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Abstract
Using different convergence techniques and under the lack of parametrical restrictions, the conver-
gence and stability results of SP iterative algorithm with mixed errors for accretive Lipschitzian
operators in Banach spaces are established. We propose numerical examples to verify effectiveness
of new convergence techniques and to show that SP iterative algorithm with mixed errors converges
more effectively than the Mann, Ishikawa and Noor iterative algorithms with mixed errors. More-
over, new iterative approximation of solution for variational inclusion problem in Banach spaces is
investigated by using SP iterative algorithm with mixed errors for accretive Lipschitzian operators.
Our results are improvement and generalization of results of Kim[15], Gu[10], Gu and Lu[11], Chugh
and Kumar[7] and many others in the literature.
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1. Introduction and Preliminaries

Let X be a real Banach space with dual X∗. The normalized duality mapping J from X to 2X
∗

is given by J(x) = {f ∈ X∗ :< x, f >= ∥x∥2 = ∥f∥2}, x ∈ X, where < ., . > denotes the generalized
duality pairing between X and X∗.
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Definition 1.1. Let T : X → X be a mapping with domain D(T ) and range R(T ) and I denotes
the identity operator on X.

(i) T is said to be Lipschitizian, if there exists L > 0 such that for all x, y ∈ X, we have

∥Tx− Ty∥ ≤ L∥x− y∥.

(ii) T is said to be non-expansive, if for all x, y ∈ X, we have

∥Tx− Ty∥ ≤ ∥x− y∥.

(iii) T is said to be accretive iff for all r > 0 and x, y ∈ X, we have

∥x− y∥ ≤ ∥x− y + r(Tx− Ty)∥. (1.1)

(iv) T is said to be pseudo-contractive if for all r > 0 and x, y ∈ X, we have

∥x− y∥ ≤ ∥(1− r)(x− y) + r(Tx− Ty)∥. (1.2)

Hence, a mapping T is said to be pseudo-contractive iff I − T is accretive. Moreover (I + T )−1 is
a non-expansive if T is accretive [2]. So, non-expansive and pseudo-contractive mappings are closely
connected with accretive mappings.

Definition 1.2 (2). Let (X, d) be a complete metric space, T : X → X a selfmap of X. Let
{xn}∞n=1 ⊂ X, be the sequence generated by an iterative algorithm involving T which is defined by
xn+1 = f(T, xn) ...(∗), where x0 ∈ X is the initial approximation and f is some function. Suppose
{xn}∞n=1 converges to a fixed point p of T . Let {pn}∞n=1 ⊂ X be an arbitrary sequence in X and
set kn = ∥pn − f(T, pn)∥. Then, the iterative procedure (*) is said to be T-stable if and only if
limn→∞kn = 0 implies limn→∞pn = p. Moreover if

∑∞
n=0 kn < ∞ implies that limn→∞pn = p, then

the iterative algorithm defined by xn+1 = f(T, xn) is said to be almost T-stable. Stability implies
almost stability but converse may not true[see [25] for details].

Variational inclusions, as the generalization of variational inequalities, have been widely studied
in recent years[4, 9, 10, 12, 14, 23, 27]. One of the most interesting and important problems in
the theory of variational inclusions is the development of an efficient and implementable iterative
algorithm. Various kinds of iterative methods have been studied to find the approximate solutions
for variational inclusions.
Mann iterative algorithm with errors due to Liu[19,20] :

xn+1 = (1− αn)xn + αnTxn + ln, (1.3)

where 0 ≤ αn ≤ 1 and {ln} is a summable sequence in X.
Ishikawa iterative algorithm with errors due to Liu[19,20]:

xn+1 = (1− αn)xn + αnTyn + an

yn = (1− βn)xn + βnTxn + bn, (1.4)

where 0 ≤ αn, βn ≤ 1 and {an}, {bn} are summable sequences in X.
Noor iterative algorithm with errors due to Cho et al.[6]:

xn+1 = αnxn + α1
nTyn + anun

yn = βnxn + β1
nTzn + bnvn

zn = γnxn + γ1
nTxn + cnwn, (1.5)
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where {un}, {vn}, {wn} are bounded sequences in X and 0 ≤ αn, βn, γn, an, bn, cn,
α1
n, β

1
n, γ

1
n ≤ 1 with αn + α1

n + an = βn + β1
n + bn = γn + γ1

n + cn = 1.
SP iterative algorithm due to Phuengrattana and Suantai [24] :

xn+1 = (1− αn)yn + αnTyn

yn = (1− βn)zn + βnTzn

zn = (1− γn)xn + γnTxn, (1.6)

where 0 ≤ αn, βn, γn ≤ 1.

Remark 1.3. Putting ln = 0 and an = bn = 0 in (1.3) and (1.4), respectively, we can get Mann [21]
and Ishikawa [13] iterative algorithms, respectively. Also if we put βn = γn = 0, then SP iterative
algorithm (1.6) becomes Mann iterative algorithm[21].
The convergence and stability problems for iterative algorithms involving various type of operators have
been studied extensively by many authors [1-3, 5-8, 11, 15-18, 24, 25, 28, 29]. Osilike [24] proved that
certain Mann and Ishikawa iterative procedures are stable with respect to Lipschitz pseudo-contractions
in an arbitrary Banach space. In 2006, Kim [15] studied the strong convergence of Ishikawa iterative
algorithm with mixed errors for the accretive Lipschitzian operators in Banach spaces. Chugh and
Kumar [7] studied the strong convergence and almost stability of SP iterative algorithm with mixed
errors for the accretive Lipschitzian operators in Banach spaces using Lemma 1.5. Chugh et al. [8]
studied some strong convergence results of random iterative algorithms with errors using accretive
maps in Banach spaces.

We shall need the following important lemmas:

Lemma 1.4. ([2]). Let {an} be a sequence of non-negative real numbers satisfying: an+1 ≤ δan +
bn, n ≥ 1, where bn ≥ 0, limn→∞bn = 0 and 0 ≤ δ < 1. Then an → 0 as n → ∞.

Lemma 1.5. ([7,15]) Let an, bn and cn be non-negative real sequences satisfying the condition:
an+1 ≤ (1− λn)an + bn,+cn, n ≥ n0, where n0 is some non-negative integer and λn is a sequence in
[0,1] such that

∑∞
n=0 λn = ∞, bn = o(λn) and

∑∞
n=0 λn < ∞. Then an → 0 as n → ∞.

Let T,A : X → X, g : X → X∗ be three mappings on a real reflexive Banach space X and
φ : X∗ → R ∪ {∞} be a function with continuous subdifferential ∂φ : X∗ → 2X

∗ defined by
(∂φ)x = {x∗ ∈ X∗ : φ(y) − φ(x) ≥< y − x, x∗ >,∀y ∈ X} . If for any given y ∈ X , there exists a
x ∈ X such that

g(x) ∈ D(∂φ), < Tx− Ax− y, f − g(x) >≥ φ(g(x)− φ(x)),∀f ∈ X∗ (1.7)

holds, then, x is solution of a variational inclusion problem (1.7).

Lemma 1.6 (4). Let ∂φ ◦ g : X → 2X be a mapping on a real reflexive Banach space X. Then the
followings are equivalent:

(i) p ∈ X is a solution of variational inclusion problem (1.7);
(ii) p ∈ X is a fixed point of the mapping S : X → 2X ;
Sx = y −

(
Tx− Ax+ ∂φ(g(x))

)
+ x;

(iii) p ∈ X is a solution of the equation y = Tx− Ax+ ∂φ(g(x)).
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Also, it is well known (see[22]) that if T : X → X is accretive and continuous, then T is m-accretive,
so that for given y ∈ X, the equation x+ Tx = y has a unique solution.

Due to revolution in computer programming, the stability of iterative algorithms has extensively
been studied . Also, numerically, it is of vital interest to know which of the given iterative algorithm
converges faster to a desired solution. Hence in computational mathematics, a fixed point iterative
algorithm is valuable and useful for applications if it satisfies the following conditions: (i) it converges
to a fixed point of a given operator (ii) it is stable (iii) it is faster as compared to other iterative
algorithms existing in the literature.
Motivated by above facts, in this paper, we improve results of Chugh and Kumar [7], Kim[15] and
many other using Lemma 1.4 instead of Lemma 1.5 and using different convergence techniques instead
of old convergence techniques as proposed in [7,10]. We support our results with two numerical
examples and applications. Moreover, with the help of C++ programs, we show that using new
convergence techniques, SP iterative algorithm with errors becomes more rapid and stable instead
of almost stable as in [7,10].

2. Main Results

Theorem 2.1. Let T be an accretive Lipschitzian self map with Lipschitz constant L ≥ 1 on a real
Banach space X. For any given operator S : X → X defined by Sx = f − Tx, x ∈ X, where f ∈ X
is any given point,the SP iterative algorithm with mixed errors[7] is given by

xn+1 = (1− αn)yn + αnSyn + un

yn = (1− βn)zn + βnSzn + vn

zn = (1− γn)xn + γnSxn + wn, (2.1)

where 0 ≤ αn, βn, γn ≤ 1 and {un}, {vn}, {wn} are sequences in X with following conditions:

(i) 0 < α < αn − α2
nL

3(1 + L)− βn(L− 1)− βnγn(L− 1)2 − γnL < 1, (n ≥ 0);

(ii) un = u
′
n + u

′′
n, ∥u

′
n∥ = o(αn), (n ≥ 0) and

∑∞
n=0 ∥u

′′
n∥ < ∞;

(iii)
∑∞

n=0 ∥vn∥ < ∞,
∑∞

n=0 ∥wn∥ < ∞.

Then for any given x0 ∈ X,
(1) the SP iterative algorithm with mixed errors generated from x0 by (2.1) converges strongly to a
unique fixed point p of S.
(2) the SP iterative algorithm with mixed errors generated from x0 by (2.1) is S-stable, that is, for
any sequence {pn} ⊂ X, limn→∞pn = p if and only if limn→∞kn = 0 , where kn = ∥pn+1 − (1 −
αn)qn − αnSqn − un∥, qn = (1− βn)rn + βnSrn + vn, rn = (1− γn)pn + γnSpn + wn.

Proof .(1) From (2.1), we have

(xn+1 − p)− αn(Sxn+1 − Sp) = (1− αn)(yn − p)− αn(Sxn+1 − Syn) + un (2.2)

As T is an accretive Lipschitzian mapping, so the mapping (S) will be accretive Lipschitzian and
hence using (1.1) and (2.2), we get

∥xn+1 − p∥ ≤ ∥xn+1 − p− αn(Sxn+1 − Sp)∥
= ∥(1− αn)(yn − p)− αn(Sxn+1 − Syn) + un∥
≤ (1− αn)∥(yn − p)∥+ αn∥(Syn − Sxn+1)∥+ ∥un∥ (2.3)
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Now, using Lipschitz condition on S, (2.1) implies

∥Syn − Sxn+1∥ ≤ L∥xn+1 − yn∥
≤ Lαn∥yn − Syn∥+ L∥un∥
≤ Lαn∥yn − p∥+ Lαn∥Syn − p∥+ L∥un∥
≤ (1 + L)Lαn∥yn − p∥+ L∥un∥ (2.4)

Also, from (2.1), we have the following estimates:

∥yn − p∥ ≤ (1− βn)∥zn − p∥+ βn∥Szn − p∥+ ∥vn∥
≤ (1− βn)∥zn − p∥+ βnL∥zn − p∥+ ∥vn∥
= [1 + βn(L− 1)]∥zn − p∥+ ∥vn∥ (2.5)

and

∥zn − p∥ ≤ [1 + γn(L− 1)]∥xn − p∥+ ∥wn∥ (2.6)

Using inequalities (2.3)-(2.6) and condition (i), we arrive at

∥xn+1 − p∥ ≤ (1− αn)[1 + βn(L− 1)][1 + γn(L− 1)]∥xn − p∥
+ α2

nL(L+ 1)[1 + βn(L− 1)][1 + γn(L− 1)]∥xn − p∥
+ (αnL+ 1)∥un∥+ (1− αn)∥vn∥+ α2

nL(L+ 1)∥vn∥
+ α2

nL(L+ 1)[1 + βn(L− 1)]∥wn∥+ [1 + βn(L− 1)](1− αn)∥wn∥
≤ [1− αn + α2

nL(L+ 1)][1 + βn(L− 1)][1 + γn(L+ 1)]∥xn − p∥
+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥
≤ [1− {αn − α2

nL
2(L+ 1)− βn(L− 1)}][1 + γn(L+ 1)]∥xn − p∥

+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥
≤ [1− {αn − α2

nL
3(L+ 1)− βn(L− 1)− βnγn(L− 1)2 − γnL}]∥xn − p∥

+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥
≤ [1− α]∥xn − p∥+ (1 + L)∥un∥
+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥.

(2.7)

Also, by condition (ii) we have u
′
n = αnδn, where {δn} is a sequence of non negative numbers tending

to 0. Hence

∥un∥ ≤ αnδn + ∥u′′

n∥. (2.8)

Set [1 − α] = δ and (1 + L)(αnδn + ∥u′′
n∥) + [1 + L(L + 1)]∥vn∥ + L[1 + L(L + 1)]∥wn∥ = σn. Then

using (2.8), (2.7) yields

∥xn+1 − p∥ ≤ δ∥xn − p∥+ σn. (2.9)

By conditions(ii)-(iii) and Lemma 1.4, (2.9) yields limn→∞xp = 0. Therefore, SP iterative algorithm
with mixed errors (2.1) converges strongly to a fixed point p of S.
To prove uniqueness of fixed point p, let q be an another fixed point of S. Since (−S) is accretive,
so we have
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∥q − p∥ ≤ ∥q − p− αn(Sq − Sp)∥ = ∥q − p− αn(q − p)∥ ≤ (1− αn)∥q − p∥,

which is possible only when p = q.
(2)Suppose that {pn} is an arbitrary sequence in X and limn→∞kn = 0. Then

∥pn+1 − Sp∥ = ∥pn+1 − (1− αn)qn − αnSqn − un∥
+ ∥(1− αn)qn + αnSqn + un − Sp∥ = kn + ∥Sn − Sp∥, (2.10)

where

sn = (1− αn)qn + αnSqn + un (2.11)

Using (2.11), we have

(sn − p)− αn(Ssn − Sp) = (1− αn)(qn − p)− αn(Ssn − Sqn) + un

which further implies

∥sn − p∥ ≤ ∥sn − p− αn(Ssn − Sp)∥
= ∥(1− αn)(qn − p)− αn(Ssn − Sqn) + un∥
≤ (1− αn)∥qn − p∥+ αn∥Ssn − Sqn∥+ ∥un∥ (2.12)

Now, similar to estimates (2.4)-(2.6), we have the following estimates:

∥Ssn − Sqn∥ ≤ Lαn(1 + L)∥qn − p∥+ L∥un∥ (2.13)

∥qn − p∥ ≤ [1 + βn(L− 1)]∥rn − p∥+ ∥vn∥ (2.14)

and

∥rn − p∥ ≤ [1 + γn(L− 1)]∥pn − p∥+ ∥wn∥ (2.15)

Using estimates (2.12)-(2.15), we arrive at

∥sn − p∥ ≤ [1− {αn − α2
nL

3(L+ 1)− βn(L− 1)− βnγn(L− 1)2 − γnL}]∥pn − p∥
+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥

(2.16)

Substituting (2.16) in (2.10), we obtain

∥pn+1 − p∥ ≤ kn + [1− {αn − α2
nL

3(L+ 1)− βn(L− 1)− βnγn(L− 1)2 − γnL}]
∥pn − p∥+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥

≤ δ∥pn+1 − p∥+ σn,

(2.17)

where [1− α] = δ and kn + (1 + L)(αnδn + ∥u′′
n∥) + [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥ = σn.

Using Lemma 1.4 and conditions (ii)-(iii) together with limn→∞kn = 0, (2.17) yields limn→∞pn = p
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Conversely, let limn→∞pn = p, then using (2.11),(2.16) and conditions (ii)-(iii), we have

kn = ∥pn+1 − (1− αn)qn − αnSqn − un∥
= ∥pn+1 − sn∥
≤ ∥pn − p∥+ ∥sn − p∥
≤ ∥pn − p∥+ [1− {αn − α2

nL
3(L+ 1)− βn(L− 1)− βnγn(L− 1)2 − γnL}]∥pn − p∥

+ (1 + L)∥un∥+ [1 + L(L+ 1)]∥vn∥+ L[1 + L(L+ 1)]∥wn∥

which implies limn→∞kn = 0. Therefore, the iterative algorithm (2.1) is S-stable. This completes
the proof of Theorem 2.1. □

Corollary 2.2. Let T be an accretive Lipschitzian self map with Lipschitz constant L ≥ 1 on a real
Banach space X. For any given operator S : X → X defined by Sx = f − Tx, x ∈ X, where f ∈ X
is any given point,the Mann iterative algorithm with mixed errors is given by

xn+1 = (1− αn)xn + αnSxn + un, (2.18)

where 0 ≤ αn ≤ 1 and {un} is a sequence in X with the following conditions:

(i) 0 < α < αn < 1
(1+L)L3 , (n ≥ 0);

(ii) un = u
′
n + u

′′
n, ∥u

′
n∥ = o(αn), (n ≥ 0) and

∑∞
n=0 ∥u

′′
n∥ < ∞.

Then for any given x0 ∈ X,
(1) the Mann iterative algorithm with mixed errors generated from x0 by (2.18) converges strongly to
a unique fixed point p of S.
(2) the Mann iterative algorithm with mixed errors generated from x0 by (2.18) is S-stable, that is,
for any sequence {pn} ⊂ X, limn→∞pn = p if and only if limn→∞kn = 0, where kn = ∥pn+1 − (1 −
αn)pn − αnSpn − un∥.

Proof .Taking βn = 0, γn = 0, vn = 0 and wn = 0, in Theorem 2.1, the proof is obvious. □
The following examples and their numerical simulations show verification of Theorem 2.1 and

display effectiveness of new convergence technique of SP iterative algorithm with mixed errors.

Example 2.3. Let X = [0, 3] . Define an operator S from X to X as Sx = 3− x , with fixed point
1.5. It is easy to see that the operator(–S) is a Lipschitz accretive operator with Lipschitz constant
L = 1. Put α = 0.008, αn = 1

(1+L)3
, ∥un∥ = 1

(n+1)(1+L)3
+ 1

(n+1)2
, βn = γn = 1

(1+L)6
, ∥vn∥ = 1

(n+2)2

and ∥wn∥ = 1
(n+3)2

. All the conditions of Theorem 2.1 are satisfied. Therefore, the sequence {xn}
defined by equation (2.1) converges strongly to the fixed point 1.5 and is S-stable. Taking initial value
x0 = 2, convergence comparison of different iterative algorithms to the fixed point 1.5 is shown in the
Table 1.
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No of iterations
n

Mann
iterative al-
gorithm with
mixed errors
xn+1

Ishikawa
iterative al-
gorithm with
mixed errors
xn+1

Noor
iterative al-
gorithm with
mixed errors
xn+1

SP
iterative al-
gorithm with
mixed errors
xn+1

1 1.96296 1.99868 1.99863 1.96043
2 1.92867 1.99736 1.99726 1.92398
3 1.89692 1.99605 1.9959 1.89043
4 1.86751 1.99474 1.99454 1.85953
5 1.84029 1.99343 1.99319 1.83107
- - - - -
138 1.50001 1.84708 1.8424 1.50001
139 1.50001 1.84616 1.84146 1.50001
140 1.50001 1.84525 1.84053 1.50001
141 1.50001 1.84433 1.8396 1.5
142 1.50001 1.84342 1.83867 1.5
143 1.50001 1.84252 1.83774 1.5
144 1.50001 1.84161 1.83681 1.5
145 1.50001 1.84071 1.83589 1.5
146 1.50001 1.83981 1.83497 1.5
147 1.50001 1.83891 1.83405 1.5
148 1.50001 1.83802 1.83314 1.5
149 1.50001 1.83712 1.83222 1.5
150 1.5 1.83623 1.83131 1.5
151 1.5 1.83534 1.83041 1.5
152 1.5 1.83446 1.8295 1.5
- - - - -
4194 1.5 1.50001 1.50001 1.5
4195 1.5 1.50001 1.50001 1.5
4196 1.5 1.50001 1.50001 1.5
4197 1.5 1.50001 1.5 1.5
4198 1.5 1.50001 1.5 1.5
- - - - -
4350 1.5 1.50001 1.5 1.5
4351 1.5 1.50001 1.5 1.5
4352 1.5 1.50001 1.5 1.5
4353 1.5 1.5 1.5 1.5
4354 1.5 1.5 1.5 1.5

Example 2.4. Let X = [0, 1] . Define an operator S from X to X as Sx = (1 − x
2
3 )

3
2 , with fixed

point 0.351708. It is easy to see that the operator(–S) is a Lipschitz accretive operator with Lipschitz
constant L = 2. If we choose αn = 1

(1+L)3
, βn = γn = 1

(1+L)7
, ∥un∥ = 1

(n+1)(1+L)3
+ 1

(n+1)2
, ∥vn∥ =

1
(n+2)2

, ∥wn∥ = 1
(n+3)2

and α = 0.0026. All the conditions of Theorem 2.1 are satisfied. Therefore,
the sequence {xn} defined by equation (2.1) converges strongly to the fixed point 0.351708 and is
S-stable. Taking initial value x0 = 2, convergence comparison of different iterative algorithms to the
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fixed point 0.351708 is shown in the Table 2.

No of iterations
n

Mann
iterative al-
gorithm with
mixed errors
xn+1

Ishikawa
iterative al-
gorithm with
mixed errors
xn+1

Noor
iterative al-
gorithm with
mixed errors
xn+1

SP
iterative al-
gorithm with
mixed errors
xn+1

1 0.962963 0.999545 0.999543 0.962086
2 0.927441 0.999089 0.999086 0.925764
3 0.893487 0.998634 0.998629 0.891089
4 0.861105 0.99818 0.998172 0.858062
5 0.830279 0.997725 0.997716 0.826666
- - - - -
177 0.351709 0.923137 0.922619 0.351709
178 0.351709 0.922724 0.922203 0.351709
179 0.351709 0.922311 0.921787 0.351708
180 0.351709 0.921899 0.921371 0.351708
181 0.351709 0.921487 0.9209557 0.351708
182 0.351709 0.921075 0.920539 0.351708
183 0.351708 0.920663 0.920124 0.351708
184 0.351708 0.920252 0.919709 0.351708
185 0.351708 0.919841 0.919294 0.351708
- - - - -
15316 0.351708 0.351709 0.351709 0.351708
15317 0.351708 0.351709 0.351709 0.351708
15318 0.351708 0.351709 0.351708 0.351708
15319 0.351708 0.351709 0.351708 0.351708
15320 0.351708 0.351709 0.351708 0.351708
- - - - -
15851 0.351708 0.351709 0.351708 0.351708
15852 0.351708 0.351709 0.351708 0.351708
15853 0.351708 0.351709 0.351708 0.351708
15854 0.351708 0.351708 0.351708 0.351708
15855 0.351708 0.351708 0.351708 0.351708

Remark 2.5. Theorem 2.1 is an improvement of [Theorem 2.1,[7] ], as “almost stability” of SP
iterative algorithm with mixed errors is replaced by the “stability” using different convergence tech-
nique.

It is shown that using new convergence technique,SP iterative algorithm with mixed errors has
better convergence rate as compared to Mann, Ishikawa and Noor iterative algorithms with mixed
errors and hence has good potential for further applications.

3. Applications

In this section, we investigate the solutions of nonlinear variational inclusion problem using
iterative algorithms with mixed errors.
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Theorem 3.1. Suppose that X is a real reflexive Banach space, T,A : X → X, g : X → X∗ are
three non-expansive mappings and φ : X∗ → R∪{∞} is a function with non-expansive subdifferential
∂φ . Define an operator R : X → X by Rx = f − (Tx − Ax + ∂φ(g(x))) + x, where f ∈ Xis any
given point. Let {xn} be the iterative algorithm with mixed errors defined by

xn+1 = (1− αn)yn + αnRyn + un

yn = (1− βn)zn + βnRzn + vn

zn = (1− γn)xn + γnRxn + wn, (3.1)

where 0 ≤ αn, βn, γn ≤ 1 and {un}, {vn}, {wn} are sequences in X with following restrictions:

(i) 0 < α < αn − α2
nL

∗3(1 + L∗)− βn(L
∗ − 1)− βnγn(L

∗ − 1)2 − γnL
∗ < 1, (n ≥ 0); L∗ = L+ 1

(ii) un = u
′
n + u

′′
n, ∥u

′
n∥ = o(αn), (n ≥ 0) and

∑∞
n=0 ∥u

′′
n∥ < ∞;

(iii)
∑∞

n=0 ∥vn∥ < ∞,
∑∞

n=0 ∥wn∥ < ∞.

Then the iterative algorithm (3.1) converges to x∗ ∈ X∗ and x∗ is the unique solution of nonlinear
variational inclusion problem (1.7).

Proof .As T, A, g and ∂φ are non-expansive operators,so (–A) and ∂φ ◦ g are non-expansive
operators. Hence, with ease we can show that

∥x− y∥ = ∥x− y + r[(T − A+ ∂φ ◦ g − I)x− (T − A+ ∂φ ◦ g − I)y∥.

Therefore, T −A+∂φ◦ g− I : X → X is a Lipschitzian accretive operator with a Lipschitz constant
say L ≥ 1. Since T−A+∂φ◦g−I is Lipschitzian accretive operator, so T−A+∂φ◦g−I is m-accretive
operator. Hence, for any f ∈ X, the equation f = x+ (T − A+ ∂φ ◦ g − I)x has a unique solution
x∗ ∈ X. Using Lemma 1.6, it is easy to see that x∗ ∈ X is a solution of nonlinear variational inclusion
problem (1.7)and it is the fixed point of operator R . Again, since T − A + ∂φ ◦ g − I : X → X
is Lipschitzian accretive operator with Lipschitz constant L ≥ 1, so R : X → X is Lipschitzian
operator with Lipschitz constant L∗ = 1 + L, such that (R) is an accretive. Replacing S by R in
(2.1), L by L∗ in condition (i) of Theorem 2.1 and following the procedure of the proof of Theorem
2.1, it is easy to prove that the iterative algorithm (3.1) converges to the unique solution x∗ ∈ X of
nonlinear variational inclusion problem (1.7). □

Putting vn = wn = 0, βn = 0 and γn = 0 in Theorem 3.1, we obtain the following corollary:

Corollary 3.2. Suppose that X is a real reflexive Banach space, T,A : X → X, g : X → X∗ are
three non-expansive mappings and φ : X∗ → R∪{∞} is a function with non-expansive subdifferential
∂φ . Define an operator R : X → X by Rx = f − (Tx − Ax) + x, where f ∈ Xis any given point.
Let {xn} be the iterative algorithm with mixed errors defined by

xn+1 = (1− αn)yn + αnRyn + un, (3.2)

where 0 ≤ αn ≤ 1 and {un} are sequences in X with following restrictions:

(i) 0 < α < αn < 1
L∗3(1+L∗)

, (n ≥ 0); L∗ = L+ 1

(ii) un = u
′
n + u

′′
n, ∥u

′
n∥ = o(αn), (n ≥ 0) and

∑∞
n=0 ∥u

′′
n∥ < ∞.

Then the iterative algorithm (3.2) converges to x∗ ∈ X∗ and x∗ is the unique solution of nonlinear
variational inclusion problem (1.7).
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Taking φ ≡ 0 and un = vn = wn = 0 in Theorem 3.1, we can obtain the following corollary:

Corollary 3.3. Suppose X is a real reflexive Banach space, T,A : X → X, g : X → X∗ are three
non-expansive mappings. Define an operator R : X → X by Rx = f − (Tx−Ax)+x, where f ∈ Xis
any given point. Let {xn} be the iterative algorithm with mixed errors defined by

xn+1 = (1− αn)yn + αnRyn

yn = (1− βn)zn + βnRzn

zn = (1− γn)xn + γnRxn, (3.3)

where 0 ≤ αn, βn, γn ≤ 1 with the following restrictions:

(i) 0 < α < αn − α2
nL

∗3(1 + L∗)− βn(L
∗ − 1)− βnγn(L

∗ − 1)2 − γnL
∗ < 1, (n ≥ 0), L∗ = L+ 1

Then the iterative algorithm (3.3) converges to x∗ ∈ X∗ and x∗ is the unique solution of nonlinear
variational inequality

⟨
Tx− Ax− y, f − g(x)

⟩
≥ 0, ∀f ∈ X∗.

Remark 3.4. Theorem 3.1 extends and improves [Theorem 2 of [10] ] as the Mann iterative algorithm
with mixed errors is replaced by more general and faster SP iterative algorithm with mixed errors.

Remark 3.5. Corollary 3.2 improves the results of [10] as instead of almost stability, stability of
Mann iterative algorithm with mixed errors is proved.

Remark 3.6. Theorem 3.1 extends and improves [Theorems 1,2 of[11]] as SP iterative algorithm
with mixed errors is used which is more general and faster as compared to Mann iterative algorithm
with mixed errors and has better convergence rate as compared to Ishikawa iterative algorithm with
mixed errors.

Remark 3.7. Theorem 3.1 generalizes the results in [4] as the sequence {αn} need not converge to
zero and bounded condition on domain or range of mapping R is omitted.Theorem 3.1 also extends
and improves some results of [9,12,20].

4. Conclusions

1. Theorem 2.1 guarantees the convergence of SP iterative algorithm with mixed errors (2.1)
using new convergence technique instead of old convergence technique as in [7,10].
2. Theorem 2.1 proves that SP iterative algorithm mixed errors (2.1) becomes stable instead of
almost stable as in [7,10].
3. Examples 2.3 and Example 2.4 are examples of accretive maps in Banach spaces for supporting
Theorem 2.1.
4. Table 1 and Table 2 show that using new convergence technique, SP iterative algorithm with
mixed errors convergences faster than Mann, Ishikawa and Noor iterative algorithms with mixed
errors.
5. In Section 3, we have shown applications of iterative algorithms with mixed errors to solve
variational inclusion problem.
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