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Abstract

Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al.
[On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper,
we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach’
fixed point theorem and Walter’s theorem. Also, we give an example showing that our main theorem
is a real generalization of these fixed point theorems.
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1. Introduction and preliminaries

Walter ([6]) generalized Banach’s fixed point theorem with the following fact.

Theorem 1.1. (Walter [6]). Let (X, d) be complete metric space and suppose T : X → X has
bounded orbits and satisfies the following condition.

For each x ∈ X, there exists n(x) ∈ N such that for all n ≥ n(x) and y ∈ X,

d(T n(x), T n(y)) ≤ φ(O(x, y))

where O(x) = {x, Tx, T 2x, . . .} and O(x, y) = O(x) ∪ O(y). Then there exists a unique z ∈ X such
that

lim
n→∞

d(T n(x), z) = 0

for all x ∈ X. Moreover, if T is continuous then T has a fixed point.
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In recent years, there has been recent interest in establishing fixed point theorems on ordered met-
ric spaces with a contractivity condition which holds for all points that are related by partial ordering.
In [4], Ran and Reurings established the fixed point theorem that extends the Banach contraction
principle to the setting of ordered metric spaces. The existence of fixed point for contraction-type
mappings on such spaces was considered by many authors (see [3, 5, 1, 7]).

Very recently, M. Eshaghi et al. [2] introduced the concept of the orthogonal sets as the following.

Definition 1.2. ([2]). Let X 6= ∅ and ⊥ ⊆ X×X be an binary relation. If ⊥ satisfies the following
condition

∃x0 : (∀y, y⊥x0) or (∀y, x0⊥y),

then it is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

They also proved a genuine generalization of Banach’ fixed point theorem. They gave an example
which say that the their main theorem is a real generalization of Banach’s fixed point theorem.

The main result of [2] is the following theorem.

Theorem 1.3. (Eshaghi and et al. [4]) Let (X,⊥, d) be an O-complete metric space (not necessarily
complete metric space) and 0 < λ < 1. Let f : X → X be⊥-continuous, ⊥-contraction with Lipschitz
constant λ and ⊥-preserving. Then f has a unique fixed point x∗ ∈ X. Also, f is a Picard operator,
that is, lim fn(x) = x∗ for all x ∈ X.

In this paper, we introduce the concept the strongly orthogonal sets and analyze the existence of
fixed points for generalized contractive operators in strongly metric spaces. Also, we prove our the-
orem is a substantial generalization of Walter’s theorem, Theorem 1.3 of [2] and Banach contraction
principle.

2. strongly orthogonal sets

We start our work with following definitions.

Definition 2.1. Let (X,⊥) be O-set . A sequence {xn}n∈N is called strongly orthogonal sequence
(briefly SO-sequence) if

(∀n, k;xn⊥xn+k) or (∀n, k;∀xn+k⊥xn).

Definition 2.2. Let (X,⊥, d) be an orthogonal metric space ((X,⊥) is an O-set and (X, d) is a
metric space) . Then f : X → X is strongly orthogonal continuous (SO-continuous) in a ∈ X if for
each SO-sequence {an}n∈N in X if an → a , then f(an)→ f(a) . Also f is SO-continuous on X if f
is SO-continuous in each a ∈ X .

It is easy to see that every continuous mapping is SO-continuous . The following example shows
that the converse is not true .

Example 2.3. Let X = [0, 10) , suppose x⊥y if

x, y ∈ (
3n+ 1

3
,
4n+ 1

4
) for some n ∈ Z, or
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x = 0.

It is easy to see that (X,⊥) is an O-set . Define f : X → X by f(x) = [x] . Then f is SO-continuous
on X. Because if {xk} is an arbitrary SO-sequence in X such that {xk} converges to x ∈ X , then
the following cases are hold :
case 1) xk = 0 for all k . Then x = 0 and f(xk) = 0→ 0 = f(x) .
case 2) xk0 6= 0 for some k0 . Then there exists m ∈ Z such that xk ∈ (m+ 1

3
,m+ 2

3
) for all k ≥ k0 .

Thus x ∈ [m+ 1
3
,m+ 2

3
] and f(xk) = m→ m = f(x).

Definition 2.4. Let (X,⊥, d) be an orthogonal set with metric d . Then X is strongly orthogonal
complete (briefly SO-complete) if every Cauchy SO-sequence is convergent .

It is easy to see that every complete metric space is SO-complete and the converse is not true.
In the before example, X is SO-complete and it is not complete.

3. Fixed point theorems in strongly orthogonal sets

Let (X, d) be a metric space and T : X → X be a mapping . For x, y ∈ X consider O(x) :=
{x, T (x), T 2(x), . . .} and O(x, y) := O(x)∪O(y) . We say that O(x, y) is an orbit in X and following
we denote

D(x, y) := sup{d(T k(x), T l(y)); k ≤ l and k, l = 0, 1, 2, . . .}.

From now on , we suppose that φ is a contractive gauge function on R+. That is, φ : R+ → R+ is
continuous, nondecreasing and satisfies φ(s) < s for s > 0.

Theorem 3.1. Let (X,⊥, d) be SO-complete and T : X → X be a self mapping with bounded orbits.
Let T be orthogonal preserving, that is,

x, y ∈ X, x ⊥ y =⇒ T (x)⊥T (y)

and satisfies the following condition:
For each x ∈ X, there exists n(x) ∈ N such that for all n ≥ n(x) and y ∈ X with x⊥y

d(T n(x), T n(y)) ≤ φ(D(x, y)) (3.1)

Then there exists a unique z ∈ X such that

lim
n→∞

d(T n(x), z) = 0

for all x ∈ X. Moreover, if T is SO- continuous then T is a Picard operator.

Proof . For x ∈ X , we put xk := T k(x) , k = 0, 1, 2, . . . . By definition of orthogonality

∃x0 ∈ X, (∀y ∈ X, x0⊥y) or( ∀y ∈ X, y⊥x0).

We let x0⊥y for all y ∈ X. Since T is orthogonality preserving, then {xn0} is SO-sequence. Define
sequences {k(i)} ⊆ N and {Ai}i ⊆ 2X by

k(0) := 0 , k(i+ 1) := k(i) + n(x
k(i)
0 )
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and
Ai := O(x

k(i)
0 ).

To complete the proof , we need the following two steps :
Step 1. limn→∞diam(Ai) = 0.

P roof. Since T is orthogonality preserving, we deduce that x
k(i)
0 ⊥x

k(i)+k
0 for i, k = 0, 1, 2, . . . . Let

n ≥ n(x
k(i)
0 ) . It follows from (3.1) that for k = 0, 1, 2, . . .

d(x
n+k(i)
0 , x

n+k(i)+k
0 ) = d(T n(x

k(i)
0 ), T n(x

k(i)+k
0 ))

≤ φ(D(x
k(i)
0 , x

k(i)+k
0 ))

≤ φ(diam(Ai)).

This shows that diam(Ai+1) ≤ φ(diam(Ai)) . Let limi→∞diam(Ai) = a . Then

a = lim
i→∞

diam(Ai+1) ≤ lim
i→∞

φ(diam(Ai))

= φ( lim
i→∞

diam(Ai)) = φ(a).

Since φ(t) < t if t > 0 , it must be case that a = 0 . This clearly implies that {xi0} is a SO-Cauchy
sequence. Since X is SO-complete, it follows that limn→∞ x

n
0 = z for some z ∈ X. Let y ∈ X be

arbitrary . We define sequences {m(i)}i ⊆ N and {Bi}i ⊆ R by

m(0) := 0 , m(i+ 1) := m(i) + max{n(x
m(i)
0 ), n(ym(i))}

and
Bi := D(x

m(i)
0 , ym(i)).

Step 2. limi→∞Bi = 0.
P roof. Observe x

m(i)
0 ⊥ym(i)+k for i, k = 0, 1, 2 . . . . Suppose

n ≥ max{n(x
m(i)
0 ), n(ym(i))}

then for k ∈ N,

d(x
n+m(i)
0 , yn+m(i)+k) = d(T n(x

m(i)
0 ), T n(ym(i)+k))

≤ φ(D(x
m(i)
0 , ym(i)+k))

≤ φ(D(x
m(i)
0 , ym(i))).

Hence Bi+1 ≤ φ(Bi). Let limi→∞Bi = b ≥ 0. If b > 0, then

b = lim
i→∞

Bi+1 ≤ φ( lim
i→∞

Bi) = φ(b) < b.

Thus b = 0. This implies that limi→∞D(xi0, y
i) = 0. Applying step 1, we have limi→∞ y

i = z.
Let T be SO- continuous. Since {xn0} is SO-sequence then by step(2) we have T (z) = z. �

Remark 3.2. Theorem 3.1 is a generalization Theorem 1.1 of Walter. To see this, suppose

x⊥y ⇐⇒ ∃n ∈ N; d(T n(x), T n(y)) ≤ φ(O(x, y)).

It is easy to see that for every x and y in X, x⊥y. Thus, (X, d,⊥) is SO-complete metric space and
T is ⊥-preserving and SO-continuous mapping that satisfies condition (3.1). By applying Theorem
1.3, T is a Picard operator.



Contractive gauge functions in strongly orthogonal metric spaces 8 (2017) No. 2, 23-28 27

Remark 3.3. Theorem 3.1 is a generalization of Theorem 1.3 of Eshaghi and et al. In fact, by
putting φ(t) = λt, and since every SO-sequence is O-sequence,we can see the result.

Remark 3.4. Theorem 3.1 is twofold generalization of Banach contraction principle. Note that in
[2], it is proved that Theorem 1.3 is a real generalization of Banach contraction principle.

Now, we shall show that there is an example which shows that Theorem 3.1 is a genuine gener-
alization of Theorem 1.3.

Example 3.5. Let X = (0,∞) and d be a usual metric. Suppose x⊥y if xy = x. It is easy to see
that (X,⊥) is an O-set. Let T : X → X defined by

T (x) =

{
x+1
2

x ≤ 1
1
2

x > 1,

Now, we shall show that T satisfies all assumptions of our Theorem 3.1. We have the following items:

1. X is SO-complete (not complete). In fact, if {xn} is an arbitrary Cauchy SO-sequence in X,
then there exists n0 ∈ N such that xn = 1 for all n ≥ n0. It follows that {xn} is the constant
sequence 1 and hence xn converges to x = 1.

2. T is SO-continuous ( not continuous). In fact, let {xn} be an SO-sequence converging to a
point x ∈ X. By using the step 1, there exists n0 ∈ N such that xn = 1 for all n ≥ n0 and
x = 1. This implies that T (xn)→ 1 = T (x).

3. T is orthogonal preserving. In fact, if x⊥y, then y = 1. By definition of T , we see that T (y) = 1
and T (x) T (y) = T (x), this implies that T (x)⊥T (y).

4. T satisfies in condition (3.1). To see this, let x be an arbitrary element in X. If x > 1, we can
choose integer number n1 such that 1

n1
≤ ln(x). For every n ≥ n1 and y with x⊥y, we have

d(T n(x), T n(y)) =
1

n
≤ 1

n1

≤ ln(x) ≤ φ(D(x, y)).

If x < 1, then there exists iteger n2 such that 1−x
n2
≤ ln(2 − x). For every n ≥ n2 and y with

x⊥y, we have

d(T n(x), T n(y)) =
|1− x|
n

≤ 1− x
n2

≤ ln(2− x) ≤ φ(D(x, y)).

If x = 1, then for all positive integer n and y with y⊥x, d(T n(x), T n(y)) = 0 ≤ φ(x, y). Putting
n(x) = max{n1, n2} we conclude condition (3.1).

Observe that all assumptions of Theorem 3.1 are satisfied. Thus T has a unique fixed point x = 1.
We can also see that the mapping T does not satisfy assumptions of Theorem 1.3. Because, if x = 3

2

and y = 1, then we see that x⊥y and d(T (x), T (y)) = 1
2

= d(x, y).
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