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Abstract

This paper presents an approach for solving nonlinear stochastic differential equations (NSDEs)
using a new basis functions (NBFs). These functions and their operational matrices are used for
representing matrix form of the NBFs. With using this method in combination with the collocation
method, the NSDEs are reduced a stochastic nonlinear system of 2m + 2 equations and 2m + 2
unknowns. Then, the error analysis is proved. Finally, numerical examples illustrate applicability
and accuracy of the presented method.
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1. Introduction

The stochastic differential equations arise in many problems in mechanics, finance, biology, medical,
social sciences and etc [2]. These equations are often dependent on a noise source, on a Gaussian
white noise, so modeling such phenomena naturally requires the use of various stochastic differential
equations or, in more complicated cases, the NSDEs and stochastic integro-differential equations.
In many problems such equations of course cannot be solved explicitly, hence the study of such
problems is very important in find their approximate solutions by using some numerical methods
[3, 4, 4, 6, 7, 8, 9].

In the presented work, we consider{
dx(s) = f(s, x(s))ds+ g(s, x(s))dB(s), s ∈ (0, T ),
x(0) = x0,

(1.1)
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or

x(t) = x0 +

∫ t

0

f(s, x(s))ds+

∫ t

0

g(s, x(s))dB(s), t, s ∈ (0, T ), T ≤ 1, (1.2)

where f(t, x(t)), g(t, x(t)) : (0, T ) × R −→ R and x(t) are the unknown stochastic processes on
probability space (Ω,z, P ). Also, B(s) be the standard Brownian motion defined on probability
space.

The Eq. 1.2 has been studied by some authors with using various techniques that can be classified
into main groups: solving the NSDEs by using the runge-kutta methods [3] and the bluck pulse
functions [7], but we use from the stochastic operational matrix based on properties of the NBFs
without integration. The benefits of this method are lower cost of setting up the system of equations,
moreover, the computational cost of operations is low. Also, convergence of this method is faster
than other methods.

The rest of the paper is organized as follows: In Section 2, we introduced some properties of the
standard Brownian motion and the necessary properties of the NBFs that are essential for the rest
of this paper. In Section 3, the first we prove a theorem then, with using properties of the NBFs in
combination with the collocation technique, Eq. 1.2 is reduced to the stochastic nonlinear system.
In Section 4, the error analysis is done for proposed method. In Section 5, the presented method is
illustrated by some examples. Finally, in Section 6, is given a brief conclusion.

2. Preliminaries

Let the functions f(t, x(t)) and g(t, x(t)) hold in Lipschitz conditions and Linear growth ( for all
t ∈ (0, 1)), i.e. there are constants m1, m2, l1 and l2 such that:

A1.

{
|f(t, x)− f(t, y)| ≤ m1|x− y| (lipschitz continuity),
|f(t, x)| < l1(1 + |x|) (linear growth).

A2.

{
|g(t, x)− g(t, y)| < m2|x− y| (lipschitz condition),
|g(t, x)| < l2(1 + |x|) (linear growth).

For x, y ∈ R and t ∈ (0, T ).

Theorem 2.1. (Oksendal [2]) Let f(t, x(t)) and g(t, x(t)) hold in conditions A1, A2 and E‖x0‖2 <
∞. Then, there exists a unique solution for Eq. 1.2.

In the sequel, we introduce the basic properties of the NBFs that are necessary for the rest of
this paper. For more details see [1].

1. In [1], m−sets of the NBFs are defined as follows:

N1
i (t) =

{
((i+1)× T

m
)2−t2

(2i+1)×( T
m
)2

i T
m
≤ t < (i+ 1)) T

m
,

0 otherwise,

and

N2
i (t) =

{
t2−(i T

m
)2

(2i+1)×( T
m
)2

i T
m
≤ t < (i+ 1)) T

m
,

0 otherwise,

where i = 0, 1, ..,m− 1.
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2. A function g(t) ∈ L2
(
[0, T ]

)
is approximated by using properties of the NBFs as follows:

g(t) ≈ GT .N(t),

where

N2
i (t) =


N1(t) = [N1

0 (t), ..., N1
m−1(t)]

T ,
N2(t) = [N2

0 (t), ..., N2
m−1(t)]

T ,
N(t) = [N1(t), N2(t)]T ,

and
G = [g1, g2]

T ,

with g1 = (g(ih))m×1 and g2 = (g(i+ 1)h)m×1 (i = 0, 1, ..,m− 1).

3. In [1], it is stated that ∫ t

0

N(s)ds ≈ PN .N(t),

where

PT =

(
P1 P2
P1
2

P2
2

)
,

with

P1 =
h

6


2 4 4 . . . 4
0 2 4 . . . 4
0 0 2 . . . 4
...

...
...

. . .
...

0 0 0 . . . 2


m×m

,

and

P2 =
h

6


0 4 4 . . . 4
0 0 4 . . . 4
0 0 0 . . . 4
...

...
...

. . .
...

0 0 0 . . . 0


m×m

.

3. Application of NBFs for solving NSDEs

Theorem 3.1. Let N1
i (t) and N1

i (t) (i = 0, . . . ,m− 1) denotes the NBFs, then

∫ t

0

N1
i (s)dB(s) ≈


0 0 ≤ t < ih,

α(i) ih ≤ t < (i+ 1)h,

β(i) (i+ 1)h ≤ t < T.

and

∫ t

0

N2
i (s)dB(s) ≈


0 0 ≤ t < ih,

δ(i) ih ≤ t < (i+ 1)h,

λ(i) (i+ 1)h ≤ t < T.
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with 

α(i) = (i+1)2

2i+1
[B((i+ 0.5)h)−B(ih)]−

∫ (i+0.5)h

ih
s2

(2i+1)h2dB(s),

β(i) = (i+1)2

2i+1
[B((i+ 1)h)−B(ih)]−

∫ (i+1)h

ih
s2

(2i+1)h2dB(s),

δ(i) =
∫ (i+0.5)h

ih
s2

(2i+1)h2dB(s)− i2

2i+1
[B((i+ 0.5)h)−B(ih)],

λ(i) =
∫ (i+1)h

ih
s2

(2i+1)h2dB(s)− i2

2i+1
[B((i+ 1)h)−B(ih)].

(3.1)

Proof . By using the definitions N1
i (t) and N1

i (t) (i = 0, . . . ,m− 1), we can write
L1. ∫ t

0

N1
i (s)dB(s) = 0, t ∈ [0, ih),

and ∫ t

0

N2
i (s)dB(s) = 0, t ∈ [0, ih).

L2. ∫ t

0

N1
i (s)dB(s) =

∫ ih

0

N1
i (s)dB(s) +

∫ t

ih

N1
i (s)dB(s) =

(i+ 1)2

2i+ 1

[B(t)−B(ih)]−
∫ t

ih

s2

(2i+ 1)h2
dB(s), t ∈ [ih, (i+ 1)h),

and ∫ t

0

N2
i (s)dB(s) =

∫ ih

0

N2
i (s)dB(s) +

∫ t

ih

N2
i (s)dB(s) =

∫ t

ih

s2

(2i+ 1)h2

dB(s)− i2

2i+ 1
[B(t)−B(ih)], t ∈ [ih, (i+ 1)h).

L3. ∫ t

0

N1
i (s)dB(s) =

∫ ih

0

N1
i (s)dB(s) +

∫ (i+1)h

ih

N1
i (s)dB(s) +

∫ t

(i+1)h

N1
i (s)dB(s)

=
(i+ 1)2

2i+ 1
[B((i+ 1)h)−B(ih)]−

∫ (i+1)h

ih

s2

(2i+ 1)h2
dB(s), t ∈ [(i+ 1)h, T ),

and ∫ t

0

N2
i (s)dB(s) =

∫ ih

0

N2
i (s)dB(s) +

∫ (i+1)h

ih

N2
i (s)dB(s) +

∫ t

(i+1)h

N2
i (s)dB(s)

=

∫ (i+1)h

ih

s2

(2i+ 1)h2
dB(s)− i2

2i+ 1
[B((i+ 1)h)−B(ih)], t ∈ [(i+ 1)h, T ).

Also, let

(i+ 1)2

2i+ 1
[B(t)−B(ih)]−

∫ t

ih

s2

(2i+ 1)h2
dB(s) ≈ (i+ 1)2

2i+ 1
[B((i+ 0.5)h)

−B(ih)]−
∫ (i+0.5)h

ih

s2

(2i+ 1)h2
dB(s), (3.2)
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and ∫ t

ih

s2

(2i+ 1)h2
dB(s)− i2

2i+ 1
[B(t)−B(ih)] ≈

∫ (i+0.5)h

ih

s2

(2i+ 1)h2
dB(s)

− i2

2i+ 1
[B((i+ 0.5)h)−B(ih)]. (3.3)

From L1, L2 ,L3, Eqs.3.2 and 3.3, we can conclude

∫ t

0

N1
i (s)dB(s) ≈


0 0 ≤ t < ih,

α(i) ih ≤ t < (i+ 1)h,

β(i) (i+ 1)h ≤ t < T.

and

∫ t

0

N2
i (s)dB(s) ≈


0 0 ≤ t < ih,

δ(i) ih ≤ t < (i+ 1)h,

λ(i) (i+ 1)h ≤ t < T.

where α(i), β(i), δ(i) and λ(i) are defined in 3.1. �

From Theorem 3.1, we get{ ∫ t

0
N1

i (s)dB(s) ≈
[
0, . . . , 0, α(i), β(i), . . . , β(i)

]
(N1(t) +N2(t)),∫ t

0
N2

i (s)dB(s) ≈
[
0, . . . , 0, δ(i), λ(i), . . . , λ(i)

]
(N1(t) +N2(t)),

consequently { ∫ t

0
N1(s)dB(s) = P1S.N

1(t) + P1S.N
2(t),∫ t

0
N2(s)dB(s) = P2S.N

1(t) + P2S.N
2(t),

where

P1S =



α(0) β(0) β(0) . . . β(0)

0 α(1) β(1) . . . β(1)

0 0 α(2) . . . β(2)

...
...

...
. . .

...

0 0 0 . . . β(m− 2)

0 0 0 . . . α(m− 1)


m×m

,
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P2S =



δ(0) λ(0) λ(0) . . . λ(0)

0 δ(1) λ(1) . . . λ(1)

0 0 δ(2) . . . λ(2)

...
...

...
. . .

...

0 0 0 . . . λ(m− 2)

0 0 0 . . . δ(m− 1)


m×m

.

For computation
∫ t

0
N(s)dB(s) we can write∫ t

0

N(s)dB(s) ≈
(
P1S P1S
P2S P2S

)
.N(t) ≈ PS.N(t), t ∈ [0, T ). (3.4)

Let {
p(s) = f(s, x(s)),
q(s) = g(s, x(s)),

(3.5)

with substituting Eq. 3.5 in Eq. 1.2, we get

x(t) = x0 +

∫ t

0

p(s)ds+

∫ t

0

q(s)dB(s). (3.6)

Also, by using properties of the NBFs, we have{
p(s) ≈ P TN(s),
q(s) ≈ QTT (s),

(3.7)

where
P = (pi)2m×1 =

(
p(0), p(h), . . . , p((m− 1)h), p(h), p(2h), . . . , p(mh)

)
2m×1,

and
Q = (qi)2m×1 =

(
q(0), q(h), . . . , q((m− 1)h), q(h), q(2h), . . . , q(mh)

)
2m×1.

With substituting Eqs. 3.7 and 3.4 in Eq. 3.6, we can write

x(t) ≈ x0 +

∫ t

0

P TN(s)ds+

∫ t

0

QTN(s)dB(s), (3.8)

or
x(t) ≈ x0 + P TPNN(t) +QTPSN(t). (3.9)

Now, with replacing ≈ by =, then with substituting Eq. 3.9 into Eq. 3.5 and the collocation
technique in m+ 1 nodes tj = j

1
T
m+1

and j = 0, 1, . . . , m, we obtain{
p(tj) = f(tj, x0 + P TPNN(tj) +QTPSN(tj)),
q(tj) = g(tj, x0 + P TPNN(tj) +QTPSN(tj)),

(3.10)

or {
P TT (tj) = f(tj, x0 + P TPNN(tj) +QTPSN(tj)),
QTT (tj) = g(tj, x0 + P TPNN(tj) +QTPSN(tj)),

(3.11)

where the stochastic nonlinear system of 2m+ 2 equations and 2m+ 2 unknowns be. Hence, we can
conclude

x(t) ≈ xm(t) = x0 + P TPNN(t) +QTPSN(t). (3.12)
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4. Error analysis

Theorem 4.1. Let g(t) be an arbitrary real bounded function on (0, 1), |g′(t)| ≤ M , ĝ(t) be the
NBFs approximation of g(t) and e(t) = g(t)− ĝ(t). Then,

||e(t)||2 ≤ O(h2),

where ||e(t)||2 =
∫ 1

0
|e(t)|2dt.

Proof . By using properties of the NBFs, we have

|e(t)| = |g(t)− ĝ(t)| = |g(t)−
(m−1∑

i=0

g(ih)(
((i+ 1)h)2 − t2

(2i+ 1)h2
) + g((i+ 1)h)(

t2 − (ih)2

(2i+ 1)h2
)
)
|.

Let t ∈ (ih, (i+ 1)h), so we can write

|e(t)| = |g(t)− ĝ(t)| = |g(t)−
(
g(ih)(1− t2 − (ih)2

(2i+ 1)h2
) + g((i+ 1)h)(

t2 − (ih)2

(2i+ 1)h2
)
)
| =

|g(t)− g(ih) +
(
g(ih)− g((i+ 1)h)

)
(
t2 − (ih)2

(2i+ 1)h2
)| ≤ |g(t)− g(ih)|+ |g(ih)−

g((i+ 1)h)|| t
2 − (ih)2

(2i+ 1)h2
| ≤ |g(t)− g(ih)|+ |g(ih)− g((i+ 1)h)|

| ((i+ 1)h)2 − (ih)2

(2i+ 1)h2
| ≤ |g(t)− g(ih)|+ |g(ih)− g((i+ 1)h)|, (4.1)

by the mean value theorem, we get

|e(t)| ≤ |g′(η)|(t− ih) + |g′(t)h| ≤Mh,

consequently

||e(t)||2 =

∫ 1

0

|e(t)|2dt ≤M2h2 ≤ O(h2).

�

Let {
pm(t) = f(t, xm(t)),
qm(t) = g(t, xm(t)),

(4.2)

and {
p̂(t) = f̂(t, xm(t)),
q̂(t) = ĝ(t, xm(t)),

(4.3)

where p̂(t) and q̂(t) are defined by properties of the NBFs. Also, let xm(t) be numerical solution of
Eq. 1.2 defined in Eq. 3.12, so we can write

x(t)− xm(t) =

∫ t

0

(p(s)− p̂(s))ds+

∫ t

0

(q(s)− q̂(s))dB(s).
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Theorem 4.2. Let xm(t) be the numerical solution of Eq. 1.2 defined in Eq. 3.12 and let conditions
(A1), (A2) and E ‖ x0 ‖2<∞ hold. Then,

‖ x(t)− xm(t) ‖2≤ O(h2), t ∈ (0, 1), (4.4)

where ‖ x ‖2= E[x2].

Proof .

x(t)− xm(t) =

∫ t

0

(p(s)− p̂(s))ds+

∫ t

0

(q(s)− q̂(s))dB(s), (4.5)

by using
(
x1 + x2

)2 ≤ 2
(
x21 + x22

)
, we have

‖ x(t)− xm(t) ‖2≤ 2
(
‖
∫ t

0

(p(s)− p̂(s))ds ‖2 + ‖
∫ t

0

(q(s)− q̂(s))dB(s) ‖2
)
≤ 2

( ∫ t

0

‖ p(s)− p̂(s) ‖2 ds+ ‖
∫ t

0

(q(s)− q̂(s))dB(s) ‖2
)
. (4.6)

Now, by using the property of the isometry for the Standard Brownian motion defined in [2], we can
write

‖ x(t)− xm(t) ‖2≤ 2[

∫ t

0

‖ p(s)− p̂(s) ‖2 ds+

∫ t

0

‖ q(s)− q̂(s) ‖2 ds] ≤ 2
(
2

∫ t

0

‖ p(s)

−pm(s) ‖2 ds+ 2

∫ t

0

‖ pm(s)− p̂(s) ‖2 ds+ 2

∫ t

0

‖ q(s)− qm(s) ‖2 ds+ 2

∫ t

0

‖ qm(s)

−q̂(s) ‖2 ds
)
≤ 4
( ∫ t

0

‖ p(s)− pm(s) ‖2 ds+

∫ t

0

‖ pm(s)− p̂(s) ‖2 ds+

∫ t

0

‖ q(s)

−qm(s) ‖2 ds+

∫ t

0

‖ pm(s)− p̂(s) ‖2 ds
)
. (4.7)

By using Theorem 4.1, we can write{
‖ pm(s)− p̂(s) ‖2≤ k1h

2, k1 > 0,
‖ qm(s)− q̂(s) ‖2≤ k2h

2, k2 > 0.
(4.8)

Also, by using conditions A1 and A2, we have{ ∫ t

0
‖ p(s)− pm(s) ‖2 ds ≤ l1

∫ t

0
‖ x(s)− xm(s) ‖2 ds,∫ t

0
‖ q(s)− qm(s) ‖2 ds ≤ l2

∫ t

0
‖ x(s)− xm(s) ‖2 ds.

(4.9)

Now, with substituting Eqs. 4.9 and 4.8 in Eq. 4.7, we get

‖ x(t)− xm(t) ‖2≤ 4
(
k1h

2 + l1

∫ t

0

‖ x(s)− xm(s) ‖2 ds+ k2h
2 +

l2

∫ t

0

‖ x(s)− xm(s) ‖2 ds
)
, (4.10)

or

µ(t) ≤ θ + η

∫ t

0

µ(s)ds,
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where θ = 4(k1h
2 + k2h

2), η = 4(l1 + l2) and µ(s) =‖ x(s)− xm(s) ‖2. Furthermore, from Gronwall
inequality, we get

µ(t) ≤ θ(1 + η

∫ t

0

exp
(
η(t− s)

)
ds), t ∈ (0, 1),

so
‖ x(t)− xm(t) ‖2≤ O(h2).

�

5. Numerical examples

Example 5.1. Let

x(t) = x0 +

∫ t

0

x(s)(λ− x(s))ds+

∫ t

0

σx(s)dB(s),

where be model of the population growth [7], with exact solution

x(t) =
x0 exp((λ− 1

2
σ2).t+ σB(t))

1 +
∫ t

0
x0 exp((λ− 1

2
σ2).s+ σB(s))ds

.

The numerical results have been shown in Table (1), where x and s are error mean and standard
deviation of error, respectively. In addition, we assume x0 = 0.5, λ = 1 and σ = 0.25.

Table 1: Mean, standard deviation and confidence interval for error mean (T=0.25, m=16)

t x s %95 confidence interval for mean
Lower Upper

0.05 1.2038× 10−2 7.9800× 10−3 7.0915× 10−3 1.6984× 10−2

0.1 2.6744× 10−2 1.5035× 10−2 1.7425× 10−2 3.6063× 10−2

0.15 5.1791× 10−3 3.3294× 10−2 3.1155× 10−2 7.2427× 10−2

0.2 4.0886× 10−2 2.5340× 10−2 2.5180× 10−2 5.6592× 10−2

Example 5.2. Let
dx(s) = 1

1000
s3x(s)ds− 1

20
s3x(s)dB(s), s ∈ (0, T ), T < 1,

x(0) = −1
50
,

be the stochastic differential equations with exact solution

x(t) =
−1

50
exp

( 1

4000
t4 − 1

2800
t7 − 1

20

∫ t

0

s3dB(s)
)
.

The numerical results have been shown in Table (2), where x and s are error mean and standard
deviation of error, respectively.

Table 2: Mean, standard deviation and confidence interval for error mean (T=0.25, m=16)

t x s %95 confidence interval for mean
Lower Upper

0.05 2.200× 10−6 2.785× 10−6 4.37× 10−7 3.92× 10−6

0.1 8.400× 10−6 5.953× 10−6 7.410× 10−6 1.208× 10−5

0.15 3.9400× 10−5 3.3344× 10−5 1.8733× 10−5 6.0066× 10−5

0.2 1.52300× 10−4 1.20548× 10−4 7.7583× 10−5 2.27016× 10−4
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6. Conclusion

This paper suggests a computational technique for solving of the nonlinear stochastic differential
equation. We use from the stochastic operational matrix based on the NBFs in combination with
the collocation technique. The advantage of this method is lower cost of setting up the system of
equations without integration, moreover, the computational cost of operations is low. For showing ef-
ficiency, the method is applied to some numerical examples. The results show accuracy of the method.
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