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Abstract
In this paper we investigate some Korovkin type approximation properties of the q-Meyer-König
and Zeller operators and Durrmeyer variant of the q-Meyer-König and Zeller operators via Abel
summability method which is a sequence-to-function transformation and which extends the ordinary
convergence. We show that the approximation results obtained in this paper are more general than
some previous results. We also obtain the rate of Abel convergence for the corresponding operators.
Finally, we conclude our results with some graphical analysis.
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1. Preliminaries

Korovkin type approximation theory aims to provide some simple criteria for the convergence of
a sequence of positive linear operators in some senses [24]. There is a number of main motivations
in this theory. One of them is obtaining some suitable conditions for the convergence of arbitrary
sequence of positive linear operators acting from one certain space to another one. Next motivation is
studying some particular conditions for convergence for certain sequence of positive linear operators
by using known criteria (see e.g., [4]). It is also possible to introduce the summability theory whose
main idea is to make a non-convergent sequence or series to converge in some general senses whenever
the sequence of positive linear operators does not converge in the ordinary sense. The leading study
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with this motivation gives criteria for the statistical convergence of a sequence of positive linear
operators over C[a, b], the space of all real continuous functions defined on the interval [a, b] [17].
Following that study many authors have given several approximation results via summability theory
[7, 13, 38]. Related results with approximation theory may be found in [23, 30, 31, 41, 42, 43, 40].

In 1987, Lupaş [25] introduced the first q-analogue of Bernstein operators and investigated its
approximation and shape preserving properties. In 1997, Phillips [35] defined another q-generalization
of Bernstein operators. Afterwards, many generalizations of positive linear operators based on q-
integers were introduced and studied by several authors, for example, we refer the readers to [1, 2,
3, 5, 6, 9, 15, 26, 28, 29, 32, 33, 50, 52].

Now, let us recall some notations from q- analysis [16, 36]:
For any fixed real number q > 0, the q-integer [n] is defined by

[n] := [n]q =
n∑

k=1

qk−1 =


1−qn

1−q
, q ̸= 1

n , q = 1

,

where n is a positive integer and [0] = 0, the q- factorial [n]! of [n] is given with

[n]! :=


n∏

k=1

[k] , n = 1, 2, ...

1 , n = 0.

For integers n ≥ r ≥ 0, the q-binomial coefficient is defined by[
n

r

]
q

=
[n]q!

[r]q! [n− r]q!

and q-shifted factorial is defined by

(t; q)n :=


1 , n = 0

n−1∏
j=0

(1− tqj) , n = 1, 2, ...
.

Thomae [46] introduced the q-integral of function f defined on the interval [0, a] as follows:

a∫
0

f (t) dqt := a (1− q)
∞∑
n=0

f (aqn) qn, 0 < q < 1.

Finally, the q-beta function [46] is defined by

Bq (m,n) =

1∫
0

tm−1 (qt; q)n−1 dqt.
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The original Meyer-König and Zeller operators were introduced for f ∈ C [0, 1] in 1960 (see [27]) .
Later, Cheney and Sharma [12] rearranged these operators as follows:

Mn (f ;x) =


(1− x)n+1

∞∑
k=0

f
(

k
n+k

)( n+ k
k

)
xk , x ∈ [0, 1)

f (1) , x = 1.

(1.1)

Trif [47] defined the q- generalization of the Meyer-König and Zeller operators as

M q
n (f ;x) =


n∏

j=0

(1− qjx)
∞∑
k=0

f
(

[k]
[n+k]

)[ n+ k
k

]
xk , x ∈ [0, 1)

f (1) , , x = 1.

(1.2)

In [47], the author studied Korovkin type approximation properties, calculated the rate of convergence
and also gave a result for monotonicity properties of these operators. Heping [22] proved some ap-
proximation results for the operators (M q

nf) using q-hypergeometric series. Another q-generalization
of the classical Meyer-König and Zeller operators can be found in [14]. Besides, Durrmeyer variant
of the q-Meyer König and Zeller operators [21] was introduced for f ∈ C [0, 1], x ∈ [0, 1], n ∈ N and
α > 0, q ∈ (0, 1] as follows:

Dq
n (f ;x) =


∞∑
k=1

mn,k,q (x)
1∫
0

1
Bq(n,k)

tk−1 (qt; q)n−1 f (t) dqt

+mn,0,q (x) f (0)

, x ∈ [0, 1)

, x = 1,
f (1)

, (1.3)

where
mn,k,q (x) = (x; q)n+1

[
n+ k
k

]
xk.

The authors investigated some approximation properties with the help of well-known Korovkin’s
theorem and compute the rate of convergence for these operators in terms of the second-order modulus
of continuity [21].

It is well known that if the classical conditions

lim
n→∞

qn = 1 and lim
n→∞

1

[n]
= 0 (1.4)

hold, then for each f ∈ C[0, 1] the sequences (M q
nf) and (Dq

nf) converge uniformly to f over [0, 1]
(see [21, 47]). Furthermore, we use the norm of the space C[a, b] defined for any f ∈ C[a, b] by

||f || := sup
a≤x≤b

|f(x)|. (1.5)

In the present paper, taking into account the Abel convergence we obtain some approximation
results for the q-Meyer-König and Zeller operators and Durrmeyer variant of q-Meyer-König and
Zeller operators. We also study the rate of the convergence of these operators. We also show that
the results obtained in this paper are stronger than some previous ones.
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Let x = (xj) be a real sequence. If the series
∞∑
j=0

xjy
j (1.6)

is convergent for any y ∈ (0, 1) and

lim
y→1−

(1− y)
∞∑
j=0

xjy
j = α

then x is said to be Abel convergent to real number α [37]. Korovkin type approximation via Abel
convergence and other power series methods may be found in [8, 10, 11, 34, 44, 45, 48, 49, 51].

The fact given in the following remark helps us throught the paper:

Remark 1.1. Let (fn) be a sequence in C[0, 1]. If there exists a positive integer n0 such that

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑

j=n0

fjy
j

∥∥∥∥∥ = 0

then it is not difficult to see that

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
j=0

fjy
j

∥∥∥∥∥ = 0,

i.e., while studying the Abel convergence finitely many terms do not make sense as with the ordinary
convergence.

Before studying the announced approximation properties of the operators, we recall some well-
known lemmas:

Lemma 1.2. [47] Let n ≥ 3 be a positive integer. Then the followings hold for the operators (1.2) :

M q
n (e0;x) = 1 (1.7)

M q
n (e1;x) = x (1.8)

x2 ≤ M q
n (e2;x) ≤

x

[n− 1]
+ x2 (1.9)

where ei(x) = xi for i = 0, 1, 2.

Lemma 1.3. [21] Let n ≥ 3 be a positive integer. Then the followings hold for the operators (1.3) :

Dq
n (e0;x) = 1 (1.10)

Dq
n (e1;x) = x (1.11)

Dq
n (e2;x) = x2 +

[2]x (1− x) (1− qnx)

[n− 1]
− En,q (x) , (1.12)

where
0 ≤ En,q (x) ≤

x [2] [3] qn−1

[n− 1] [n− 2]
(1− x) (1− qx) (1− qnx) .
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The following lemma can be proved easily:

Lemma 1.4. Let n ≥ 3 be a positive integer. Then we have

Dq
n (e2;x)− x2 ≥ [2]x (1− x) (1− qnx)

[n− 1]

− x [2] [3] qn−1

[n− 1] [n− 2]
(1− x) (1− qx) (1− qnx)

≥ 0.

2. Main Results

2.1. Abel Transform of the sequence (M q
n)

In this subsection, we study Korovkin type approximation of the operators (M q
n) defined with

(1.2) by considering the Abel method. Throughout this subsection, we study with the sequence (qn)
such that 0 < qn ≤ 1 and q0 = 0 and we define M q

0f = 0 for any f ∈ C[0, 1].
Unver (see [48], Theorem 1) proved the following Korovkin-type theorem via Abel summability

method.

Theorem 2.1. Let (Ln) be a sequence of positive linear operators from C [a, b] → B [a, b] such that
∞∑
n=0

∥Ln(e0)∥ yn < ∞ for any y ∈ (0, 1). Then for any f ∈ C [a, b] we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Lnf − f) yn

∥∥∥∥∥ = 0

if and only if

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Lnei − ei) y
n

∥∥∥∥∥ = 0, i = 0, 1, 2. (2.1)

We are now ready to prove the following theorem:

Theorem 2.2. If the sequence
(

1

[n− 1]

)∞

n=3

is Abel null then for each f ∈ C [0, 1] we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(M q
nf − f) yn

∥∥∥∥∥ = 0.

Proof . From Lemma 1.2 we see that
∞∑
n=0

∥M q
n(e0)∥ yn < ∞ for any y ∈ (0, 1). If we consider

Theorem 2.1, it suffices to show that (2.1) holds for (M q
n). Now, considering Lemma 1.2 , one can

get for i = 0, 1 that

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(M q
nei − ei) y

n

∥∥∥∥∥ = 0.

Moreover, using (1.9), we have for n ≥ 3 that

0 ≤ M q
n (e2;x)− x2 ≤ x

[n− 1]
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which gives

0 ≤ (1− y)

∥∥∥∥∥
∞∑
n=3

(M q
ne2 − e2) y

n

∥∥∥∥∥
≤ (1− y) sup

0≤x≤1

∞∑
n=3

x

[n− 1]
yn

≤ (1− y)
∞∑
n=3

yn

[n− 1]
.

Finally, we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=3

(M q
ne2 − e2) y

n

∥∥∥∥∥ = 0.

Hence, considering Remark 1.1 we get

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(M q
ne2 − e2) y

n

∥∥∥∥∥ = 0

which concludes the proof. □
The following example shows that the conditions of Theorem 2.2 are weaker than the classical

conditions:

Example 2.3. It is not difficult to see that the classical conditions (1.4) entail that the sequence(
1

[n− 1]

)∞

n=3

is Abel null. Conversely, if we define the sequence (qn) with

qn :=

{
0 , n is a perfect cube
1 , otherwise

then (qn) does not satisfy the classical conditions. Besides, we have for any n ≥ 3 that

1

[n− 1]
=

{
1 , n is a perfect cube

1

n− 1
, otherwise.

Now, since the sequence
(

1

[n− 1]

)∞

n=3

is bounded and statistically convergent to zero it is Abel null

[37, 39].

2.2. Abel Transform of the operators (Dq
n)

In this subsection, we study Korovkin type approximation of the operators (Dq
n) defined with

(1.3) by considering the Abel method as well.
Throughout this subsection, we study with the sequence (qn) such that 0 < qn < 1 and q0 = 0

and we define Dq
0f = 0 for any f ∈ C[0, 1].

Theorem 2.4. If the sequence
(

[2]

[n− 1]

)∞

n=3

is Abel null then for each f ∈ C [0, 1] we have

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Dq
nf − f) yn

∥∥∥∥∥ = 0.
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Proof . Lemma 1.3 implies that
∞∑
n=0

∥Dq
n(e0)∥ yn < ∞. From Theorem 2.1, it sufficies to show that

(2.1) holds for (Dq
n). Using (1.10) and (1.11) , we obtain for i = 0, 1 that

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Dq
nei − ei) y

n

∥∥∥∥∥ = 0.

On the other hand from (1.12) and Lemma 1.4 we have for any n ≥ 3 that

[2]x (1− x) (1− qnx)

[n− 1]
− x [2] [3] qn−1

[n− 1] [n− 2]
(1− x) (1− qx) (1− qnx)

≤ Dq
n (e2;x)− x2

≤ [2]x (1− x) (1− qnx)

[n− 1]

which implies

0 ≤ (1− y)

∥∥∥∥∥
∞∑
n=3

(Dq
ne2 − e2) y

n

∥∥∥∥∥
≤ (1− y) sup

0≤x≤1

∞∑
n=3

(
[2]x (1− x) (1− qnx)

[n− 1]

)
yn

≤ (1− y)
∞∑
n=3

[2]

[n− 1]
yn.

Now from the hypothesis we obtain

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=3

(Dq
ne2 − e2) y

n

∥∥∥∥∥ = 0.

Therefore, from Remark 1.1 we can write

lim
y→1−

(1− y)

∥∥∥∥∥
∞∑
n=0

(Dq
ne2 − e2) y

n

∥∥∥∥∥ = 0.

which ends the proof. □
Following example shows that the condition of Theorem 2.4 is weaker than the classical conditions

(1.4):

Example 2.5. Note that if the classical conditions (1.4) hold then condition of Theorem 2.4 holds.
In fact, if lim

n→∞
qn = 1 and lim

n→∞

1

[n]n
= 0 then we have

lim
n→∞

[2]

[n− 1]
= lim

n→∞

1 + qn
[n]− qn−1

n

= 0.

Therefore, it is Abel null. Conversely, consider the sequence (qn) given by

qn :=


1
5

, n is a prime

1− 1
n

, otherwise.
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We see that (qn) does not satisfy the classical conditions. On the other hand, one can have for any
n ≥ 2 that

[2]

[n− 1]
=


24
25

(
1− 1

5n−1

)−1
, n is a prime

1
n(2−

1
n)

1−(1− 1
n)

n−1 , otherwise.

Thus the sequence
(

[2]
[n−1]

)∞
n=2

is Abel convergent to zero (since it is bounded and statistically null)
but not convergent.

2.3. Rate of Abel convergence
In this section, we compute the rate of the Abel convergence by means of the modulus of conti-

nuity. The modulus of continuity of ω (f, δ) is defined by

ω (f, δ) = sup
|x−t|≤δ
x,t∈[0,1]

|f (x)− f (t)|

It is well known that, for any f ∈ C [a, b] ,

lim
δ→0+

ω (f, δ) = 0 (2.2)

and for any δ > 0

|f (x)− f (t)| ≤ ω (f, δ)

(
|x− t|

δ
+ 1

)
(2.3)

and for all c > 0
ω(f, cδ) ≤ (1 + ⌊c⌋)ω(f, δ)

where ⌊c⌋ is the greatest integer less than or equal to c. Now we are ready to give the following
lemma:

Lemma 2.6. For any f ∈ C [0, 1] we have

(1− y)

∥∥∥∥∥
∞∑
n=3

(Dq
nf − f) yn

∥∥∥∥∥ ≤ 2ω (f, φ (y)) ,

where

φ (y) :=

{
(1− y) sup

0≤x≤1

∞∑
n=3

Dq
n (t− x)2 yn

} 1
2

(2.4)

and the series in (2.4) is convergent for each y ∈ (0, 1).
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Proof . By using (1.10), for any f ∈ C [0, 1] and any δ > 0 we can write∣∣∣∣∣
∞∑
n=3

(Dq
n (f ;x)− f (x)) yn

∣∣∣∣∣ ≤
∞∑
n=3

(Dq
n |f (t)− f (x)| ;x) yn

≤
∞∑
n=3

Dq
n

(
ω

(
f,

|t− x|
δ

.δ

)
;x

)
yn

≤
∞∑
n=3

Dq
n

((
1 +

⌊
|t− x|

δ

⌋)
ω (f, δ) ; x

)
yn

≤ ω (f, δ)
∞∑
n=3

Dq
n

(
1 +

(t− x)2

δ2
;x

)
yn

≤ ω (f, δ)
∞∑
n=3

Dq
n (e0 (t) ; x) y

n

+
1

δ2
ω (f, δ)

∞∑
n=3

Dq
n

(
(t− x)2 ;x

)
yn

≤ ω (f, δ)

(
1

1− y
− y − y2

)
+

+
1

δ2
ω (f, δ)

∞∑
n=3

Dq
n

(
(t− x)2 ;x

)
yn.

Thus, we reach to

(1− y)

∣∣∣∣∣
∞∑
n=3

(Dq
n (f ;x)− f (x)) yn

∣∣∣∣∣ ≤ ω (f ; δ)

+
1

δ2
ω (f ; δ)

∞∑
n=3

Dq
n

(
(t− x)2 ;x

)
yn

Now if we take δ =

{
(1− y) sup0≤x≤1

∞∑
n=3

Dq
n

(
(t− x)2 ;x

)
yn
} 1

2

, we get

0 ≤ (1− y)

∥∥∥∥∥
∞∑
n=3

(Dq
nf − f) yn

∥∥∥∥∥ ≤ 2ω (f, φ (y))

which completes the proof. □

Remark 2.7. If the sequence
(

[2]

[n− 1]

)∞

n=2

is Abel summable (need not to be zero) then the series

in (2.4) is convergent for each y ∈ (0, 1).

Using Lemma 2.6 and Remark 1.1 the following theorem which gives the rate of the Abel con-
vergence for (Dq

n) can be proved:
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Theorem 2.8. Let φ be defined as Lemma 2.6 If ω (f, φ (y)) = o(µ(y)) as y → 1− then we have

(1− y)

∥∥∥∥∥
∞∑
n=1

(Dq
nf − f) yn

∥∥∥∥∥ = o(µ(y)) as y → 1.

The rate of Abel convergence for (M q
n) defined with (1.2) can be proved by using the similar idea

for (Dq
n):

Theorem 2.9. If ω (f, ϕ (y)) = o(µ(y)) as y → 1−. then we have

(1− y)

∥∥∥∥∥
∞∑
n=1

(M q
nf − f) yn

∥∥∥∥∥ = o(µ(y)) as y → 1−

where

ϕ (y) :=

{
(1− y) sup

0≤x≤1

∞∑
n=3

M q
n (t− x)2 yn

} 1
2

.

3. Conclusion

In this paper we have studied the Abel convergence of the q-Meyer-König and Zeller operators and
Durrmeyer variant of the q-Meyer-König and Zeller operators. In both cases we have had stronger
results than the classical Korovkin type approximation theorems of the corresponding operators.
Thus, it may be useful to consider Theorem 2.2 and Theorem 2.4 when classical conditions fail.

Example 3.1. Consider the f ∈ C[0, 1] defined by f(x) = sin 2πx. Let q = (qn) be the sequence
defined by qn = 1− 1

n
for any n ∈ N which satisfies the condition of Theorem 2.2. Figure 1 illustrates

the Abel convergence of the sequence (M qn
n f). Note that we have taken the series finite for the sake

of convenience of calculation in the computer. The sum of the q-Meyer-König Zeller operators has
calculated upto 90 and the sum of the Abel transform has calculated upto 100. With larger integers
more consistent curves can be sketched.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 1: Function itself black, y=0.80 purple, y=0.85 red, y=0.90 blue, y=0.98 green
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