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Abstract

In this paper, differential transform method (DTM) is described and is applied to solve systems of
nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity
of the solution will be extended by using Pade approximation. The results also will be compared
with those results obtained by Runge-Kutta method. The technique is described and is illustrated
with one numerical example. The numerical results shown that the reliability and efficiency of the
method.
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1. Introduction

Many mathematical models have proposed Vivo dynamical of T cell and HIV (Human Immunodefi-
ciency Virus) interaction. Our interesting model is the one that is presented in [1], which is explained
by the following nonlinear system of ordinary differential equations:

dT
dt

= p− αT + rT (1− T+I
Tmax

)− kV T,

dI
dt

= kV T − βI,

dV
dt

= NβI − γV.

(1.1)
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with the following initial conditions,

T (0) = r1, I(0) = r2, V (0) = r3,

where T (t), I(t) and V (t) denoted the concentration of susceptible CD4+T cells, infected CD4+T
cells by the HIV viruses, and free HIV virus particles in the blood, respectively. Parameters α,β, and
γ are natural turn-over rates of uninfected T cells, infected T cells, and virus particles, respectively.
The logistic growth of the healthy CD4+T cells is now described by rT (1− T+I

Tmax
) , and proliferation

of infected CD4+T cells is neglected. The term kV T describes the incidence of HIV infection of
healthy CD4+T cells, where k > 0 is the infection rate. Each infected CD4+T cell is assumed to
produce N virus particles during its lifetime, including any of its daughter cells. The body is believed
to produce CD4+T cells from precursors in the bone marrow and thymus at a constant rate . When
stimulated by antigen or mitogen, cells multiply through mitosis with a rate p. Tmax is the maximum
level of cell concentration in the body [2, 5]. In this paper, a new kind of analytical approach for a
non-linear system of ordinary differential equations called Differential transformation method (DTM)
is addressed and used to approximate solutions for a well-known non-linear system. The differential
transformation method is a kind of analytical technique based on the Taylor series expansion. This
method constructs an analytic approximation to the solution, polynomial form. The concept of
differential transform method was first proposed by Zhou and was applied to solve linear and nonlinear
initial value problems in electric circuit analysis [6]. Chen and Liu applied this method to solve
two-boundary-value problems [7]. Jang, Chen and Liu used two-dimensional differential transform
method to solve partial differential equations [8]. Yu and Chen applied the differential transformation
method for optimization of the rectangular fins with variable thermal parameters [9, 10]. Unlike
the traditional high order Taylor series method that requires many symbolic computations, the
differential transform method is an iterative procedure for obtaining Taylor series solutions. This
method will not consume too much computer time when applying to non-linear or parameter varying
systems.

2. Basic Idea of Differential Transform Method

As in Refs. [7, 8, 11, 12, 13], the differential transformation is based on some elementary definitions,
and some statements, which will be stated as follows.

Definition 2.1. The one-dimensional differential transform of a function c(x) is defined as:

C(k) =
1

k!
[
∂k

∂xk
c(x)]x=x0 ,

where c(x) is analytic and continuously differentiable with respect to x on the domain of interest and
C(k) is the transformed function, which is called T -function.

Definition 2.2. The inverse differential transform of C(k) is defined as follows:

c(x) =
∞∑
k=0

C(k)(x− x0)k,

when x0 = 0, Definitions 2.1 and 2.2 turn to the followings:

C(k) =
1

k!
[
∂k

∂xk
c(x)]x=0, (2.1)
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c(x) =
∞∑
k=0

C(k)xk, (2.2)

where c(x) is the original function and C(k) is the T -function.
Substituting (2.1) into (2.2) leads to

c(x) =
∞∑
k=0

1

k!
[
∂k

∂xk
c(x)]x=0x

k.

In real applications, finite form of the series (2.2) will be considered as follows:

c(x) =
n∑
k=0

C(k)xk.

From Definitions 2.1 and 2.2, it is readily proved that the transformed functions comply with the
basic mathematical operations [9, 10, 13]. These statements are illustrated in the Table 1.

TABLE 1
Transformation of some functions [9]

Original function Transformed function
c(t)=u(t)± v(t) C(k)=U(k)±V(k)

c(t)=au(t) C(k)=aU(k)

c(t)= ∂
∂t

u(t) C(k)=(k+1)U(k+1)

c(t)=u(t)v(t) C(k)=
∑k
r=0U(r)V(k-r)

c(t)=elt C(k)= lk

k!

c(t)=sin(wt+ a) C(k)=wk

k!
sin( kπ

2
+ a)

c(t)=cos(wt+ a) C(k)=wk

k!
cos( kπ

2
+ a)

3. Pade approximation

Here we will investigate the construction of the Pade approximants for the functions studied. Pade
approximation of a function is given by the ratio of two polynomials. The coefficients of the polyno-
mial in the numerator and denominator are determined by using the coefficients in the Taylor series
expansion of the function. Suppose that we are given a power series

∑∞
i=0 cit

i representing a function
so that f(x) =

∑∞
i=0 cit

i.
The Pade approximation of a function is a rational fraction and a notation for such a Pade

approximation is shown as:

[m,n] =
Pm(x)

Qn(x)
=
a0 + a1t+ a2t

2 + ...+ amt
m

b0 + b1t+ b2t2 + · · ·+ bntn
= c0 + c1t+ c2t

2 + · · ·+ cm+nt
m+n, (3.1)

where Pm(x) and Qn(x) are polynomials of degree at most m and n. We impose the normalization
condition Qn(0) = b0 = 1, therefore, there are m + 1 independent numerator coefficients and n
independent denominator coefficients, making m + n + 1 unknown coefficients in all. This number
suggests that normally the ought to fit the power series in equation (3.1) through the orders and
finally we know that the Pade approximation is uniquely determined.

The construction of [m,n] approximation involves only algebraic operations. Each choice of
m degree of the numerator and n degree of the denominator, leads to an approximation. The
major difficulty in applying this technique is how to direct the choice in order to obtain the best
approximation. This requires a criterion which dictates the choice of approximation, depending on
the shape of the solution. A criterion which has worked well here is the choice of [m,n] approximation
such that m = n . Using the symbolic computation software MATHEMATICA, we directly employ
the command ”Pad Approximation” about the point x = x0 to generate the Pad approximation of
the function in the following sections.
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4. Applications

Considering the following values, the differential transformation of the system (1.1) can be con-
structed as follows:

TABLE 2
Numerical values for variables of system (1.1)

Variable Numerical Value Variable Numerical Value Variable Numerical Value
T(0) 0.1 α 0.02 k 0.0027
I(0) 0 β 0.3 Tmax 1500
V(0) 0.1 r 3 N 10

p 0.1 γ 2.4

T (k + 1) = 1
k+1

(0.1− 0.02T (k) + 3T (k)− 1
500

∑k
j=0 T (j)T (k − j)

− 1
500

∑k
j=0 T (j)I(k − j)− 0.0027

∑k
j=0 V (j)T (k − j)),

I(k + 1) = 1
k+1

(0.0027
∑k

j=0 V (j)T (k − j)− 0.3I(k)),

V (k + 1) = 1
k+1

(3I(k)− 2.4V (k)).

Substituting the numerical values of T (0),I(0) and V (0) from Table 2, into (3.1), results in the
following values:

TABLE 3
Numerical values for T (k), I(k) and V (k)

k T (k) I(k) V (k)
0 0.397953 0.0000027 -0.24
1 0.6428490535 0.00001727365500 0.2880405000
2 0.6417076047 -0.000003905153687 -0.2304151263
3 0.5250961402 0.000003311524422 0.1382461469
4 0.3325368902 -9.565406252×10−7 -0.06635616360
5 0.1813768628 4.831193843×10−7 0.02654198717
6 0.09109267420 -4.957048591×10−8 -0.009099902836
7 0.4810805574 7.924201926×10−8 0.002729952262
8 0.02614743888 2.9052940×10−8 -0.0007279608559
9 0.01764151747 3.044379004×10−8 0.0001747193213
10 0.01377794034 2.2917438×10−8 -0.00003811227634

Therefore, the solution of the system (1.1) is given by:

T (t) = 0.1 + 0.397953t+ 0.6428490535t2 + 0.6417076047t3 + 0.5250961402t4 + 0.3325368902t5

+ 0.1813768628t6 + 0.09109267420t7 + 0.4810805574t8 + 0.02614743888t9

+ 0.01764151747t10 + 0.01377794034t11 + ...,

I(t) = 0 + 0.0000027t+ 0.00001727365500t2 − 0.000003905153687t3 + 0.000003311524422t4

− 9.565406252× 10−7t5 + 4.831193843× 10−7t6 − 4.957048591× 10−8t7

+ 7.924201926× 10−8t8 + 2.9052940× 10−8t9 + 3.044379004× 10−8t10 + 2.2917438× 10−8t11 + ...,

V (t) = 0.1− 0.24t+ 0.2880405000t2 − 0.2304151263t3 + 0.1382461469t4 − 0.06635616360t5

+ 0.02654198717t6 − 0.009099902836t7 + 0.002729952262t8 − 0.0007279608559t9

+ 0.0001747193213t10 − 0.00003811227634t11 + ...
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In the above results, six terms approximations are considered, because the rest of the terms are too
small therefore,

T (t) = 0.1 + 0.397953t+ 0.6428490535t2 + 0.6417076047t3 + 0.5250961402t4 + 0.3325368902t5

+ 0.1813768628t6+,

I(t) = 0 + 0.0000027t+ 0.00001727365500t2 − 0.000003905153687t3 + 0.000003311524422t4

− 9.565406252× 10−7t5 + 4.831193843× 10−7t6,

V (t) = 0.1− 0.24t+ 0.2880405000t2 − 0.2304151263t3 + 0.1382461469t4 − 0.06635616360t5

+ 0.02654198717t6.

Now, the Pade approximation [4, 4] are calculated as follows:

Tpade(t) =
0.1− 1.224115531t− 3.460113984t2 − 1.802983875t3 − 0.490931507t4

1− 16.22068531t+ 23.52107342t2 − 14.07521016t3 + 3.603023454t4
,

Ipade(t) =
0.000027t+ 0.000005102627t2 − 0.0000242556t3 − 0.00000336726t4

1− 0.4507788263t+ 0.4653299318t2 − 0.01485902265t3 + 0.3291816479t4
,

Vpade(t) =
0.1− 0.120287067t− 0.06212670482t2 − 0.0166266799t3 − 0.002041025824t4

1− 1.197129325t+ 0.6139724293t2 − 0.163201268t3 + 0.01950991258t4
,

5. Fourth Order Runge-Kutta Method

The system (1.1) in the vector form can be written as follows,

{Y } =
dY

dt
= F (t, Y ), t ≥ 0,

with initial condition

Y (0) = Y0,

where

Y =

 T
I
V

 ,

F (t, Y ) =

 f1(t, T, I, V )
f2(t, T, I, V )
f3(t, T, I, V )

 =

 p− αT + rT (1− T+I
Tmax

)− kV T,
kV T − βI
NβI − γV


,

Y0 =

 T (0)
I(0)
V (0)


By using Fourth order Runge-kutta method for the system (1.1) we have

Yi+1 = Yi +
1

6
(K1 + 2K2 + 3K3 +K4),
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Figure 1: Numerical comparison for determination of T (t) between DTM and Runge-Kutta method

where

K1 =

 k11

k21

k31

 , K2 =

 k12

k22

k32

 , K3 =

 k13

k23

k33

 , K4 =

 k14

k24

k34

 ,

kj1 = h(ti + Ti + Ii + Vi), j = 1, 2, 3,

kj2 = hfj(ti +
h

2
, Ti +

k11

2
, Ii +

k21

2
, Vi +

k31

2
), j = 1, 2, 3,

kj3 = hfj(ti +
h

2
, Ti +

k12

2
, Ii +

k22

2
, Vi +

k32

2
), j = 1, 2, 3,

kj4 = hfj(ti + h, Ti + k13, Ii + k23, Vi + k33), j = 1, 2, 3,

where h is the step size.
The above equations can be expressed an explicit form as the following: Ti+1

Ii+1

Vi+1

 =

 Ti
Ii
Vi

 +
1

6
{

 k11

k21

k31

 + 2

 k12

k22

k32

 + 2

 k13

k23

k33

 +

 k14

k24

k34

}, i = 0, 1, 2, ...

Considering h = 0.01 the solutions of the Runge-kutta method are in good agreement with those
of DTM. The numerical results are shown in Tables 4, 5 and 6. In addition, the solutions of DTM
and Runge-kutta method are plotted in Figure 1, 2, 3.

TABLE 4
Numerical comparison for determination of T (t) for different values of t
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Figure 2: Numerical comparison for determination of I(t) between DTM and Runge-Kutta method

Figure 3: Numerical comparison for determination of V (t) between DTM and Runge-Kutta method
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t DTM DTM − Pade Runge−Kutta
0 0.1 0.1 0.1

0.2 0.2116376961 0.2116378080 0.2088080121
0.4 0.4228059053 0.4228270719 0.4062401504
0.6 0.8214427381 0.8220867977 0.7644222857
0.8 1.580090941 1.589428602 1.414040889
1 3.068328771 3.167027048 2.591573918

TABLE 5
Numerical comparison for determination of I(t) for different values of t

t DTM DTM − Pade Runge−Kutta
0 0 0 0

0.2 0.000006064727822 0.000006064727837 0.00000603270115
0.4 0.00001339079678 0.00001339080558 0.00001315833510
0.6 0.00002195290254 0.00002195342310 0.00002122376663
0.8 0.00003183956342 0.00003185446433 0.00003017737081
1 0.00004335422355 0.00004394009567 0.0000400376991

TABLE 6
Numerical comparison for determination of V (t) for different values of t

t DTM DTM − Pade Runge−Kutta
0 0.1 0.1 0.1

0.2 0.06187984770 0.06187984749 0.06187984331
0.4 0.03829494797 0.03829494731 0.03829488788
0.6 0.02370481149 0.02370483059 0.02370455013
0.8 0.01468108240 0.01468128654 0.01468036373
1 0.009102264150 0.009103435566 0.009100845022

6. Conlcusion

In this paper, the HIV Infection of CD4+T cells model is solved by DTM and fourth order Runge-
Kutta methods, successfully. The results obtained by these two methods are plotted in Figure 1.
Comparison of these two methods can be resulted from Tables 4, 5, 6, or figure 1. Results of these
two methods are close at the beginning of the intervals, and the solutions get to lose the common
figures. The fourth part of Figure 1 and Tables 4,5,6 show that as the time passes, the concentration
of number of healthy cells which is denoted by T (t) and the HIV viruses which are denoted by I(t)
is the worth and the numbers of free HIV viruses which are denoted by V (t) have more digits in
common. Behavior of T (t) and I(t) are almost the same, and it increases as the time increases,
but the rate of increasing of I(t) is less than those of T (t) and V (t) decrease as the time increases.
Computations are performed by using Maple 13 package.
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