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Abstract

Many researchers have provided certain interesting results for endpoints of some contractions in
metric spaces. In this paper, we introduce α-ζ-contractive multivalued mappings in F -metric spaces
and establish some endpoint results in this framework. An illustrative example is given to elaborate
the usability of our main result. In the sequel, we give some endpoint theorems for Suzuki-type
contractive multivalued mappings and provide an application to integral equations.
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1. Introduction

Let (W, d) be a metric space, 2W be the set of all nonempty subsets of W and CB(W) be the set
of all nonempty closed bounded subsets of W. As we know, the Hausdorff metric H on CB(W) is
defined by H(Γ,∆) = max{supγ∈Γ d(γ,∆), supδ∈∆ d(δ,Γ)}. An element γ ∈ W is said to be a fixed
point of the multivalued mapping Υ : W → 2W, provided that γ ∈ Υγ. Also, an element γ ∈ W
is called an endpoint of Υ provided that Υγ = {γ}. We say that Υ enjoys approximate fixed point
property provided that infγ∈W supδ∈Υγ d(γ, δ) = 0.

In 2010, Amini-Harandi proved that some multivalued mappings have unique endpoint if and
only if they have the approximate endpoint property ([3]). Afterwards, Moradi and Khojasteh
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[20] obtained a consequence for generalized weak contractive multifunctions. The approach of α-
ζ-contractive mappings has been introduced by Samet et al. in 2012 ([25]). Later, some authors
used this concept in fixed point theory (see, [5, 8, 10, 16, 23]) or generalized it for some contractive
multivalued mappings (see, [2, 9, 13, 19]).

Assume that Ψ is the collection of all nondecreasing functions ζ : [0,∞) → [0,∞) such that∑∞
n=1 ζ

n(t) < ∞ for all t > 0 ([25]). Evidently, ζ(t) < t for all t > 0 ([25]).
A multivalued mapping Υ : W → CB(W) enjoys property (BS), provided that for each γ ∈ W

there exists δ ∈ Υγ such that H(Υγ,Υδ) = supb∈Υδ d(δ, b). In fact, there are many multifunctions
which possess the property (BS). For instance, let W = [0,∞), d(γ, δ) = |γ − δ|, s, t > 0, Υ1,Υ2 :
W → CB(W) be defined by Υ1γ = [0, sγ] and Υ2γ = [γ, γ+t]. It is easy to check that the multivalued
mappings Υ1 and Υ2 have the property (BS). Also, we say that the multivalued mapping Υ enjoys
property (SBS), provided that for each sequence {ρn} with d(ρn,Υρn) ≤ d(ρn, ρn+1)+ ζ(d(ρn, ρn+1))
for all n and ρn → γ, there exists N ∈ N such that d(ρn,Υρn) ≤ d(ρn, γ) + ζ(d(ρn, γ)) for all n ≥ N
(see [18]).

In 2013, Asl et al. [4] introduced α∗-admissible multivalued mappings as follows.

Definition 1.1 ([4]). Let α : W×W → [0,∞) be a mapping and Υ : W → CB(W) be a multivalued
mapping. Then Υ is called α∗-admissible provided that for each γ, δ ∈ W, α(γ, δ) ≥ 1 implies
α∗(Υγ,Υδ) ≥ 1, where α∗(Υγ,Υδ) = inf{α(a, b) : a ∈ Υγ, b ∈ Υδ}.

Definition 1.2 ([18]). Let α : W × W → [0,∞) be a mapping and Υ : W → 2W a multivalued
mapping. Υ is α-admissible provided that for each γ ∈ W and δ ∈ Υγ with α(γ, δ) ≥ 1, then
α(δ, z) ≥ 1 for all z ∈ Υδ.

Obviously, any α∗-admissible multivalued mapping is α-admissible, but the converse may not be
true. Also, we say that W is α-regular, provided that for each sequence {ρn} in W with α(ρn, ρn+1) ≥
1 for all n and ρn → γ, then α(ρn, γ) ≥ 1 for all n ∈ N (see also, [25]).

In 2015, Mohammadi et al. [18] proved the existence of at least one endpoint for α-ζ-contractions
using the property (BS). Recently, Jleli and Samet [12] nominated an inspiring generalization of the
notion of metric space in the following manner.

Suppose that F is the set of all functions f : (0,+∞) → R verifying the following assumptions:

(F1) f is non-decreasing;

(F2) for all sequences {tn} ⊆ (0,+∞), limn→∞ tn = 0 if and only if limn→∞ f(tn) = −∞.

Definition 1.3 ([12]). Let W be a nonempty set and F : W×W → [0,+∞) be a mapping. Suppose
that there exist f ∈ F and σ ∈ [0,+∞) such that

(D1) F(γ, δ) = 0 ⇐⇒ γ = δ, for all (γ, δ) ∈ W×W;

(D2) F(γ, δ) = F(δ, γ), for all (γ, δ) ∈ W×W;

(D3) for any (γ, δ) ∈ W×W, for any N ∈ N, N ≥ 2 and for any (ρi)
N
i=1 ⊂ W with (ρ1, ρN) = (γ, δ),

we have

F(γ, δ) > 0 ⇒ f(F(γ, δ)) ≤ f

(
N−1∑
i=1

F(ρi, ρi+1)

)
+ σ.

Then F is called an F-metric on W, and the pair (W,F) is called an F-metric space (shortly, F-MS).
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Remark 1.4. Jleli and Samet [12] showed that any metric space is an F-MS, but the converse is
not true in general, which corroborates that this concept is more general than the standard metric
concept.

Definition 1.5 ([12]). Let (W,F) be an F-MS and {ρn} be a sequence in W. Then,
(i) {ρn} is F-convergent to γ ∈ W, if lim

n→∞
F(ρn, γ) = 0;

(ii) {ρn} is F-Cauchy, if lim
n,m→∞

F(ρn, ρm) = 0;

(iii) (W,F) is F-complete, if any F-Cauchy sequence in W is F-convergent to an element in W.

Theorem 1.6 ([12]). Let (W,F) be an F-MS and g : W → W be a given mapping. Suppose that
the following assertions are satisfied:

(i) (W,F) is F-complete,
(ii) there exists k ∈ (0, 1) such that

F(g(γ), g(δ)) ≤ kF(γ, δ).

Then g possesses a unique fixed point γ∗ ∈ W. Moreover, for any ρ0 ∈ W, the sequence {ρn} ⊂ W
defined by

ρn+1 = g(ρn), n ∈ N,
is F-convergent to γ∗.

Hussain and Kanwal [7] considered the notion of α-ζ-contraction in the setting of F -metric spaces
and proved the following fixed point theorem.

Theorem 1.7 ([7]). Let (W,F) be an F-complete F-MS and Υ : W → W be a α-admissible map-
ping. Suppose that the following assertions are satisfied:

(i) there exists ζ ∈ Ψ such that

α(γ, δ)F(Υγ,Υδ) ≤ ζ(M(γ, δ)),

where
M(γ, δ) = max{F(γ, δ),F(γ,Υγ),F(δ,Υδ)};

(ii) there exists ρ0 ∈ W such that α(ρ0,Υρ0) ≥ 1.

Then Υ possesses a unique fixed point γ∗ ∈ W.

In this paper, we obtain some endpoint consequences for multivalued mappings in the framework
of F -MS, partially ordered F -metric spaces and graphical F -metric spaces.

2. The Results

Here, we provide our main consequences. We assume that the function f used in the definition
of F -MS enjoys further supposition f(inf Γ) = inf(f(Γ)) for any bounded subset of R+.

Let (W,F) be an F -MS. The Hausdorff metric HF on CB(W) induced by F -metric F is defined
by

HF(Γ,∆) = max
{
supγ∈ΓF(γ,∆), supδ∈∆F(δ,Γ)

}
,

for all Γ,∆ ∈ CB(W), where F(γ,∆) = infδ∈∆ F(γ, δ).
We will need the following lemma in the sequel.
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Lemma 2.1. Suppose that (W,F) is an F-MS. Then (CB(W),HF) is also an F-MS.

Proof . The properties (D1) and (D2) in Definition 1.3 are obvious. It is sufficient to prove only (D3).
Suppose that U, V ∈ CB(W) and (Γi)

n
i=1 ⊂ W with (Γ1,Γn) = (U, V ). Assume that HF(U, V ) > 0.

We shall show that

f(HF(Γ1,Γn)) = f(HF(U, V )) ≤ f

(
n−1∑
i=1

HF(Γi,Γi+1)

)
+ σ.

From the definition of HF , without loss of generality we can assume that
HF(Γ1,Γn) = supa1∈Γ1

F(a1,Γn). Suppose that ε > 0 is arbitrary. Then there exists a1 ∈ Γ1

such that
HF(Γ1,Γn) ≤ F(a1,Γn) + ε. (2.1)

Suppose that a2, ..., an are arbitrary points in Γ2, ...,Γn, respectively. If F(a1,Γn) = 0, then
HF(Γ1,Γn) ≤ ε. Otherwise, we have

f(F(a1, an)) ≤ f

(
n−1∑
i=1

F(ai, ai+1)

)
+ σ

= f(F(a1, a2) + ...+ F(an−2, an−1) + F(an−1, an)) + σ.

Taking inf in both sides of the above inequality as an ∈ Γn, we obtain that

f(F(a1,Γn)) ≤ f(F(a1, a2) + ...+ F(an−2, an−1) + F(an−1,Γn)) + σ
≤ f(F(a1, a2) + ...+ F(an−2, an−1) +HF(Γn−1,Γn)) + σ.

Taking inf in both sides of the above inequality as an−1 ∈ Γn−1, we obtain

f(F(a1,Γn)) ≤ f(F(a1, a2) + ...+ F(an−2,Γn−1) +HF(Γn−1,Γn)) + σ
≤ f(F(a1, a2) + ...+HF(Γn−2,Γn−1) +HF(Γn−1,Γn)) + σ.

Continuing in this manner we get

f(F(a1,Γn)) ≤ f(F(a1,Γ2) + ...+HF(Γn−2,Γn−1) +HF(Γn−1,Γn)) + σ

≤ f(HF(Γ1,Γ2) + ...+HF(Γn−2,Γn−1) +HF(Γn−1,Γn)) + σ

= f

(
n−1∑
i=1

HF(Γi,Γi+1)

)
+ σ.

From (2.1),

HF(Γ1,Γn) ≤ F(a1,Γn) + ε = f−1(f(F(a1,Γn))) + ε

≤ f−1

(
f

(
n−1∑
i=1

HF(Γi,Γi+1)

)
+ σ

)
+ ε.

Since ε was arbitrary, we get that

HF(Γ1,Γn) ≤ f−1

(
f

(
n−1∑
i=1

HF(Γi,Γi+1)

)
+ σ

)
.
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Therefore,

f(HF(Γ1,Γn)) ≤ f

(
n−1∑
i=1

HF(Γi,Γi+1)

)
+ σ,

and the proof is completed. □

Definition 2.2. Suppose that (W,F) is an F-MS. A closed-valued multifunction Υ : W → 2W is
called a generalized α-ζ-contraction, if there exist two functions α : W ×W → [0,+∞) and ζ ∈ Ψ
such that

γ, δ ∈ W, α(γ, δ) ≥ 1 =⇒ HF(Υγ,Υδ) ≤ ζ(F(γ, δ)). (2.2)

Theorem 2.3. Let (W,F) be an F-complete F-MS and Υ : W → CB(W) be a generalized α-ζ-
contraction such that Υ enjoys property (BS). Also, assume that the following assertions hold:

(i) Υ is α-admissible;

(ii) α(ρ0, ρ1) ≥ 1 for an ρ0 ∈ W and ρ1 ∈ Υρ0;

(iii) W is α-regular.

Then Υ possesses an endpoint.

Proof . Choose ρ0 ∈ W and ρ1 ∈ Υρ0 such that α(ρ0, ρ1) ≥ 1. Since Υ enjoys property (BS), there
exists ρ2 ∈ Υρ1 such that HF(Υρ1,Υρ2) = supb∈Υρ2 F(ρ2, b). Since Υ is α-admissible, α(ρ1, ρ2) ≥ 1.
Pursuing this process, we obtain a sequence {ρn} such that ρn+1 ∈ Υρn, α(ρn, ρn+1) ≥ 1 and
HF(Υρn,Υρn+1) = supb∈Υρn+1

F(ρn+1, b) for all n. If ρn = ρn+1 for some n ∈ N, then we obtain that
HF({ρn+1},Υρn+1) = supb∈Υρn+1

F(ρn+1, b) = HF(Υρn,Υρn+1) = 0. This implies that ρn+1 is an
endpoint of Υ. Thus, we may assume that ρn ̸= ρn+1 for all n ∈ N.
From (2.2), we have

F(ρn, ρn+1) ≤ sup
b∈Υρn

F(ρn, b)

= HF(Υρn−1,Υρn)

≤ ζ(F(ρn−1, ρn)) ≤ ζ2(F(ρn−2, ρn−1)) ≤ · · · ≤ ζn(F(ρ0, ρ1)),

for all n ∈ N. Suppose that (f, α) ∈ F × [0,+∞) such that (D3) is satisfied, and fix ϵ > 0. By (F2),
there exists δ > 0 such that

0 < t < δ =⇒ f(t) < f(ϵ)− σ. (2.3)

Consider N ∈ N such that 0 <
∑

n≥N ζn(F(ρ0, ρ1)) < δ. Hence, by (2.3) and (F1), we have

f

(
m−1∑
i=n

F(ρi, ρi+1)

)
≤ f

(
m−1∑
i=n

ζ i(F(ρ0, ρ1))

)
≤ f

(∑
n≥N

ζn(F(ρ0, ρ1))

)
< f(ϵ)− σ, (2.4)

for m > n ≥ N. Using (D3) and (2.4), we obtain that F(ρn, ρm) > 0 where m > n ≥ N which implies
that

f(F(ρn, ρm)) ≤ f

(
m−1∑
i=n

F(ρi, ρi+1)

)
+ σ < f(ϵ),



356 Işık, Hussain, Parvaneh, Mohammadi, Khan

which implies by (F1) that F(ρn, ρm) < ϵ, for all m > n ≥ N. This proves that {ρn} is F -Cauchy.
Because of F -completeness of W, there exists γ⋆ ∈ W such that ρn → γ⋆. We shall show that γ∗ is
an endpoint of Υ. Suppose to the contrary that Υγ∗ ̸= {γ∗}. Then HF({γ∗},Υγ∗) > 0. Since W is
α-regular, α(ρn, γ

∗) ≥ 1 for all n ∈ N. Then, by (2.2) and (F1)

f(HF({ρn},Υρn)) = f(HF(Υρn−1,Υρn))
≤ f(HF(Υρn−1,Υγ∗) +HF(Υρn,Υγ∗)) + σ
≤ f(ζ(F(ρn−1, γ

∗)) + ζ(F(ρn, γ
∗))) + σ

< f(F(ρn−1, γ
∗) + F(ρn, γ

∗)) + σ → −∞,

as n → ∞. Thus, limn→∞ HF({ρn},Υρn) = 0. On the other hand,

f(HF({γ∗},Υγ∗)) ≤ f(HF({γ∗}, {ρn}) +HF({ρn},Υρn) +HF(Υρn,Υγ∗)) + σ
≤ f(d(γ∗, ρn) +HF({ρn},Υρn) +HF(Υρn,Υγ∗)) + σ
≤ f(d(γ∗, ρn) +HF({ρn},Υρn) + ζ(F(ρn, γ

∗))) + σ
< f(d(γ∗, ρn) +HF({ρn},Υρn) + F(ρn, γ

∗)) + σ → −∞,

as n → ∞, which is a contradiction. Thus, {γ∗} = Υγ∗. □

Example 2.4. Consider the set W = {λ, µ, ν}. Let F : W×W → [0,+∞) be given by

F(λ, µ) =
λ

µ
,

F(µ, ν) =
µ

ν
,

F(λ, ν) =
4

ν
,

F(γ, γ) = 0 and F(γ, δ) = F(δ, γ) for all γ, δ ∈ W.
Since F(λ, ν) = 4

ν
> 7

6
= λ

µ
+ µ

ν
= F(λ, µ)+F(µ, ν), F is not a metric. To prove that F is an F-metric,

take f(t) = ln(
√
t) and σ = ln

√
8
7
. Then,

f(F(λ, µ)) ≤ f(F(λ, ν) + F(µ, ν)) ≤ f(F(λ, ν) + F(µ, ν)) + σ,

f(F(µ, ν)) ≤ f(F(λ, µ) + F(λ, ν)) ≤ f(F(λ, µ) + F(λ, ν)) + σ,

f(F(λ, ν)) = ln

√
8

6
= ln

√
7

6
+ ln

√
8

7
≤ f(F(λ, µ) + F(µ, ν)) + σ.

Then, (W,F) is an F-complete F-metric space on W. Define Υ : W → CB(W) by Υ(λ) = Υ(µ) =
{λ} and Υ(ν) = {λ, µ}. Taking ζ(t) = ν

4
t, we have

HF(Υ(λ),Υ(µ)) = 0,

HF(Υ(λ),Υ(ν)) = F(λ, µ) =
λ

µ
≤ ν

4

4

ν
= kF(λ, ν),

HF(Υ(µ),Υ(ν)) = F(λ, µ) =
λ

µ
≤ ν

4

µ

ν
= kF(µ, ν).

Therefore, HF(Υ(γ),Υ(δ)) ≤ ζ(F(γ, δ)), for all γ, δ ∈ W. Taking α(γ, δ) = λ for all γ, δ ∈ W, Υ
satisfies all of the assertions of Theorem 2.3 and so Υ possesses an endpoint. Here, Υλ = {λ}.
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3. The consequences in graphical F-metric spaces

Jachymski [11] has obtained an extension of BCP in a graphical metric space. Later, Dinevari
and Frigon [6] extended his consequences to multivalued mappings.

In this section, we give the existence of endpoints on an F -MS endowed with a graph (F -GMS).
The following notions and definitions are indispensable.

Suppose that (W,F) is an F -MS. A set {(γ, γ) : γ ∈ W} is called a diagonal of W × W, and
denoted by Γ. Consider a graph G such that the set V(G) = W which is the set of its vertices and
the set E(G) of its edges contains all loops, i.e., Γ ⊆ E(G).

Definition 3.1 ([15]). Let W be a nonempty set endowed with a graph G and Υ : W → 2W be
a multivalued mapping. The mapping Υ is called preserves edges weakly if, for each γ ∈ W and
δ ∈ Υγ with (γ, δ) ∈ E(G), we have (δ, z) ∈ E(G) for all z ∈ Υδ.

Motivated by [15], we present the following definitions.

Definition 3.2. Let (W,F) be an F-GMS and Υ : W → CB(W) be a given multivalued mapping.
Then,

(i) W is called E(G)-complete, if any Cauchy sequence {ρn} in W with (ρn, ρn+1) ∈ E(G) for all
n ∈ N converges in W;

(ii) Υ is called a generalized (G, ζ)-contraction, if there exists a function ζ ∈ Ψ such that

γ, δ ∈ W, (γ, δ) ∈ E(G) =⇒ HF(Υγ,Υδ) ≤ ζ(F(γ, δ)). (3.1)

Theorem 3.3. Let (W,F) be an E(G)-complete F-GMS and Υ : W → CB(W) be a generalized
(G, ζ)-contraction. Suppose that the following conditions hold:

(S1) Υ preserves edges weakly;

(S2) there exist ρ0 ∈ W and ρ1 ∈ Υρ0 such that (ρ0, ρ1) ∈ E(G);
(S3) if {ρn} is a sequence in W with ρn → γ ∈ W as n → ∞ and (ρn, ρn+1) ∈ E(G) for all n ∈ N,

then (ρn, γ) ∈ E(G) for all n ∈ N.

Then Υ possesses an endpoint point in W.

Proof . This consequence can be obtained from Theorem 2.3, if we define a mapping α : W×W →
[0,+∞) by α(γ, δ) = 1 if (γ, δ) ∈ E(G), and α(γ, δ) = 0 otherwise. □

4. The consequences in ordered F-metric spaces

Fixed point theorems in ordered metric spaces have wide applications in differential and integral
equations and other branches in mathematical analysis(see [1, 21, 22]). From Theorem 2.3, we derive
the following new consequences in the setting of F -metric spaces endowed with an ordered (F -OMS),
i.e., spaces of the type (W,F,⪯) where (W,F) is an F -MS and ⪯ is a partial order on W. Recall
that Υ : W → W is nondecreasing, if ∀γ, δ ∈ W, γ ⪯ δ ⇒ Υ(γ) ⪯ Υ(δ).

Motivated by [14], we introduce the following concepts in an F -OMS.

Definition 4.1. Let W be an ordered nonempty set and Υ : W → 2W be a given multivalued
mapping. The mapping Υ is called weakly increasing if, for each γ ∈ W and δ ∈ Υγ with γ ⪯ δ,
one obtains that δ ⪯ z for all z ∈ Υδ.
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Definition 4.2. Let (W,F,⪯) be an F-OMS and Υ : W → CB(W) be a given multivalued mapping.

(i) W is called ⪯-complete, if any Cauchy sequence {ρn} in W with ρn ⪯ ρn+1 for all n ∈ N
converges in W;

(ii) Υ is called an ordered generalized ζ-contraction, if there exists a function ζ ∈ Ψ such that

γ, δ ∈ W, γ ⪯ δ =⇒ HF(Υγ,Υδ) ≤ ζ((F(γ, δ)). (4.1)

Theorem 4.3. Let (W,F,⪯) be a ⪯-complete F-OMS and Υ : W → CB(W) be an ordered gener-
alized ζ-contraction. Suppose that the following assertions hold:

(S1) Υ is weakly increasing;

(S2) there exist ρ0 ∈ W and ρ1 ∈ Υρ0 such that ρ0 ⪯ ρ1;

(S3) if {ρn} is a sequence in W with ρn → γ ∈ W as n → ∞ and ρn ⪯ ρn+1 for all n ∈ N, then
ρn ⪯ γ for all n ∈ N.

Then Υ possesses an endpoint point in W.

Proof . This consequence can be obtained from Theorem 2.3, if we define a mapping α : W×W →
[0,+∞) by α(γ, δ) = 1 if γ ⪯ δ, and α(γ, δ) = 0 otherwise. □

5. Suzuki type endpoint consequences in F-MS

Theorem 5.1. Let (W,F) be a complete F-MS, ζ ∈ Ψ and Υ : W → CB(W) a multivalued mapping
such that F(γ,Υγ) ≤ F(γ, δ) + ζ(F(γ, δ)) implies that H(Υγ,Υδ) ≤ ζ(F(γ, δ)) for all γ, δ ∈ W and
Υ enjoys (BS) property. If Υ satisfies the condition (SBS), then Υ possesses an endpoint in W.

Proof . Define α : W×W → [0,+∞) by

α(γ, δ) =

{
1, F(γ,Υγ) ≤ F(γ, δ) + ζ(F(γ, δ)),
0, otherwise.

It is easy to check that Υ is α-admissible. Also, for any ρ0 ∈ W and ρ1 ∈ Υρ0, we have F(ρ0,Υρ0) ≤
F(ρ0, ρ1) ≤ F(ρ0, ρ1) + ζ(F(ρ0, ρ1)). Hence, α(ρ0, ρ1) = 1. Also, it is easy to check that H(Υγ,Υδ) ≤
ζ(F(γ, δ)) for all γ, δ ∈ W. Note that the property (SBS) leads to α-regularity of W. Therefore, by
Theorem 2.3, Υ possesses an endpoint. □

Corollary 5.2. Let (W,F) be a complete F-MS, r ∈ [0, 1) and Υ : W → CB(W) a multivalued
mapping such that 1

1+r
F(γ,Υγ) ≤ F(γ, δ) implies that H(Υγ,Υδ) ≤ rF(γ, δ) for all γ, δ ∈ W and Υ

enjoys property (BS). If Υ satisfies the condition (SBS), then Υ possesses an endpoint in W.

6. Application to nonlinear integral equations

Denote CB(R) the collection of all nonempty closed and bounded subsets of R. Let X := C(I,R)
be the space of all real-valued continuous functions on I = [0, 1]. Evidently, X endowed with the
F-metric F : X × X → [0,+∞) defined by

F(γ, δ) =

{
e||γ−δ||, if γ ̸= δ,

0, otherwise,
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where
||γ − δ|| = sup

t∈I
[ |γ(t)− δ(t)| ],

is a complete F-metric space(see [12]).
In this setting, motivated by what have been done in [24], we consider the problem of solving the

integral equation

{γ(t)} =

∫ t

0

K(t, s, γ(s))ds+ g(t), t ∈ I, (6.1)

where γ ∈ X , K : I × I × R → CB(R) is a set-valued operator and g : I → R is a continuous
function.

By an application of Theorem 2.3, we establish the existence of a solution of (6.1) as follows.

Theorem 6.1. By the above mentioned notations, assume that the following assertions hold:

(i) for each γ ∈ X , the set-valued operator K : I × I × R → CB(R) is such that K(t, s, γ(s)) is
continuous in I × I,

(ii) there exists a continuous function L : I × I → R with the property inft∈I
∫ 1

0
L(t, s)ds = τ > 0

such that for any γ, δ ∈ X and each kγ(t, s) ∈ Kγ(t, s) = K(t, s, γ(s)), there exists kδ(t, s) ∈
Kδ(t, s) such that

|kγ(t, s)− kδ(t, s)| ≤ |γ(s)− δ(s)| − L(t, s), for all t, s ∈ I. (6.2)

Then, the integral equation (6.1) possesses at least one solution in X .

Proof . Suppose that Υ : X → CB(X ) is the set-valued operator specified by

Υγ = {v ∈ X : v(t) ∈
∫ 1

0

K(t, s, γ(s))ds+ g(t), t ∈ I},

for each γ ∈ X . Evidently, each endpoint of Υ is a solution of (6.1).
Next, consider the set-valued operator Kγ : I × I → CB(R), defined by Kγ(t, s) = K(t, s, γ(s)). By
Michael’s selection theorem, we get that there exists a continuous operator kγ : I ×I → R such that

kγ(t, s) ∈ Kγ(t, s) = K(t, s, γ(s)), for all t, s ∈ I. This implies that
∫ t

0
kγ(t, s)ds + g(t) ∈ Υγ and so

Υγ is a nonempty set.
Next, we show that the set-valued operator Υ satisfies all the assertions of Theorem 2.3.
Suppose that γ, δ ∈ X and v(t) ∈ Υγ. Then there exists kγ(t, s) ∈ Kγ(t, s) with t, s ∈ I such that

v(t) =
∫ 1

0
kγ(t, s)ds+g(t), t ∈ I. On the other hand, by hypothesis (ii), there exists kδ(t, s) ∈ Kδ(t, s)

such that (6.2) holds. Now taking z(t) =
∫ 1

0
kδ(t, s)ds+ g(t), we get

z(t) ∈
∫ 1

0

K(t, s, δ(s))ds+ g(t) = Υδ, t ∈ I.
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Then,

F(v, z) = e||v−z||

≤ e
supt∈I |

t∫
0

kγ(t,s)ds−
1∫
0

kδ(t,s)ds|

≤ e
supt∈I

t∫
0

|kγ(t,s)−kδ(t,s)|ds

≤ e
supt∈I

t∫
0

(|γ(s)−δ(s)|−L(t,s))ds

= e
supt∈I

t∫
0

|γ(s)−δ(s)|ds−
t∫
0

L(t,s)ds

≤ e
||γ(s)−δ(s)||−inft∈I

t∫
0

L(t,s)ds

≤ e||γ(s)−δ(s)||−τ

= e||γ(s)−δ(s)|| · e−τ

= ζ(F(γ, δ)),

where ζ(t) = e−τ t. Interchanging the roles of γ and δ, we obtain that HF(Υγ,Υδ) ≤ ζ(F(γ, δ)) for
all γ, δ ∈ X . Taking α(γ, δ) = 1 for all γ, δ ∈ X , all of the assertions of Theorem 2.3 are satisfied
and accordingly Υ possesses an endpoint, which is a solution of integral equation (6.1). □
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