z’,,Q = G421,2 G?3,3 = G?,1(4U 3, a, a%bi) G?3,4 = G%,2(4U -3, a, a%b%)
G:f4,1 = G?m G?4 2 = GZ 2 G14,3 = G3,1(4U 3, a, a%bi) G?4,4 = G%,2(4U —3,a, a%b%)
G?5,1 = Gzzm G:{% 2 = G2 G:1))5,3 = G§,1<4U —3,q, a%bi) G:{%A = G§,2(4U —3,q, a%bi)
Gl = Gi,l Gil))6,2 = G4,2 G?bd =Gi,(4v —3,q, ai i) G:I)M =G} (4U 3, a, a%bi)

The table of the functions G} ;

Remark 2.5. Since Tl) <wv <k, hence k — 1 = [2/(y],

which 1s less than or equal to x; and in view of that lim,_, o ]
vbl [

where [x] is the biggest integer number

. Thus for big enough n, we can reduce the difference between the right and left hand sides of
and so when n tends to infinity conduces to equality.

Kittaneh and Manasrah in [7] established the following inequality which is of the reversed Young
inequality’s form.

Theorem 2.6. [7]. If a,b >0 and v € [0,1] then
va+ (1 —v)b < a’b'™ + max{v,1 — v}(v/a — Vb)? (2.8)

Now by applying the refinement of the Young inequality (2.1) we can refine (2.8)) to a sharper
version by the following approach. Firstly suppose 0 < v < % then

(1—0)(va—Vb)?—va—(1—0v)b=(1-20)a+2vVab—2Vab. (2.9)

= 1, we deduce that lim,,_,, R(v,a,b,n, k) =
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So, by applying the inequality Ing(2v,vab,a,1,1) on the two first terms in the right hand side of
(2.9), we derive

va+ (1 —v)b < —a™b" + (1 - v)(va — Vb)? — 20(athi — a2)? + 2Vab,

for v € [0, §]; and since
a'="b + a’b' " > 2vab (2.10)

then
va+ (1—v)b < a’b'™ + (1 —v)(va — Vb)? — 20(aibi — az)?.

By applying the inequality Ing(2v, v ab,a, 1,2) on the second and third terms in the right hand side

of (2.9), derive
va+ (1—0)b < a’b"™ + (1 —v)(va—vVb)?—(1— ZU)(a%b% — a%)2

which is satisfies v € [, 3]. By applying the inequality Ing(2v, Vab,a,2,1) on the second and third
terms in the right hand side of (2.9 -, we derive

va+ (1 —v)b<a’b'™" + (1 —-v)(va— \/l_))2 — 21)(@%5% _ a%)2 _ 4v(a%b% _ a§)2’

for v € [0, %] Indeed by applying inequality Ing(2v,vab,a,n, k) on the second and third terms in
the right hand side of (2.9)), we deduce

va+ (1 —0)b < a’b'™ + (1 —v)(va— Vb)?+ G (2v, azb?,a) + ... + Gl 1y (20, azb, a), (2.11)

for v € [21+f 211 ]
Moreover 1f < v <1 then

v(va —Vb)? —va— (1 —v)b= (20 — 1)b+ (2 — 2v)Vab — 2V/ab. (2.12)

So by applying the inequality Ing(2v — 1,0, Vab, 1, 1) on the two first terms in the right hand side

of (2.12) we deduce
va+ (1 —v)b < a®b'™" +v(va— \/1_7)2 — (2v — 1)(b% — aibi)Q;

for v € [3,3]. Further, by applying inequality Ing(2v—1,b, azbz,n, k) on the second and third terms
in the right hand side of ({2 - we deduce

va+ (1 —0)b < a’b'™" +v(va— Vb)? + Gr1(2v = 1,0, a%b%) + oo+ Gy (20 = 1,0, a%b%); (2.13)

for v e [21+f(n) +3 2 21+f<n) + ]
Let us to precise the above argument by the following theorem.

Theorem 2.7. Suppose that a,b >0, v € [0,1], n € N and k € {1,2,...,2/™}. Then

a’b' =" + (1 - U)(\/_ - \/5>2 - Gz,l(vi a%b%7 CL) e T Gz,f(n)(Qva a%béu a)a
v € (557t grevm |-
@b+ o(v/a— Vb)? = G (20 — 1,b,a2b2) + ... = Gy 1, (20 — 1,b,a2b3);
v € (5570w + 3 75w + 3]
(2.14)

va+(1—v)b <

where G ; is introduced in the Theorem[2.1]
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Let us to recall the first line inequality of the Theorem by RIng'(v,a,b,n, k) and the second one
by RIng*(v,a,b,n, k).

Remark 2.8. In view of the Remark[2.5, we have

n—oo

1)
lim (a0~ + (1 — v)(Va— Vb2 = > Gp,(2v,a2b%,a) —va — (1 — v)b) = a"b' ™" + a'~"b" — 2V/ab.
=1

Hence the right hand side of RIneq(v,a,b,n, k) has a notable difference by va+ (1 —v)b even for big
n. With due attention to the process of our discussion, we derive that this error is occurred since we

applied which is not sufficiently sharp estimate. Hence by removing from the process,
we insert the improved version of the inequalities , as follows.

—a' b +2Vab + (1 - U)(\/_ - \/5)2 - Z{:(q) qu?:,i(vi a%b%> CL);
va+(1—v)b < ) 1” = [glﬁ?(lnw_gu’?(n)]-
=) —a 4 2Vab + v(va — VB2 = LY G (20 — 1,6, a2b2);
v € [5tto + 3 s + 3)
Remark 2.9. [t is remarkable that the above refinements are due to the specific form of the right
hand sides of the equalities and which are caused by the difference of the terms involved
m (@ It is surprising that we can derive the similar forms by computing the suitable difference

in each produced refinement inequalities. For example consider inequality RIng'(v,a,b,n,k) for
n=1k=1, that is

va+ (1 —0)b < a’b' ™ + (1 —v)(vVa — Vb)? — 20(aibi — a2)? (2.15)

for v e |0, }l] Now, we readily check that
M'(v,a,b,1,1) := (1 —v)(va— vb)? = 2v(aibi —a2)? —va— (1 — v)b = 4vaibi + (1 — 4v)a — 2V ab.
(2.16)

So by applying the inequalities Inq(4v,a%b%,a, 1,1) and Inq(4v,a%b%,a, 1,2) on the two first terms
of the right hand side of , respectively we deduce

ST
~—
[}
|
=~
e
—~
)

va+ (1 —v)b < a’b' "+ (1 —v)(va—Vb)? - 21)(aibi —a

forvel0, 3] and

va+ (1 —v)b < a’b' ™" + (1 —v)(va—Vb)? — 21)(@%i - a%)2 - (1- 4v)(a§b8 —az)?;
forv e [3,3].
In this way, by applying the inequality ]nq(4v,a%b%,a,n, k) with k € {1,...,27™} conclude the
series of refined inequalities of by the following formula.
va+ (1 —v)b < a’b* ™ + (1 — v)(va — Vb)? — 20(aibi — a2)?
— G (4, aibe, a) — ... = G ) (40, aib, a);

forv e [%, ﬁ] We precise the above argument by the below theorem.
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Theorem 2.10. Suppose that a,b > 0 and v € [0,1]. For n,r € N let s € {1,....,27"} and k €

s—1 k —1
{1, .. } Then for v € [Qf(n)Jrf(r T T 57011 FFeTFT T 2f(r ) we have

va+ (1 —0)b < a’b ™ + (1 —v)(va— Vb)? — 01 (2v, azb, a) — ... = Gg s (20, azb?,a)
of (r)+1_g s 2f<7‘)+173+1
— Gz 1(2f(r)+1v _ (S _ 1)7 a 27O pafGIFT g of(+1 b2f('r)+1 )

1 2f(7‘)+175 s 2f(7‘)+175+1 s—1
— Gp n)(zf(’")+ v—(s—1),a TOF paTFT g 2JOFL paitI ),

k
and for v € [srerer + gforr + 50 et + g T ] we have

va+ (1 —0)b < a’b™" +v(va — Vb)? — s1(2v =1, bazb?) — .. — G (20 — 1,b,a7b?)

of (s of(Mys 2/ _(s—1) 27 4s—1)
_ Gz71(2f(r)+lv . (S . 1) _ 2]”(7")7 a2l holHT g~ 2fOFT | 2l () )

of (s ofMys 2/ _(s—1) 27 4s-1)
_ sz(n)(zf(r)%—lv . (S o 1) _ 2f(r)7 @ 2T hoT I+ g 2FFT p 2l ()+1 );

where G, is introduced in the Theorem
Proof .
By considering RIng'(v,a,b,r,s), let

M'(v,a,b,7,8) == (1 —v)(va—Vb)? — 271(2v,a%b%,a) — G5 5 (20, azbz ,a) —va — (1 —wv)b.
Then, it is easy to see that
M'(v,a,b,r,s) =

S (M+1_ 2F (1 1y

(27 H 1y — (s — 1))a 2TOF paTHT 4 (5 — 2F()Hy) g 27t b — 9 ab.

Qf(T')‘l’l,S 2f(7)+175+1

s—1
Now, by applying Ing(2/*y — (s — 1),a 270 b2T I ya TR haf 0T iy k) on the two first
terms of the above relation, we have

va+ (1—v)b < (1—v)(vVa—Vb)? =G5, (20,a2b%,a) — ... — G} 5, (2v,a2b2, a)

2f('r)+175 s 2f('r)+178+1 s—1
— Gy (2T — (s — 1), ST T o e )

2f('r)+175 s 2f(r)+175+1 s—1
- Gr f(n)(gf(T)HU — (s —1),a 2TOFT p2fOFT g 2fOFL pafFT),

Similarly by considering RIng'(v,a,b,r,s) and letting
M?(v,a,b,r,s) == v(va—Vb)? — w120 — l,b,a%b%) — = Gy (20 — 1,b,a%b%) —va— (1 —v)b,

we have
o () _y of (7)1

M?(v,a,b,r,s) =2/ 1y — (s — 1) = 2/ (")) q2FOF1 p2r+t

f(r) _ s— f(r) s5—
_’_(Qf(r) 45— 2f(r)+lv)a2 Qf(T‘)(+11) 52 2f<j->(+11) — 2Vab.

Qf(r)_ Qf(r)+9 Qf(T) (s—1) Qf(T)+(s 1)
Hence by applying Ing(2/M+y — (s — 1) — 270 g2+ p2f@+1 g 2f0+T 270+ n k) on the two

first terms of M?(v, a,b,r, s), the desired result will be obtamed. 0
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Remark 2.11. By an argument similar to the the Remark if we replace the first term of the
right hand sides in the inequalities of Theorem ( that is a®b'~" ), with —a'~"b" + 2v/ab; we get a
sharper one which leads to equality as n tends to infinity.

Here, by applying Theorem , we refine the inequality ([1.3)) to a sharper version which also
leads to equality while n tends to infinity, as follows:

Theorem 2.12. Let a,b>0,n € N and k € {1,2,...,2/0) = 22"} Jf A <y < ko then
(va + (1 —v)b)? > a®b* =) + 0% (a — b)? + b( 1(20,a,0) + ..+ Gy p (20,0, D)); (2.17)
and Zfszgnﬁ —|— <wv< 2f(n)+1 + then
(va+(1—0)b)? > a®b*17Y 4 (1—v)%(a—b)* +af p1(2v—1,a,0) + ...+ Gy 4,y (20— 1,a,b)). (2.18)
Where G7; is introduced in the Theorem .
Proof . One can readily check that
(va+ (1 —v)b)* —v%(a — b)? = b(2va + (1 — 20v)b). (2.19)
Now by applying Ing(2v,a,b,1,1) on the right hand side of , we derive that when 0 < v < ;11,

(va + (1 —v)b)? —v*(a —b)? > a®b* =) 4+ b(20)(v/a — Vb)? (2.20)
= q2vp21-v) ¢ bGil(Qv, a,b).
Also, by applying Ing(2v,a,b,1,2) on the right hand side of (2.19), we derive that when v € [i, %],
(va+ (1 —v)b)* —v*(a —b)* > a®b* =) +b(1 — 20)(/a — \/5)2
= a®b*7) 4+ bG} 1 (20, a,b).

So, we easily see that by applying Inq(2v,a,b,n, k) on the right hand side of (2.19)), the inequality

. k—1 k
(2.17)) satisfies for YOS} <v< 2P TT :
Moreover we have

(va+ (1 —v)b)?* — (1 —v)*(a —b)* = a((2v — 1)a + 2(1 — v)b). (2.21)
Thus by applying Ing(2v — 1,a,b,1,1) on the right hand side of (2.21)), we have
(va + (1 —v)b)? = (1 —v)%(a —0)*> > a®b* ) +a(2v — 1)(va — vb)?
= a®b* ") + aG (20 — 1,a,b);
for v € [3,3]. By applying Ing(2v — 1,a,b,1,2) on the right hand side of (2.21]), we have
(va+ (1 —v)b)? = (1 —v)*(a —b)* > a®b*17) 4 a(2 — 20)(va — Vb)?
= a®b* ") + aG} (20 — 1,a,b);

for v € [3,1]. Indeed by applying I nq(QU 1,a,b,n, k) on the rlght hand side of , the inequality
(2.18)) satisfies for % <2v—-1< (n) or equlvalently 2f(n>+1 —1— <v< Qf(nm —|— 5

U] Our refined scalar inequahtles can be extended to the matrlx version as follows It is known that
for all unitary matrixes U,V € M, (C), we have |[UAV||, = ||A||s. We denote by AT the transpose
of matrix A that (a;;) 4 = (a;;) and also by A¥ the Hermition of matrix A that (a;;) x = (@)
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Definition 2.13. A matriz A € My(C) is called semidefinite positive if and only if ATXA >0 for
all nonzero X € RY, which we denoted it by A > 0 and moreover A is called unitary if and only if
AAH = AHA =T, where I is N x N identity matriz.

It is known that, every semidefinite positive matrix A € M,(C) has n nonnegative eigenvalues
{A1,..., A2} and is unitary diagnosable in the sense that there is a unitary matrix U such that
A =UAU" in which A = diag(\y, ..., \2). It is easy to show that A* = UA*UH for every k > 0. For
more details about the matrix analysis see [2].

Theorem 2.14. Let A, B € My(C) where A,B > 0, n € N and k € {1,2,...,2/(" = 22"} [f

k—1 k
s < U < gragrr then

v —v 1 mn n
lvA+(1=0)b|l3 = A" X B~ |3+0* [ AX = BX |3+ B2 [[5(| Fiiy (20, A, B) |3+ I FY iy (20, A, B)[[3);
(2.22)
and if & il n)+1 —|— <ov< 2f(n)+1 —I— then

[0AX +(1=v)XBI3 = [A"X B3+ (1 —v)*|AX = XBIl; + | Az [3(I Fy (20— 1, 4, B)[l3 (2.23)

o B oy (20 = 1, A, B)|3)

Where I}, is defined corresponding to G, . in the following way. If G}, (v,a,b) = (av+B)(a* bt —
a®2b%)? we consider,

F(v, A, B) = (av + B)(A" X BM — A X B™). (2.24)

Proof . Suppose that for the unitary matrixes U,V € My(C), and diagonal matrixes A =
diag{\i, ..., \n} and M = diag{us,...,un} we have A = UAU and B = VMV*#. Hence by
letting Y := U XV, we deduce

vAX + (1 —v)XB =vUAUPX + (1 —0)XVMVH
= oUAYVH 4 (1 —v)UY MV
=U(vAY + (1 —0)YM)VH
= U[(v\; + (1 — v)p;)yig]VE.

So

N
[vAX + (1= 0)X B3 =Y (v + (1 = v)p)*3. (2.25)
ij=1
Now by applying Theorem on the right hand side of (|2 1.} we deduce if 5 f(n) T <V < SroET
then

[vAX +(1-v)XBJj; > Z AT 0 (N — )2 (G (20, My 1) e G (20, Ny 1))

i,7=1

(2.26)
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Note that
|A*X B2 = || UA U XV M V|2
= HUA”YMI*”VHHS =AY M
= 1wl = SN A2
and

IAX = X B3 = [UAY = YM)VT|3
= |AY = Y M3 = [I[(\ — p5)wiglll3
- Zzy 1(/\ lu]) yzzg

Moreover, from the recursive formula 1.' for G, ., we know that ultimately for some o, §, a1, b1, @z, 52

where ay + 1 = g + B2, G, (v, a,b) = (av + B)(a® b — a®2b™)? for every k,m. Thus for every
L<m< f(n)

( ) z] IMJ(Aal /\?2 52)2:%2]

(@ + Bl " 4 V"’u?)ym]ﬂa

(av + B)HM2(A°‘1YM51 A2Y M™)|3

(av + )| B2 (A" X B™ — A*Y B*)|3;

z] IMJGk: m(QU )‘Zvl’b])yz] O[U—f—ﬁ

where by explanation of F, in 2.24)), indeed the last expression in the above relations is
1 mn
1B 31| Fy (20, A, B)[J3.

Therefore the righthand side of (2.26]) is equal to the right hand side of (2.22)).
Similarly one can deduce the relation (2.23), where we omit its proof for briefness and so the
proof is completed. [J
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