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Abstract

Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al.
[On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press|. In this paper,
we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach’
fixed point theorem and Walter’s theorem. Also, we give an example showing that our main theorem
is a real generalization of these fixed point theorems.
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1. Introduction and preliminaries
Walter ([6]) generalized Banach’s fixed point theorem with the following fact.

Theorem 1.1. (Walter [0]). Let (X,d) be complete metric space and suppose 7' : X — X has
bounded orbits and satisfies the following condition.
For each o € X, there exists n(z) € N such that for all n > n(x) and y € X,

d(T"(x), T"(y)) < 6(O(x,y))

where O(z) = {z, Tz, T?z, ...} and O(z,y) = O(x) U O(y). Then there exists a unique z € X such
that

lim d(T"(z),2) =0

n—oo

for all x € X. Moreover, if T' is continuous then T has a fixed point.
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In recent years, there has been recent interest in establishing fixed point theorems on ordered met-
ric spaces with a contractivity condition which holds for all points that are related by partial ordering.
In [4], Ran and Reurings established the fixed point theorem that extends the Banach contraction
principle to the setting of ordered metric spaces. The existence of fixed point for contraction-type
mappings on such spaces was considered by many authors (see [3], [ [I, [7]).

Very recently, M. Eshaghi et al. [2] introduced the concept of the orthogonal sets as the following.

Definition 1.2. ([2]). Let X # () and L. C X x X be an binary relation. If L satisfies the following
condition

Axo : (Vy,yLao) or (Vy,z0Ly),
then it is called an orthogonal set (briefly O-set). We denote this O-set by (X, L).

They also proved a genuine generalization of Banach’ fixed point theorem. They gave an example
which say that the their main theorem is a real generalization of Banach’s fixed point theorem.
The main result of [2] is the following theorem.

Theorem 1.3. (Eshaghi and et al. [4]) Let (X, L, d) be an O-complete metric space (not necessarily
complete metric space) and 0 < A < 1. Let f : X — X be L-continuous, L-contraction with Lipschitz
constant A and L -preserving. Then f has a unique fixed point * € X. Also, f is a Picard operator,
that is, lim f"(z) = z* for all z € X.

In this paper, we introduce the concept the strongly orthogonal sets and analyze the existence of
fixed points for generalized contractive operators in strongly metric spaces. Also, we prove our the-
orem is a substantial generalization of Walter’s theorem, Theorem of [2] and Banach contraction
principle.

2. strongly orthogonal sets

We start our work with following definitions.

Definition 2.1. Let (X, L) be O-set . A sequence {z, },en is called strongly orthogonal sequence
(briefly SO-sequence) if

(Vn, k; xp La,x) or (VYn, k; Vo, Lx,).

Definition 2.2. Let (X, L, d) be an orthogonal metric space ((X, L) is an O-set and (X,d) is a
metric space) . Then f: X — X is strongly orthogonal continuous (SO-continuous) in a € X if for
each SO-sequence {a, }nen in X if a, — a , then f(a,) — f(a) . Also f is SO-continuous on X if f
is SO-continuous in each a € X .

It is easy to see that every continuous mapping is SO-continuous . The following example shows
that the converse is not true .

Example 2.3. Let X = [0,10) , suppose z Ly if

n+1 4n+1
3 7 4

x,y € ( ) for some n € Z,or
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z = 0.

It is easy to see that (X, L) is an O-set . Define f : X — X by f(z) = [z] . Then f is SO-continuous
on X. Because if {x}} is an arbitrary SO-sequence in X such that {z;} converges to x € X , then
the following cases are hold :

case 1) xzp =0 for all k. Then x =0 and f(zx) =0— 0= f(x) .

case 2) xy, # 0 for some ko . Then there exists m € Z such that z, € (m+ 5, m+3) for all k > kq .
Thus z € [m+ 3, m + 2] and f(z) =m — m = f(x).

Definition 2.4. Let (X, L, d) be an orthogonal set with metric d . Then X is strongly orthogonal
complete (briefly SO-complete) if every Cauchy SO-sequence is convergent .

It is easy to see that every complete metric space is SO-complete and the converse is not true.
In the before example, X is SO-complete and it is not complete.

3. Fixed point theorems in strongly orthogonal sets

Let (X,d) be a metric space and T' : X — X be a mapping . For x,y € X consider O(z) :=
{z,T(z),T*(z),...} and O(z,y) := O(x) UO(y) . We say that O(z,y) is an orbit in X and following
we denote

D(z,y) := sup{d(Tk(x),Tl(y)); k<l and k,1=0,1,2,...}.

From now on , we suppose that ¢ is a contractive gauge function on R*. That is, ¢ : RT — R" is
continuous, nondecreasing and satisfies ¢(s) < s for s > 0.

Theorem 3.1. Let (X, L, d) be SO-complete and T : X — X be a self mapping with bounded orbits.
Let T be orthogonal preserving, that s,

ryeX, zly = T(x)LlT(y)

and satisfies the following condition:
For each x € X, there exists n(x) € N such that for alln > n(x) and y € X with v Ly

d(T"(x),T"(y)) < ¢(D(x,y)) (3.1)
Then there exists a unique z € X such that

lim d(T"(z),2) =0
n—oo
for all x € X. Moreover, if T is SO- continuous then T is a Picard operator.
Proof . For z € X , we put 2% := T%(x) , k=0,1,2,.... By definition of orthogonality
drge X, (Vye X,z9ly) or( Vy € X,ylxy).

We let xy Ly for all y € X. Since T is orthogonality preserving, then {z{} is SO-sequence. Define
sequences {k(i)} C N and {A;}; C 2% by

kO0):=0 ,  k(i+1):=k()+n(zh®)
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and

A; = O(xg(i)).

To complete the proof ;, we need the following two steps :

Step 1. lim,_~diam(A;) = 0.
Proof. Since T is orthogonality preserving, we deduce that xlg(i)Lxlg(in for i,k = 0,1,2,.... Let
n > n(:vg(i)) . It follows from that for £ =0,1,2,...

(1" (ag!), T (25 "))

d
< (D (ag", x5 ™)
< ¢(diam(A;)).

This shows that diam(A;+1) < ¢(diam(A4;)) . Let lim;_oodiam(A;) = a . Then

d<$g+k(i)’ xg-i—k; )

a = lim diam(A;1+1) < lim ¢(diam(A;))

1—00 1—00

= ¢(lim diam(4:)) = ¢(a).

Since ¢(t) <t if ¢ >0, it must be case that a = 0 . This clearly implies that {z}} is a SO-Cauchy
sequence. Since X is SO-complete, it follows that lim,,_, z{ = 2 for some z € X. Let y € X be
arbitrary . We define sequences {m(i)}; C N and {B;}; C R by

m(0):=0 , m(i+1):=m((i)+ max{n(xgl(i)), n(ym(i))}

and '
B; = D(xgm), @),

Step 2. lim;_,oo B; = 0.
Proof. Observe acgl(z)Lym(in for i,k =0,1,2... . Suppose

n > max{n(zg "), n(y"")}
then for k£ € N,
d(l,g'i‘m(i)’yn-i-m(i)-&-k) = d(T"(x m(Z)) T (y m(i)-l—k))
< ¢(D(ag",ym )
< ¢(D(ag",y" ).
Hence B;11 < ¢(B;). Let lim; .o, B; =b > 0. If b > 0, then
b= lim By, < ¢(lim B;) = ¢(b) < b.
i—o0 i—o0
Thus b = 0. This implies that lim; .., D(z{, y") = 0. Applying step 1, we have lim; ., y* = z.
Let T be SO- continuous. Since {zj} is SO-sequence then by step(2) we have T'(z) = z. O
Remark 3.2. Theorem is a generalization Theorem of Walter. To see this, suppose
rly <= neN; d(T"(x), T"(y)) < ¢(O(z,y)).

It is easy to see that for every z and y in X, zly. Thus, (X,d, L) is SO-complete metric space and
T is L-preserving and SO-continuous mapping that satisfies condition (3.1)). By applying Theorem
1.3 7" is a Picard operator.
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Remark 3.3. Theorem is a generalization of Theorem of Eshaghi and et al. In fact, by
putting ¢(t) = At, and since every SO-sequence is O-sequence,we can see the result.

Remark 3.4. Theorem is twofold generalization of Banach contraction principle. Note that in
[2], it is proved that Theorem is a real generalization of Banach contraction principle.

Now, we shall show that there is an example which shows that Theorem |3.1] is a genuine gener-
alization of Theorem [L.3

Example 3.5. Let X = (0,00) and d be a usual metric. Suppose Ly if zy = z. It is easy to see
that (X, L) is an O-set. Let T': X — X defined by

Now, we shall show that 7" satisfies all assumptions of our Theorem [3.1, We have the following items:

1. X is SO-complete (not complete). In fact, if {x,} is an arbitrary Cauchy SO-sequence in X,
then there exists ng € N such that z,, = 1 for all n > ng. It follows that {x,} is the constant
sequence 1 and hence x,, converges to z = 1.

2. T is SO-continuous ( not continuous). In fact, let {x,} be an SO-sequence converging to a
point x € X. By using the step 1, there exists ng € N such that x, = 1 for all n > ny and
x = 1. This implies that T'(x,) — 1 = T(z).

3. T is orthogonal preserving. In fact, if z Ly, then y = 1. By definition of 7', we see that T'(y) = 1
and T'(z) T(y) = T(x), this implies that T'(z) LT (y).

4. T satisfies in condition (3.1)). To see this, let x be an arbitrary element in X. If z > 1, we can
choose integer number n; such that n% < In(z). For every n > ny and y with z_Ly, we have

d(T"(x), T"(y)) =

S|

S%SmwSMM%M-

If x < 1, then there exists iteger ny such that 1;—2’” < In(2 — z). For every n > ny and y with
rly, we have

1—z 1-—
<

d(T"(x), T"(y)) = L <n(2—2) < o(D(x,y)).

n %)
If x = 1, then for all positive integer n and y with y Lz, d(T"(z), T"(y)) = 0 < ¢(x,y). Putting
n(z) = max{ny,na} we conclude condition ({3.1)).

Observe that all assumptions of Theorem [3.1] are satisfied. Thus T has a unique fixed point z = 1.

We can also see that the mapping 7" does not satisfy assumptions of Theorem . Because, if x = 3

2
and y = 1, then we see that Ly and d(T'(z),T(y)) = 1 = d(z,y).



28

Baghani, Ramezani

References

[1]

M. Eshaghi Gordji and M. Ramezani, A generalization of Mizoguchi and Takahashi’s theorem for single-valued
mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011) 4544-4549.

M. Eshaghi Gordji, M. Ramezani, M.D.L Sen and Y.J. Cho, On orthogonal sets and Banach fixed Point theorem,
Fixed Point Theory, In press.

J.J. Nieto and R. Rodriguez-Lépez, Contractive mapping theorems in partially ordered sets and applications to
ordinary differential equations, Order 22 (2005) 223-239.

A.C.M. Ran and M.C.B. Reurings, A fized point theorem in partially ordered sets and some applications to matriz
equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.

B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683-2693.

W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. 5 (1981) 21-25.

Q. Zhang and Y. Song, Fized point theory for generalized p-weak contractions, Appl. Math. Lett. 22 (2009)
75-T8.



	Introduction and preliminaries
	strongly orthogonal sets 
	Fixed point theorems in strongly orthogonal sets 

