
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,769 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
Forced convective heat transfer of non-Newtonian CMC-based CuO nanofluid in a tube | ||
Journal of Heat and Mass Transfer Research | ||
دوره 7، شماره 2 - شماره پیاپی 14، بهمن 2020، صفحه 155-163 اصل مقاله (1.24 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2020.19236.1262 | ||
نویسندگان | ||
Morteza Bayareh* 1؛ Nader Afshar2 | ||
1Department of Mechanical engineering, Shahrekord University | ||
2Esfahan Oil Refinery Company, Isfahan | ||
تاریخ دریافت: 13 آذر 1398، تاریخ بازنگری: 18 تیر 1399، تاریخ پذیرش: 18 تیر 1399 | ||
چکیده | ||
In the present study, the thermal and rheological behavior of power-law non-Newtonian CMC-based CuO nanofluid in a tube is studied using ANSYS FLUENT software. Constant heat flux of 6000 W/m2 is subjected to the tube walls and the viscosity of nanofluid is assumed to be a function of shear rate, and temperature simultaneously. Two velocity profiles are considered as an inlet boundary condition: fully developed velocity and uniform velocity. Volume fractions of 0%-4%, and the Reynolds numbers of 600-1500 are considered in the simulations. For both velocity profiles, temperature and shear rate have considerable influence on the viscosity. Local heat transfer coefficient along the tube increases with the volume fraction, however, volume fractions less than 1.5% has an effect on local heat transfer slightly. It is revealed that as the Reynolds number enhances, local heat transfer and the average Nusselt number decrease. In conflict with previous investigations, the present results show that average Nusselt number is reduced by increasing the volume fraction of nanoparticles. | ||
کلیدواژهها | ||
Forced convective heat transfer؛ Power-law non-Newtonian nanofluid؛ Reynolds number؛ Nusselt number؛ Constant heat flux | ||
عنوان مقاله [English] | ||
انتقال حرارت جابجایی اجباری نانوسیال غیرنیوتنی CuO/ CMC در یک لوله | ||
چکیده [English] | ||
در مطالعه حاضر، رفتار گرمایی و رئولوژیکی نانوسیال غیرنیوتنی قاعده توانی /CMC CuO در یک لوله با استفاده از نرم افزار ANSYS FLUENT مورد مطالعه قرار گرفته است. شار حرارتی ثابت 6000 وات بر مترمربع به دیوارههای لوله اعمال میشود و لزجت نانوسیال به عنوان تابعی از سرعت برشی و دما به طور همزمان فرض میشود. دو پروفایل سرعت به عنوان شرایط مرزی ورودی در نظر گرفته میشود: سرعت کاملاً توسعه یافته و سرعت یکنواخت. کسر حجمی صفر تا 4 درصد و اعداد رینولدز 600 تا1500 در شبیهسازیها در نظر گرفته شده است. برای هر دو پروفایل سرعت، دما و سرعت برشی تأثیر قابل توجهی در لزجت دارند. ضریب انتقال حرارت محلی در امتداد لوله با افزایش کسر حجمی افزایش مییابد، با این حال، کسر حجمیهای کوچکتر از 5/1٪ در انتقال حرارت محلی تأثیر ناچیزی دارند. نشان داده شده است که با افزایش عدد رینولدز، انتقال حرارت محلی و عدد ناسلت متوسط کاهش مییابد. برخلاف تحقیقات قبلی، نتایج حاضر نشان میدهند که با افزایش کسر حجمی نانوذرات، عدد ناسلت متوسط کاهش مییابد. | ||
کلیدواژهها [English] | ||
انتقال حرارت جابجایی اجباری, سیال غیرنیوتنی قاعده توانی, عدد رینولدز, عدد ناسلت, شار گرمایی ثابت | ||
مراجع | ||
[1] S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep, Nanofluid: Science and Technology, John Wiley, New York, (2008). [2] H. M. Elshehabey, Z. Raizah, H. F. Öztop, S. E. Ahmed, MHD natural convective flow of Fe3O4−H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation, International Journal of Mechanical Sciences, 170, 105352 (2019). [3] M. Bayareh, A. Kianfar, A. Kasaeipour, Mixed convection heat transfer of water-alumina nanofluid in an inclined and baffled c-shaped enclosure, Journal of Heat and Mass Transfer Research, 5(2), 129-138 (2018). [4] M. Tajik Jamal-Abad, M. Dehghan, S. Saedodin, M. Valipour, A. Zamzamian, An experimental investigation of rheological characteristics of non- Newtonian nanofluids. Journal of Heat and Mass Transfer Research, 1(1), 17- 23 (2014). doi: 10.22075/jhmtr.2014.150 [5] S. E. Ahmed, M. A. Mansour, A. M. Rashad, T. Salah, MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids, Journal of Thermal Analysis and Calorimetry, 2019. doi:10.1007/s10973- 019-08675-x [6] S. E. Ahmed, Effect of fractional derivatives on natural convection in a complex-wavy-wall surrounded enclosure filled with porous media using nanofluids, ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 2019. doi:10.1002/zamm.201800323 [7] M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, Rheological characteristics of non- Newtonian nanofluids: Experimental investigation, International Communications in Heat and Mass Transfer, 38, 144–148 (2011). [8] M. R. Eid, Effects of NP shapes on non- Newtonian bio-nanofluid flow in suction/blowing process with convective condition: Sisko model, Journal of Non- Equilibrium Thermodynamics, 2019. doi:10.1515/jnet-2019-0073 [9] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, M. M. Pineiro, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene 162 M. Bayareh / JHMTR 7 (2020) 155-163 glycol-based SnO2 nanofluids, Fluid Phase Equilibria, 337, , 119– 124 (2013). [10] P. Garg, J. L. Alvarado, C. Marsh, T. K. Carlson, D. A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, 52, 5090–5101 (2009). [11] M. Shirazi, A. Shateri, M. Bayareh, Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder, Journal of Thermal Analysis and Calorimetry, 133(2), 1061–1073 (2018). [12] M. Sepyani, A. Shateri, M. Bayareh, Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade, Journal of Thermal Analysis and Calorimetry, 135, 609-623 (2019). [13] M .R. Eid, K. L. Mahny, A. Dar, Muhammad T, Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species, Physica A: Statistical Mechanics and Its Applications, 123063 (2019). doi:10.1016/j.physa.2019.123063 [14] S. Lahmar, M. Kezzar, M. R. Eid, M. R. Sari, Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Physica A: Statistical Mechanics and Its Applications, 2019. doi:10.1016/j.physa.2019.123138 . [15] M. N. Labib, M. J. Nine, H. Afrianto, H. Chung, H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, International Journal of Thermal Sciences, 71, 163-171 (2013). [16] A. Esmaeilnejad, H. Aminfar, M. Shafiee Neistanak, Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids, International Journal of Thermal Sciences, 75, 76-86 (2014). [17] N. Boumaiza, M. Kezzar, M. R. Eid, I. Tabet, On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity, Waves in Random and Complex Media, 1–20 (2019). doi:10.1080/17455030.2019.1686550. [18] A. F. Al-Hossainy, M. R. Eid, M. Sh. Zoromba, SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium, Physica Scripta 94(10), 105208 (2019). [19] M. Tajik, M. Dehghan, A. Zamzamian, Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes. Journal of Heat and Mass Transfer Research, 2(2), 45-50 (2015). doi: 10.22075/jhmtr.2015.348 [20] S. ZeinaliHeris, S. Gh. Etemad, M. Nasr Esfahany, Convective heat transfer of a Cu/Water nanofluid flowing through a circular tube, Journal of Experimental Heat Transfer, 32, 342-351 (2009). [21] M. Sanaie-Moghadam, M. Jahangiri, F. Hormozi, Determination of stationary region boundary in multiple reference frames method in a mixing system agitated by Helical Ribbon Impeller using CFD. Journal of Heat and Mass Transfer Research, 2(1), 31-37 (2015). doi: 10.22075/jhmtr.2015.337 [22] M. Keshavarz Moraveji, S. M. H. Haddad, M. Darabi, Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics, International Communications in Heat and Mass Transfer, 39, 995–999 (2012). [23] M. A. Ahmed, M. Z. Yusoff, N. H. Shuaib, Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid, International Communications in Heat and Mass Transfer, 42, 69–74 (2013). [24] F. Bazdidi-Tehrani, S. M. Khanmohamadi, S. I. Vasefi, Evaluation of turbulent forced convection of non-Newtonian aqueous solution of CMC/CuO nanofluid in a tube with twisted tape inserts, Advanced Powder Technology, 31(3), 1100-113 (2020). doi:10.1016/j.apt.2019.12.022 [25] R. Kamali, A. R. Binesh, Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids, International Communications in Heat and Mass Transfer, 37, 1153–1157 (2010). [26] H. S. Chen, Y. L. Ding, C. Q. Tan, Rheological behavior of nanofluids. New J Phys, 9, 1–25 (2007). [27] S. Hussain, M. Jamal, S. E. Ahmed, Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: The impact of nanoparticles, International Communications in Heat and Mass Transfer, 108, 104310 (2019). doi:10.1016/j.icheatmasstransfer.2019.104310 [28] S. E. Ahmed, Z. Z. Rashed, MHD natural convection in a heat generating porous medium-filled wavy enclosures using M. Bayareh / JHMTR 7 (2020) 155- 163 163 Buongiorno's nanofluid model, Case Studies in Thermal Engineering, 14, 100430 (2019). [29] R. Ramakrishnan, Structured and unstructured grid adaptation schemes for numerical modeling of field problems. Applied Numerical Mathematics, 14(1-3), 285–310 (1994). doi:10.1016/0168-9274(94)90030-2 [30] M. Bayareh, S. Dabiri, A. M. Ardekani, Interaction between two drops ascending in a linearly stratified fluid, European Journal of Mechanics-B/Fluids, 60, 127-136 (2016). http://dx.doi.org/10.1016/j.euromechflu.2016.07.002 [31] A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180 (2008). doi:10.1007/s00396-008-1882-2 [32] D. A. Siginer, D. D. Kee, R. P. Chhabra, Advances in flow and rheology of non-Newtonian fluids, 8th editionElsevier, Netherlands, (1999). | ||
آمار تعداد مشاهده مقاله: 561 تعداد دریافت فایل اصل مقاله: 307 |