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Abstract

In this work, we formulate Chatterjea contractions using graphs in metric spaces endowed with a
graph and investigate the existence of fixed points for such mappings under two different hypotheses.
We also discuss the uniqueness of the fixed point. The given result here is a generalization of
Chatterjea’s fixed point theorem from metric spaces to metric spaces endowed with a graph.
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1. Introduction and preliminaries

Let (X, d) be a metric space. In [4], Chatterjea investigated the existence and uniqueness of fixed
points for mappings T : X → X which satisfy

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
(1.1)

for all x, y ∈ X, where α ∈ [0, 1
2
) (known as Chatterjea contractions), and proved that such mappings

have a unique fixed point in complete metric spaces.
In 2008, Jachymski [5] studied the Banach contraction principle in metric spaces endowed with a

graph and subsequently, Beg et al. [1] extended some results in [5] for set valued mappings. Recently
in 2013, Bojor [2] followed Jachymski’s idea for Kannan contractions using a new assumption called
the weak T -connectivity of the graph.

The main purpose of this paper is to study Chatterjea contractions in metric spaces endowed with
a graph by standard iterative techniques and avoid imposing the assumption of weak T -connectivity
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on the graph. Our main result generalizes Chatterjea’s fixed point theorem in metric spaces and also
in metric spaces equipped with a partial order.

We begin by recalling some basic concepts related to graphs which are frequently used in this
paper. For more details, it is referred to [3, 5].

An edge of an arbitrary graph with identical ends is called a loop and an edge with distinct ends
is called a link. Two or more links with the same pairs of ends are said to be parallel edges.

Let (X, d) be a metric space and G be a directed graph with vertex set V (G) = X such that the
set E(G) consisting of the edges of G contains all loops, that is, (x, x) ∈ E(G) for all x ∈ X. Assume
further that G has no parallel edges. Then G can be denoted by the ordered pair (V (G), E(G)), and
also it is said that the metric space (X, d) is endowed with the graph G.

The metric space (X, d) can also be endowed with the graphs G−1 and G̃, where the former is
the conversion of G which is obtained from G by reversing the directions of the edges, and the latter
is an undirected graph obtained from G by ignoring the directions of the edges. In other words,

V (G−1) = V (G̃) = X, E(G−1) =
{

(x, y) : (y, x) ∈ E(G)
}

and E(G̃) = E(G) ∪ E(G−1).

It should be remarked that if both (x, y) and (y, x) belong to E(G), then we will face with parallel

edges in the graph G̃. To avoid this problem, we delete either the edge (x, y) or the edge (y, x) (but

not both of them) from G and consider the graph G̃ obtained from the remaining graph.
A graph G = (V (G), E(G)) is said to be transitive if (x, y), (y, z) ∈ E(G) implies (x, z) ∈ E(G)

for all x, y, z ∈ V (G).
A graph H is called a subgraph of G if V (H) and E(H) are (nonempty) subsets of V (G) and

E(G), respectively, and that (x, y) ∈ E(H) implies x, y ∈ V (H) for all x, y ∈ V (G).
We also need a few notions about the connectivity of graphs.
Suppose that (X, d) is a metric space endowed with a graph G. If x, y ∈ X, then a finite sequence

(xi)
N
i=0 consisting of N + 1 vertices of G is called a path in G from x to y of length N whenever

x0 = x, xN = y and (xi−1, xi) is an edge of G for i = 1, . . . , N . The graph G is called connected

if there exists a path in G between each two vertices of G, and weakly connected if the graph G̃ is
connected.

Definition 1.1. [6, Definition 3] Let (X,�) be a poset. A mapping T : X → X is called nonde-
creasing if x � y implies Tx � Ty for all x, y ∈ X.

Definition 1.2. [7, Definitions 3.1 and 3.6] Let (X, d) be a metric space and T : X → X be a
mapping. Then

i) T is called a Picard operator if T has a unique fixed point x̂ ∈ X and T nx→ x̂ for all x ∈ X;

ii) T is called a weakly Picard operator if the sequence {T nx} converges to a fixed point of T for
all x ∈ X.

It is clear that a Picard operator is a weakly Picard one but the identity mapping of any metric
space with more that one point shows that the converse is not generally true. In fact, the set of fixed
points of a weakly Picard operator can have any arbitrary cardinality. Nevertheless, one can easily
see that a weakly Picard operator is Picard if and only if it has a unique fixed point.

Definition 1.3. [5, Definition 2.4] Let (X, d) be a metric space endowed with a graphG. A mapping
T : X → X is called orbitally G-continuous on X if for all x, y ∈ X and all sequences {pn} of positive
integers with (T pnx, T pn+1x) ∈ E(G) for all n ≥ 1, the convergence T pnx→ y implies T (T pnx)→ Ty.
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Trivially, a continuous mapping on a metric space is orbitally G-continuous for all graphs G but
as we see in the next two examples, the converse is not generally true. The first example shows that
a mapping on a metric space (X, d) can be orbitally G-continuous on X for all graphs G but fail to
be continuous on X.

Example 1.4. Consider the set R+ of all nonnegative real numbers equipped with the usual Eu-
clidean metric and define a mapping T : R+ → R+ by the rule

Tx =


x

2
x ∈ R+ ∩Q,

x

3
x ∈ R+ ∩Qc

(x ∈ R+)

where Q is the set of all rationals. Then it is clear that T is only continuous at zero. In particular,
T is not continuous on the whole R+.

Now, assume that R+ is endowed with any arbitrary graph G. To prove the orbital G-continuity
of T on R+, suppose that x, y ∈ R+ and {pn} is a sequence of positive integers with (T pnx, T pn+1x) ∈
E(G) for all n ≥ 1 such that T pnx → y. If {pn} is constant for sufficiently large indices n, then
there is nothing to prove. Otherwise, if x is rational, then T pnx = x

2pn
→ 0 which shows that y = 0.

Therefore,

T (T pnx) =
x

2pn+1
→ 0 = Ty.

Finally, in the case that x is irrational, a similar argument shows that T (T pnx) → Ty. Hence T is
orbitally G-continuous on R+.

The second example shows better that how a graph plays an effective role to imply a weaker type
of continuity.

Example 1.5. Consider again the set R+ equipped with the usual Euclidean metric and define a
mapping T : R+ → R+ by the rule

Tx =


x

2
x 6= 0,

1 x = 0
(x ∈ R+).

Obviously, T is not continuous at x = 0, and in particular, on the whole R+. Now assume that R+

is endowed with a graph G = (V (G), E(G)), where V (G) = R+ and E(G) = {(x, x) : x ∈ R+},
that is, E(G) contains nothing but all loops. If x, y ∈ R+ and {pn} is a sequence of positive integers
with (T pnx, T pn+1x) ∈ E(G) for all n ≥ 1 such that T pnx→ y, then {T pnx} is necessarily a constant
sequence. Thus, T pnx = y for all n ≥ 1 and so T (T pnx) → Ty. Hence T is orbitally G-continuous
on R+.

2. The main results

Let (X, d) be a metric space endowed with a graph G and T : X → X be an arbitrary mapping.
Throughout this section, we use Fix(T ) to denote the set of all fixed points of T , and by XT , it is
meant the set of all points x ∈ X such that (x, Tx) ∈ E(G). In other words,

Fix(T ) = {x ∈ X : Tx = x} and XT =
{
x ∈ X : (x, Tx) ∈ E(G)

}
.
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Since E(G) contains all loops, it follows that Fix(T ) ⊆ XT .
Motivated by [5, Definition 2.1] and [2, Definition 4], we introduce G-Chatterjea mappings in

metric spaces endowed with a graph as follows:

Definition 2.1. Let (X, d) be a metric space endowed with a graph G. We say that a mapping
T : X → X is a G-Chatterjea mapping if

C1) T preserves the egdes of G, that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for all x, y ∈ X;

C2) there exists an α ∈ [0, 1
2
) such that

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
for all x, y ∈ X with (x, y) ∈ E(G).

If T : X → X is a G-Chatterjea mapping, then we call the number α in (C2) the constant of T .

We now give some examples of G-Chatterjea mappings in metric spaces endowed with a graph.

Example 2.2. Let (X, d) be a metric space endowed with a graph G. Since E(G) contains all loops,
it follows that any constant mapping T : X → X preserves the edges of G, and since d vanishes on
the diagonal of X, it follows that T satisfies (C2) for any constant α ∈ [0, 1

2
). Hence each constant

mapping with domain X is a G-Chatterjea mapping.

Example 2.3. Let (X, d) be a metric space and a mapping T : X → X satisfy (1.1). Consider the
complete graph G0 whose vertex set coincides with X, that is, V (G0) = X and E(G0) = X×X, and
assume that (X, d) is endowed with the graph G0. Then it is clear that T preserves the edges of G0

and (1.1) ensures that T satisfies (C2). Therefore, T is a G0-Chatterjea mapping with constant α.
Thus, G0-Chatterjea mappings in metric spaces endowed with the complete graph G0 are precisely the
Chatterjea contractions in metric spaces, and hence G-Chatterjea mappings are a generalization of
Chatterjea contractions from metric spaces to metric spaces endowed with a graph. As stated before,
the existence and uniqueness of fixed points for Chatterjea contractions in complete metric spaces
were investigated by Chatterjea (see [4]) in 1972. Also, in 1977, Rhoades [8] compared Chatterjea
contractions with a number of other well-known contractions in metric spaces.

Example 2.4. Let (X,�) be a poset and d be a metric on X. Consider the poset graphs G1 and
G2 by

V (G1) = X and E(G1) =
{

(x, y) ∈ X ×X : x � y
}

and G2 = G̃1. Since � is reflexive, it follows that both E(G1) and E(G2) contain all loops. Assume
that (X, d) is endowed with one of the graphs G1 and G2. Then a mapping T : X → X preserves
the edges of G1 if and only if T is nondecreasing, and T satisfies (C2) for the graph G1 if and only if

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
(2.1)

for all comparable elements x, y ∈ X, where α ∈ [0, 1
2
). Moreover, T preserves the edges of G2 if and

only if T maps the comparable elements of (X,�) onto comparable elements, and T satisfies (C2)
for the graph G2 if and only if (2.1) holds. Thus, each G1-Chatterjea mapping is a G2-Chatterjea
one.
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Example 2.5. Let (X, d) be a metric space and ε > 0. Two elements x, y ∈ X are called ε-close if
d(x, y) < ε. Define the ε-graph G3 by

V (G3) = X and E(G3) =
{

(x, y) ∈ X ×X : d(x, y) < ε
}
.

Since d vanishes on the diagonal of X, it follows that E(G3) contains all loops. Assume that (X, d)
is endowed with the graph G3. Then a mapping T : X → X preserves the edges of G3 if and only if
T maps the ε-close elements of X onto ε-close elements, and T satisfies (C2) for the graph G3 if and
only if

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
(2.2)

for all ε-close elements x, y ∈ X, where α ∈ [0, 1
2
).

Remark 2.6. Assume (X, d) is a metric space and T : X → X is a mapping.

• It is clear that the set XT related to the complete graph G0 coincides with X, and T is orbitally
G0-continuous on X if and only if T is orbitally continuous on X, that is, T pnx → y implies
T (T pnx) → Ty for all x, y ∈ X and all sequences {pn} of positive integers (see [5, Definition
2.2]);

• If � is a partial order on X, then the set XT related to the poset graph G1 consists of all
points x ∈ X such that x � Tx, and T is orbitally G1-continuous on X if and only if T pnx→ y
implies T (T pnx) → Ty for all x, y ∈ X and all sequences {pn} of positive integers such that
{T pnx} is nondecreasing;

• If � is a partial order on X, then the set XT related to the poset graph G2 is the set of all
points x ∈ X such that x and Tx are comparable, and T is orbitally G2-continuous on X if
and only if T pnx→ y implies T (T pnx)→ Ty for all x, y ∈ X and all sequences {pn} of positive
integers such that the successive terms of {T pnx} are pairwise comparable;

• Finally, if ε > 0, then the set XT related to the graph G3 is the set of all points x ∈ X such
that x and Tx are ε-close, and T is orbitally G3-continuous on X if and only if T pnx → y
implies T (T pnx) → Ty for all x, y ∈ X and all sequences {pn} of positive integers such that
the successive terms {T pnx} are pairwise ε-close.

The next example shows that contractions and Chatterjea contractions are independent.

Example 2.7. Consider the set X = [0, 1] equipped with the usual Euclidean metric and define a
mapping T : X → X by the rule

Tx =


1

4
0 ≤ x < 1,

1

8
x = 1

(x ∈ X).

Then T is not a contraction because given any k ∈ [0, 1), we have

|Tx− T1| = 1

8
≥ |x− 1| > k|x− 1|

for all x ∈ [7
8
, 1). On the other hand, T satisfies (1.1) for α = 1

7
and hence T is a G0-Chatterjea

mapping with constant α = 1
7
. In particular, T is a Chatterjea contraction.
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Clearly, the mapping T in Example 2.7 is not continuous at x = 1, and in particular, on the whole
metric space (X, d). Therefore, Example 2.7 shows that despite all contractions are (uniformly)
continuous, a Chatterjea contraction need not be a continuous mapping.

Example 2.8. Consider the finite set X = {0, 1, 2} equipped with the usual Euclidean metric and
define a mapping T : X → X by T = {(0, 0), (1, 2), (2, 0)}. Given any α ∈ [0, 1

2
), we have

|T1− T2| = 2 > α = α
[
|1− T2|+ |2− T1|

]
.

Therefore, T does not satisfy (1.1). Now if a graph G is defined by V (G) = X and E(G) =
{(0, 0), (1, 1), (2, 2), (0, 2)}, since T0 = T2 = 0, it follows immediately that T is a G-Chatterjea
mapping with any arbitrary constant α ∈ [0, 1

2
).

The following proposition follows immediately from the definition of a G-Chatterjea mapping and
it is a generalization of the result concluded form Example 2.4, which says that each G1-Chatterjea
mapping is a G2-Chatterjea mapping.

Proposition 2.9. Let (X, d) be a metric space endowed with a graph G and T : X → X be a
mapping.

i) If T preserves the edges of G, then T preserves the edges of G−1 (respectively, G̃);

ii) If T satisfies (C2) for the graph G, then T satisfies (C2) for the graph G−1 (respectively, G̃);

iii) If T is a G-Chatterjea mapping, then T is a G−1-Chatterjea mapping (respectively, a G̃-
Chatterjea mapping).

In order to prove our main theorem, we begin with an interesting and important property of
G-Chatterjea mappings which is needed in the sequel.

Proposition 2.10. Let (X, d) be a metric space endowed with a graph G and T : X → X be a
G-Chatterjea mapping. Then Fix(T ) does not contain both ends of any link of G.

Proof . Suppose that x and y are two fixed points of T such that (x, y) ∈ E(G). Then from (C2),
we have

d(x, y) = d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
= 2αd(x, y),

where α ∈ [0, 1
2
) is the constant of T . Hence d(x, y) = 0, that is, x = y. �

According to Proposition 2.10, if (X, d) is a metric space endowed with a graph G, then no
G-Chatterjea mapping can keep both vertices of any link of G fixed. In particular,

• if G = G0, then no Chatterjea contraction can have more than one fixed point;

• if � is a partial order on X, then no G1-Chatterjea mapping and no G2-Chatterjea mapping
can have two distinct comparable fixed points;

• if ε > 0, then no G3-Chatterjea mapping can have two distinct ε-close fixed points.

The next useful lemma shows that in a metric space (X, d) endowed with a graph G, two successive
iterates of any point of XT under a G-Chatterjea mapping T : X → X are getting arbitrarily closer
whenever the numbers of the iterates are getting sufficiently large.
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Lemma 2.11. Let (X, d) be a metric space endowed with a graph G and T : X → X be a G-
Chatterjea mapping with constant α. Then

d(T nx, T n+1x) ≤
( α

1− α
)n · d(x, Tx) (2.3)

for all x ∈ XT and all n ≥ 0. In particular, d(T nx, T n+1x)→ 0 as n→∞, for all x ∈ XT .

Proof . Suppose that x ∈ XT is given. Then (x, Tx) ∈ E(G) and since T preserves the edges of G,
it follows by induction that (T nx, T n+1x) ∈ E(G) for all n ≥ 0. Now, let n ≥ 0 be fixed. If n = 0,
then (2.3) holds trivially. Otherwise, from (C2), we have

d(T nx, T n+1x) ≤ α
[
d(T n−1x, T n+1x) + d(T nx, T nx)︸ ︷︷ ︸

=0

]
≤ α

[
d(T n−1x, T nx) + d(T nx, T n+1x)

]
,

and so
d(T nx, T n+1x) ≤ α

1− α
· d(T n−1x, T nx).

Using induction, we get

d(T nx, T n+1x) ≤ α

1− α
· d(T n−1x, T nx) ≤ · · · ≤

( α

1− α
)n · d(x, Tx).

In particular, because α < 1
2
, we have α

1−α < 1, and hence d(T nx, T n+1x)→ 0 as n→∞. �

Our main theorem shows that a G-Chatterjea mapping T defined on a complete metric space
(X, d) endowed with a graph G has a fixed point in X whenever T is orbitally G-continuous on X
or the triple (X, d,G) has a suitable property.

Theorem 2.12. Let (X, d) be a complete metric space endowed with a graph G and T : X → X be
a G-Chatterjea mapping. Then the restriction of T to the set XT is a weakly Picard operator if one
of the following statements holds:

1) T is orbitally G-continuous on X;

2) The triple (X, d,G) has the following property:

(∗) If xn → x and (xn, xn+1) ∈ E(G) for all n ≥ 1, then there exists a subsequence {xnk
} of

{xn} such that (xnk
, x) ∈ E(G) for all k ≥ 1.

In particular, whenever (1) or (2) holds, then Fix(T ) 6= ∅ if and only if XT 6= ∅.

Proof . If XT = ∅, then there is nothing to prove. Otherwise, if x ∈ XT , then (x, Tx) ∈ E(G) and
since T preserves the edges of G, it follows that (Tx, T 2x) ∈ E(G), that is, Tx ∈ XT . Thus, XT is
T -invariant, that is, T maps XT into itself.

Now, suppose that x is an arbitrary point of XT . From Lemma 2.11, we have

d(T nx, Tmx) ≤ d(T nx, T n+1x) + · · ·+ d(Tm−1x, Tmx)

≤ (λn + · · ·+ λm−1)d(x, Tx)

≤ λn

1− λ
· d(x, Tx),

for all m ≥ n ≥ 0, where λ = α
1−α ∈ [0, 1), and α ∈ [0, 1

2
) is the constant of T . Therefore, letting

m,n → ∞ yields d(T nx, Tmx) → 0. Hence {T nx} is a Cauchy sequence and because (X, d) is
complete, there exists an x̂ ∈ X (depending on x) such that T nx→ x̂ as n→∞.
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We next show that x̂ is a fixed point for T . To this end, note first that since XT is T -invariant,
it follows by induction that T nx ∈ XT for all n ≥ 0. Thus, (T nx, T n+1x) ∈ E(G) for all n ≥ 0.
Now, if T is orbitally G-continuous on X, then T n+1x → T x̂ as n → ∞. Because the limit of a
convergent sequence in a metric space is unique, we get T x̂ = x̂. Otherwise, if the triple (X, d,G)
has Property (∗), then there exists a strictly increasing sequence {nk} of positive integers such that
(T nkx, x̂) ∈ E(G) for all k ≥ 1. Therefore, from (C2), we have

d(T x̂, x̂) ≤ d(T x̂, T nk+1x) + d(T nk+1x, x̂)

= d(TT nkx, T x̂) + d(T nk+1x, x̂)

≤ α
[
d(T nkx, T x̂) + d(x̂, T nk+1x)

]
+ d(T nk+1x, x̂)

= αd(T nkx, T x̂) + (1 + α)d(T nk+1x, x̂)

≤ α
[
d(T nkx, x̂) + d(x̂, T x̂)

]
+ (1 + α)d(T nk+1x, x̂)

for all k ≥ 1. Hence

d(T x̂, x̂) ≤ α

1− α
· d(T nkx, x̂) +

1 + α

1− α
· d(T nk+1x, x̂)→ 0

as k →∞. So d(T x̂, x̂) = 0 or equivalently, T x̂ = x̂.
Finally, because Fix(T ) ⊆ XT , it follows that x̂ ∈ XT and consequently, in both Cases (1) and

(2), the restriction of T to XT is a weakly Picard operator. �

If we set G = G0 in Theorem 2.12, then as mentioned before, the set XT related to any mapping
T : X → X coincides with the whole set X. Therefore, combining Theorem 2.12 and Proposition
2.11 yields Chatterjea’s fixed point theorem [4] in complete metric spaces as follows:

Corollary 2.13. Let (X, d) be a complete metric space and T : X → X be a mapping which satisfies
(1.1). Then T is a Picard operator.

If � is a partial order on X and we set G = G1 in Theorem 2.12, since the poset graph G1 is
transitive, it is seen that one has (xn, x) ∈ E(G1) (or equivalently, xn � x) for all n ≥ 1 in Property
(∗) (for the details, see [5, Remark 3.1]). Thus, the following ordered version of Chatterjea’s fixed
point theorem in complete metric spaces equipped with a partial order is obtained:

Corollary 2.14. Let (X,�) be a poset, d be a metric on X such that (X, d) is a complete metric
space, and T : X → X be a nondecreasing mapping which satisfies (2.1). Then the restriction of
T to the set of all points x ∈ X with x � Tx is a weakly Picard operator if one of the following
statements holds:

1) T is orbitally G1-continuous on X;

2) The triple (X, d,�) has the following property:

If xn → x and {xn} is nondecreasing, then xn � x for all n ≥ 1.

In particular, whenever (1) or (2) holds, then Fix(T ) 6= ∅ if and only if there exists an x ∈ X such
that x � Tx.

If � is a partial order on X and we set G = G2 in Theorem 2.12, then another ordered version of
Chatterjea’s fixed point theorem in complete metric spaces equipped with a partial order is obtained
as follows:
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Corollary 2.15. Let (X,�) be a poset, d be a metric on X such that (X, d) is a complete metric
space, and T : X → X be a mapping which maps comparable elements of X onto comparable
elements and satisfies (2.1). Then the restriction of T to the set of all points x ∈ X such that x and
Tx are comparable is a weakly Picard operator if one of the following statements holds:

1) T is orbitally G2-continuous on X;

2) The triple (X, d,�) satisfies the following property:

If xn → x and the successive terms of {xn} are pairwise comparable, then {xn} has a
subsequence whose terms are all comparable to x.

In particular, whenever (1) or (2) holds, then Fix(T ) 6= ∅ if and only if there exists an x ∈ X such
that x and Tx are comparable.

Finally, if ε > 0 and we set G = G3 in Theorem 2.12, then we get the following version of
Chatterjea’s fixed point theorem in complete metric spaces:

Corollary 2.16. Let (X, d) be a complete metric space, ε > 0 and T : X → X be a mapping which
maps ε-close elements of X onto ε-close elements and satisfies (2.2). Then the restriction of T to
the set of all points x ∈ X such that x and Tx are ε-close is a weakly Picard operator if one of the
following statements holds:

1) T is orbitally G3-continuous on X;

2) The metric space (X, d) satisfies the following property:

If xn → x and the successive trems of {xn} are pairwise ε-close, then {xn} has a subse-
quence whose terms are all ε-close to x.

In particular, whenever (1) or (2) holds, then Fix(T ) 6= ∅ if and only if there exists an x ∈ X such
that d(x, Tx) < ε.

Now we give two sufficient conditions guaranteeing the uniqueness of the fixed point for a G-
Chatterjea mapping in metric spaces endowed with a graph.

Theorem 2.17. Let (X, d) be a metric space endowed with a graph G and T : X → X be a G-
Chatterjea mapping. Then T has at most one fixed point in X if one of the following statements
holds:

a) For all x, y ∈ X, there exists a path in G from x to y of length 2;

b) The subgraph of G with the vertices Fix(T ) is weakly connected.

Proof . Suppose that x̂, ŷ ∈ X are two fixed points for T . If (a) holds, then there exists a z ∈ X
such that (x̂, z), (z, ŷ) ∈ E(G). Thus, from (C2), we have

d(T nz, x̂) = d(T nz, T nx̂)

= d(T nx̂, T nz)

≤ α
[
d(T n−1x̂, T nz) + d(T n−1z, T nx̂)

]
= α

[
d(T nz, x̂) + d(T n−1z, x̂)

]
for all n ≥ 1, where α ∈ [0, 1

2
) is the constant of T . Therefore,

d(T nz, x̂) ≤ α

1− α
· d(T n−1z, x̂)
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for all n ≥ 1, and by induction, we get

d(T nz, x̂) ≤ α

1− α
· d(T n−1z, x̂) ≤ · · · ≤

( α

1− α
)n · d(z, x̂),

for all n ≥ 0. Now letting n→∞, we find T nz → x̂. Similarly, one can show that T nz → ŷ. Hence
x̂ = ŷ.

On the other hand, if (b) holds, then there exists a path (xi)
N
i=0 in G̃ from x̂ to ŷ such that

x1, . . . , xN−1 ∈ Fix(T ), that is, x0 = x̂, xN = ŷ and (xi−1, xi) ∈ E(G̃) for i = 1, . . . , N . Since T

is a G-Chatterjea mapping, it follows from Proposition 2.9 that T is also a G̃-Chatterjea mapping.
Therefore, from Proposition 2.10, we find

x̂ = x0 = x1 = · · · = xN−1 = xN = ŷ.

Consequently, in both Cases (a) and (b), T has at most one fixed point in X. �
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