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Abstract

This paper is devoted to finding a zero point of a weighted resolvent average of a finite family of
monotone operators. A new proximal point algorithm and its convergence analysis is given. It is
shown that the sequence generated by this new algorithm, for a finite family of monotone operators
converges strongly to the zero point of their weighted resolvent average. Finally, our results are
illustrated by some numerical examples.
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1. Introduction

Let H be a real Hilbert space with norm ‖.‖ and inner product 〈., .〉. For each x, y ∈ H, we have [9]

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, x+ y〉 . (1.1)

The operator T : H → H is called nonexpansive (resp. firmly nonexpansive) if ‖Tx − Ty‖ ≤
‖x−y‖ (resp. ‖Tx−Ty‖2+‖(Id−T )x−(Id−T )y‖2 ≤ ‖x−y‖2) for all x, y ∈ H, where Id is the identity
mapping on H. The set of all fixed points of T is denoted by Fix(T ), i.e., Fix(T ) = {x ∈ H : Tx = x}.

Let A be a set-valued mapping with the domain DomA = {x ∈ H : A(x) 6= ∅} and the range
ranA = {u ∈ H : ∃x ∈ DomA such that u ∈ A(x)}. The graph of A is the set graA = {(x, u) ∈
H ×H : u ∈ A(x)}.
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An operator A : H ( H is said to be monotone if

〈x− y, u− v〉 ≥ 0, ∀(x, u), (y, v) ∈ graA.

A monotone operator A is called maximal monotone if there exists no monotone operator B such
that graA is a proper subset of graB.

The resolvent of A is the mapping JA = (A + Id)−1. It is well known that (see Proposition 23.7
in [2]) JA is single-valued and firmly nonexpansive if A is monotone. In addition, if A is maximal
monotone, then JA is also maximal monotone and, in this case we have DomJA = H. Moreover,
0 ∈ A(x) if and only if x ∈ Fix(JA). For each x, y ∈ ran(Id + A) we have (see [11])

‖JλAx− JλAy‖2 ≤ ‖x− y‖2 − ‖
(
x− JλAx

)
−
(
y − JλAy

)
‖2. (1.2)

Let us consider the zero point problem for monotone operator A on a real Hilbert space H, i.e.,
finding a point x ∈ DomA such that 0 ∈ A(x). It was first introduced by Martinet [8] in 1970.
Rockafellar [10] defined the proximal point algorithm of Martinet by generalizing a sequence {xn}
such that

xn+1 = JsnAxn + en, n ∈ N, (1.3)

for arbitrary point x0 ∈ H, where {en} is a sequence of errors and {sn} ⊆ (0,∞). The sequence
{xn} is known to converge weakly to a zero of A, if lim infn→∞ sn > 0 and

∑∞
n=0 ‖en‖ <∞, see [10],

but fails in general to converge strongly [6]. Recently, Xu [12] investigated a modified version of the
initial proximal point algorithm studied by Rockafellar with x0 ∈ H chosen arbitrary,

xn+1 = βnx0 + (1− βn)JsnAxn + en, n ∈ N, (1.4)

where {en} is the error sequence. For {en} summable, it was proved that (see [12]) {xn} is strongly
convergent if sn →∞ and βn ⊆ (0, 1) with

∑∞
n=0 βn =∞ and limn→∞ βn = 0.

In this paper, we prove strong convergence of a proximal point algorithm to a zero point of
weighted resolvent average of a finite family of monotone operators.

2. The main results

In this section, we present a new proximal point algorithm for a finite family of monotone operators
and its convergence analysis.

First, we recall (see [1]) the definition of the proximal average and resolvent average. To this end,
we assume that m ∈ N and I = {1, 2, . . . ,m}. For every i ∈ I, let Ai : H ( H be a set-valued
mapping and let λi > 0,

∑
i∈I λi = 1. We set A = (A1, . . . , Am) and λ = (λ1, . . . , λm).

The λ-weighted resolvent average of A is defined by

R(A,λ) =
(∑

i∈I

λi(Ai + Id)−1
)−1
− Id. (2.1)

The equation (2.1) is equivalent to the following equation:

JR(A,λ) =
∑
i∈I

λiJAi . (2.2)
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Here, we consider some useful lemmas.

Lemma 2.1. Let for each i ∈ I, Ai : H ( H be a monotone operator. Then (R(A,λ))−1(0) =
Fix(JR(A,λ)).

Proof . It follows from (2.1) and (2.2) that

x ∈ (R(A,λ))−1(0)⇔ 0 ∈ R(A,λ)(x)

⇔ 0 ∈
((∑

i∈I

λi(Ai + Id)−1
)−1
− Id

)
(x)

⇔ x ∈
(∑

i∈I

λi(Ai + Id)−1
)−1

(x)

⇔ x ∈
(∑

i∈I

λi(Ai + Id)−1
)

(x)

⇔ x ∈
∑
i∈I

λiJAi(x)⇔ x ∈ JR(A,λ)(x)

⇔ x ∈ Fix(JR(A,λ)).

�

Lemma 2.2. Let {Ai : H ( H}i∈I be a finite family of monotone operators with (R(A,λ))−1(0) 6=
∅, where λi > 0 and

∑
i∈I λi = 1. Let K ba a nonempty closed and convex subset of H such that

DomR(A,λ) ⊆ K ⊆ ran(Id +R(A,λ)). (2.3)

Assume that f is a k-contraction mapping on K into itself. Let {xn} be the sequence generated by
x1 ∈ K and

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en, n ∈ N, (2.4)

where {βn} ⊆ (0, 1) and {en} is a sequence of errors such that en ∈ H and
∑

n∈N ‖en‖ < ∞. Then{
‖xn − z‖ : n ∈ N

}
is bounded for each z ∈ (R(A,λ))−1(0). Consequently, {xn} is bounded.

Proof . By using our assumption, nonexpansivity of the resolvent and Lemma 2.1, we have

‖xn+1 − z‖ = ‖βnf(xn) + (1− βn)JR(A,λ)xn + en − z‖
= ‖βn(f(xn)− z) + (1− βn)(JR(A,λ)xn − z) + en‖
≤ βn‖f(xn)− z‖+ (1− βn)‖JR(A,λ)xn − JR(A,λ)z‖+ ‖en‖
≤ βn‖f(xn)− z‖+ (1− βn)‖xn − z‖+ ‖en‖
≤ βn‖f(xn)− f(z)‖+ βn‖f(z)− z‖+ (1− βn)‖xn − z‖+ ‖en‖
≤ kβn‖xn − z‖+ βn‖f(z)− z‖+ (1− βn)‖xn − z‖+ ‖en‖

≤ (1− (1− k)βn)‖xn − z‖+ βn(1− k)
1

1− k
‖f(z)− z‖+ ‖en‖

≤ max
{
‖xn − z‖,

1

1− k
‖f(z)− z‖

}
+ ‖en‖.
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This shows by induction that

‖xn+1 − z‖ ≤ max
{
‖x1 − z‖,

1

1− k
‖f(z)− z‖

}
+

n∑
i=1

‖ei‖.

Therefore,
{
‖xn − z‖ : n ∈ N

}
is bounded for each z ∈ R(A,λ)−1(0). Hence {xn} is bounded. �

Lemma 2.3. [7] Let {tn} be a sequence of real numbers such that there exists a subsequence {ni} of
{n} with tni < tni+1 for all i ∈ N. Then there exists a nondecreasing sequence {s(n)} ⊆ N such that
s(n)→∞ and the following properties are satisfied by all (sufficiently large) numbers n ∈ N:

ts(n) ≤ ts(n)+1.

In fact

s(n) = max{k ≤ n : tk < tk+1}.

Lemma 2.4. Let x ∈ H and {αn} be a bounded sequence in H. Then there exists a constant L > 0
such that ‖x+ αn‖2 ≤ ‖x‖2 + L‖αn‖.

Proof . By Cauchy-Schwarz inequality and for L ≥ 2‖x‖+ sup
n∈N
‖αn‖, we have

‖x+ αn‖2 = ‖x‖2 + 2 〈x, αn〉+ ‖αn‖2

≤ ‖x‖2 + 2‖x‖‖αn‖+ ‖αn‖2

≤ ‖x‖2 + ‖αn‖(2‖x‖+ ‖αn‖)
≤ ‖x‖2 + L‖αn‖.

�

Lemma 2.5. Let {Ai : H ( H}i∈I be a finite family of monotone operators with (R(A,λ))−1(0) 6=
∅, where λi > 0 and

∑
i∈I λi = 1. Let K be the same as in Lemma 2.2. Assume that f is a

k-contraction mapping on K into itself. Let {xn} be the sequence generated by (2.4) satisfy the
following conditions:

(i) en ∈ H and
∑

n∈N ‖en‖ <∞,

(ii) lim
n→∞

βn = 0.

Then lim
n→∞

‖xn − JR(A,λ)xn‖ = 0.

Proof. Let z ∈ R(A,λ))−1(0) be arbitrary. By using Lemma 2.1 and (1.2), for some appropriate
constant L > 0 obtained from Lemma 2.4, we get

‖xn+1 − z‖2 = ‖βnf(xn) + (1− βn)JR(A,λ)xn + en − z‖2

≤ ‖βnf(xn) + (1− βn)JR(A,λ)xn − z‖2 + L‖en‖
≤ βn‖f(xn)− z‖2 + (1− βn)‖JR(A,λ)xn − JR(A,λ)z‖2 + L‖en‖
≤ βn‖f(xn)− z‖2 + (1− βn)(‖xn − z‖2 − ‖xn − JR(A,λ)xn‖2) + L‖en‖.
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Therefore,

(1− βn)‖xn − JR(A,λ)xn‖2 ≤ (1− βn)‖xn − z‖2 − ‖xn+1 − z‖2 + βn‖f(xn)− z‖2 + L‖en‖
≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + βn‖f(xn)− z‖2 + L‖en‖. (2.5)

We consider two cases:

Case 1. Suppose that {‖xn−z‖} is a monotone sequence. It follows from Lemma 2.2 that {‖xn−z‖}
is bounded and hence {‖xn − z‖} is convergent. Clearly,

‖xn+1 − z‖2 − ‖xn − z‖2 → 0.

Since limn→∞ βn = limn→∞ ‖en‖ = 0 and {f(xn)} is a bounded sequence, from (2.5) we obtain
that limn→∞(1− βn)‖xn − JR(A,λ)xn‖2 = 0. Then

lim
n→∞

‖xn − JR(A,λ)xn‖ = 0.

Case 2. Assume that {‖xn − z‖} is not a monotone sequence. Then, we can define an integer
sequence {τ(n)} for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n, ‖xk − z‖ < ‖xk+1 − z‖}.

Clearly, τ(n) is a nondecreasing sequence such that τ(n)→∞ as n→∞ and for all n ≥ n0,

‖xτ(n) − z‖ < ‖xτ(n)+1 − z‖.

From Case 1, we obtain that lim
n→∞

‖xτ(n) − JR(A,λ)xτ(n)‖ = 0. Now, from Lemma 2.3, we have

0 ≤ ‖xn − JR(A,λ)xn‖ ≤ max{‖xτ(n) − JR(A,λ)xτ(n)‖, ‖xn − JR(A,λ)xn‖}
≤ ‖xτ(n)+1 − JR(A,λ)xτ(n)+1‖.

Hence limn→∞ ‖xn − JR(A,λ)xn‖ = 0. �

Lemma 2.6. [12, Lemma 2.5] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0,

where {γn}, {βn} and {δn} satisfy the conditions:

(i) γn ⊂ [0, 1],
∑∞

n=1 γn =∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| <∞,

(iii) βn ≥ 0 for all n ≥ 0 with
∑∞

n=0 βn <∞.

Then limn→∞ an = 0.

Let K be a closed convex subset of H. Then for every point x ∈ H, there exists a unique nearest
point in K, denoted by PK(x), such that

‖x− PK(x)‖ ≤ ‖x− y‖, ∀y ∈ K.
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The operator PK is called metric projection of H onto K. It is well known that PK(x) is nonexpansive.
The metric projection PK(x) is characterized by PK(x) ∈ K and

〈u− PK(x), x− PK(x)〉 ≤ 0, ∀u ∈ K.

Theorem 2.7. Suppose that {Ai : H ( H}i∈I is a finite family of monotone operators with Z =
(R(A,λ))−1(0) 6= ∅, where λi > 0 and

∑
i∈I λi = 1. Let K be the same as in Lemma 2.2. Assume

that f is k-contraction on K into itself. Let {βn} be a real sequence in (0, 1) and {en} be a sequence
of errors. Let {xn} be the sequence generated by (2.4). Assume that the following conditions are
satisfied:

(i) en ∈ K, satisfies
∑

n∈N ‖en‖ <∞,

(ii) lim
n→∞

βn = 0 and
∑∞

n=1 βn =∞.

Then {xn} converges strongly to z = PZf(z).

Proof . First, we show that there exists a unique z ∈ Z such that z = PZf(z). Since Z =
R(A,λ)−1(0) is closed and convex, the projection PZ is well defined. It is enough to show that PZf
is contraction on K. Since PZ is nonexpansive and f is k-contraction, we get

‖PZf(x)− PZf(y)‖ ≤ ‖f(x)− f(y)‖ ≤ k‖x− y‖, x, y ∈ H.

It follows from Banach Contraction Theorem that there exists a unique element z ∈ Z such that
z = PZf(z). Lemma 2.5 implies that lim

n→∞
‖xn − JR(A,λ)xn‖ = 0.

Next, we show that there exists a unique z ∈ Z such that lim supn→∞ 〈f(z)− z, xn − z〉 ≤ 0,
where z = PZf(z). To show this inequality, we choose a subsequence {xnα} of {xn} such that

lim
α→∞

〈f(z)− z, xnα − z〉 = lim sup
n→∞

〈f(z)− z, xn − z〉 .

By Lemma 2.2, the sequence {xnα} is bounded, so there exists a subsequence {xnαj } of {xnα} which

converges weakly to u. Without loss of generality, we can assume that {xnα} ⇀ u. We show that
u ∈ Z. To see this,

‖xnα − JR(A,λ)u‖ ≤ ‖xnα − JR(A,λ)xnα‖+ ‖JR(A,λ)xnα − JR(A,λ)u‖
≤ ‖xnα − JR(A,λ)xnα‖+ ‖xnα − u‖,

which implies that

lim sup
α→∞

‖xnα − JR(A,λ)u‖ ≤ lim sup
α→∞

‖xnα − u‖.

By the Opial property of Hilbert space H, we obtain u = JR(A,λ)u. Hence u ∈ Z.
Therefore, we have

lim sup
n→∞

〈f(z)− z, xn − z〉 = lim
α→∞

〈f(z)− z, xnα − z〉 = 〈f(z)− z, u− z〉 ≤ 0.

Finally, we show that xn → PZf(z). In fact, using Lemma 2.4, (1.1) and Lemma 2.2 of [5], for
some appropriate constant L > 0, we have

‖xn+1 − z‖2 = ‖βnf(xn) + (1− βn)JR(A,λ)xn + en − z‖2
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= ‖βnf(xn) + (1− βn)JR(A,λ)xn + en − βnz − (1− βn)z‖2

≤ ‖(1− βn)JR(A,λ)xn + en − (1− βn)z‖2 + 2βn 〈f(xn)− z, xn+1 − z〉
≤ ‖(1− βn)JR(A,λ)xn − (1− βn)z‖2 + 2βn 〈f(xn)− z, xn+1 − z〉+ L‖en‖
≤ (1− βn)2‖xn − z‖2 + 2βn 〈f(xn)− z, xn+1 − z〉+ L‖en‖
≤ (1− βn)2‖xn − z‖2 + 2βn 〈f(xn)− f(z), xn+1 − z〉+ 2βn 〈f(z)− z, xn+1 − z〉+ L‖en‖
≤ (1− βn)2‖xn − z‖2 + 2kβn‖xn − z‖‖xn+1 − z‖+ 2βn 〈f(z)− z, xn+1 − z〉+ L‖en‖
≤ (1− βn)2‖xn − z‖2+kβn(‖xn − z‖2+‖xn+1 − z‖2) + 2βn 〈f(z)− z, xn+1 − z〉+L‖en‖,

This implies that

‖xn+1 − z‖2 ≤
(1− βn)2 + kβn

1− kβn
‖xn − z‖2 +

2βn
1− kβn

〈f(z)− z, xn+1 − z〉+
L

1− kβn
‖en‖

≤ 1− 2βn + kβn
1− kβn

‖xn − z‖2 +
β2
n

1− kβn
‖xn − z‖2 +

2βn
1− kβn

〈f(z)− z, xn+1 − z〉

+
L

1− kβn
‖en‖

≤
(

1− 2(1− k)βn
1− kβn

)
‖xn − z‖2 +

2(1− k)βn
1− kβn

( βnN

2(1− k)
+

1

1− k
〈f(z)− z, xn+1 − z〉

)
+

L

1− kβn
‖en‖

≤ (1− γn)‖xn − z‖2 + γnδn + ηn,

where N = sup{‖xn − z‖2 : n ∈ N}, γn = 2(1−k)βn
1−kβn , δn = βnN

2(1−k) + 1
1−k 〈f(z)− z, xn+1 − z〉 and

ηn = L
1−kβn‖en‖. By assumption γn → 0,

∑∞
n=1 γn =∞ and we have lim sup

n→0
δn ≤ 0 and

∑∞
n=1 ηn <∞.

Hence, applying Lemma 2.6, we immediately deduce that xn → z where z = PZf(z). �

Remark 2.8. In general,
⋂
i∈I Ai({x}) ⊆ R(A,λ)({x}). From Theorem 2.5 of [1] we know that, if

Ai’s are monotone and
⋂
i∈I A

−1
i (0) 6= ∅, then (R(A,λ))−1(0) =

⋂
i∈I A

−1
i (0). On the other hand, we

have (
R(A,λ)

)−1
= R(A−1,λ) (2.6)

see Theorem 2.2 in [1] for more details. Therefore, one can replace R(A,λ)−1(0) 6= ∅ by
⋂
i∈I A

−1
i (0) 6=

∅ in Theorem 2.7. The following example shows that there is a finite family of monotone operators
{Ai : H ( H}i∈I such that

⋂
i∈I A

−1
i (0) = ∅, but (R(A,λ))−1(0) 6= ∅.

Example 2.9. Let A = (A1, A2), A−1 = (A−11 , A−12 ) and λi = 1
2

for each i = 1, 2,. Let for each
i = 1, 2, Ai : H ( H be defined by

Ai(x) =

{
H x = ai,
∅ x 6= ai,

where a1, a2 ∈ H with a1 6= a2. We have A−1i : H ( H, A−1i (x) = {ai} for each i = 1, 2. Clearly,⋂2
i=1A

−1
i (0) = ∅.

On the other hand, for each i = 1, 2, we have

(A−1i + Id)−1(x) = {x− ai}. (2.7)
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By using (2.6) and (2.7), we get

(R(A, λ))−1(0) = R(A−1,λ)(0)

=
((1

2
(A−11 + Id)−1 +

1

2
(A−12 + Id)−1

)−1
− Id

)
(0)

=
{
x ∈ H : 0 ∈ 1

2
{x− a1}+

1

2
{x− a2}

}
=
{a1 + a2

2

}
.

Therefore, (R(A,λ))−1(0) 6= ∅.

Theorem 2.10. Let {Ai : H ( H}i∈I be a finite family of maximal monotone operators with
Z = R(A,λ)−1(0) 6= ∅, where λi > 0 and

∑
i∈I λi = 1. Assume that f is k-contraction of H into

itself. Let {βn} be a real sequence in (0, 1) and {en} be a sequence of errors. Let {xn} be the sequence
generated by (2.4). Assume that the following conditions are satisfied:

(i) en ∈ K, satisfies
∑

n∈N ‖en‖ <∞,

(ii) lim
n→∞

βn = 0 and
∑∞

n=0 βn =∞,

then the sequence {xn} converges strongly to z ∈ Z, where z = PZf(z).

Proof . SinceAi’s are maximal monotone, thenAi’s are monotone and satisfy the following condition:

DomR(A,λ)) ⊂ K ⊂ ran(Id +R(A,λ)).

Putting K = H, the desired result holds. �

Theorem 2.11. For every n ∈ N and i ∈ I, let Ai : H ( H be a finite family of maximal monotone
operators with Z = R(A,λ)−1(0) 6= ∅, where λi > 0 and

∑
i∈I λi = 1. Let {βn} be a real sequence in

(0, 1) and {en} be a sequence of errors. Let {xn} be the sequence generated by u, x1 ∈ H and

xn+1 = JR(A,λ)(βnu+ (1− βn)xn + en), n ∈ N. (2.8)

Assume that the following conditions are satisfied:

(i) en ∈ K, satisfies
∑

n∈N ‖en‖ <∞,

(ii) lim
n→∞

βn = 0 and
∑∞

n=0 βn =∞,

then the sequence {xn} converges strongly to z ∈ Z, where z = PZu.

Proof . First, we show that equation (2.8) is equivalent to the following equation:

xn+1 = (1− βn)JR(A,λ)(xn) + βnu+ en, n ∈ N.

Set yn := βnu+ (1− βn)xn + en. We can rewrite (2.8) as

yn+1 = (1− βn+1)JR(A,λ)(yn) + βn+1u+ en+1, n ∈ N, (2.9)
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Re-denoting xn := yn, βn := βn+1 and en := en+1 in (2.9), algorithm (2.8) reads

xn+1 = (1− βn)JR(A,λ)(xn) + βnu+ en, n ∈ N, (2.10)

which is exactly the algorithm that is proposed in Theorem 2.10. �

Algorithm 1 Iterative algorithms for resolvent average
Input: x1 ∈ H, {βn}n∈N ⊂ (0, 1), {λi}1≤i≤m ⊂ (0, 1), {en} ∈ H, A = (A1, . . . , Am)
Output: xn
for i = 1 to m do
JAi(xn) := (Ai + Id)−1(xn)

end for

Set JR(A,λ)(xn) =
m∑
i=1

λiJAi
(xn)

for n = 1 to ... do
xn+1 = βnf(xn) + (1− βn)JR(A,λ)(xn) + en

end for

3. Numerical examples

In this section, we have supported our new iterative algorithm for monotone operators by numer-
ical examples.

Example 3.1. Let A1(x) = x and A2(x) = x + 1. Set A = (x, x + 1), λ1 = λ2 = 1
2

and f(x) = x
2
.

Assume that en =
{

1
nn

}
is the sequence of errors and βn =

{
1
n

}
for n ∈ N.

First note that A−11 (x) = x and A−12 (x) = x− 1. So, A−1 = (x, x− 1). Then by easy calculation,
we get

JA−1
1

(xn) = (A−11 + Id)−1(xn) =
{1

2
xn

}
, (3.1)

and

JA−1
2

(xn) =
{1

2
(xn + 1)

}
. (3.2)

By using (2.6) and (2.7), we obtain

(R(A,λ))−1(0) = (R(A−1,λ))(0)

=
((1

2
(A−11 + Id)−1 +

1

2
(A−12 + Id)−1

)−1 − Id
)

(0)

=
{
x ∈ R : 0 ∈

(1

2
(A−11 + Id)−1(x) +

1

2
(A−12 + Id)−1(x)

)}
=
{
x ∈ R : 0 ∈ 1

2

(1

2
x
)

+
1

2

(1

2

(
x+ 1

))}
=
{
− 1

2

}
.

Therefore, Z = (R(A,λ))−1(0) =
{
− 1

2

}
. Hence,

PZ(f(z)) = P{− 1
2
}

(
f
(
− 1

2

))
= P{− 1

2
}(1) = −1

2
(3.3)
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Let {xn} be the sequence generated by

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en, n ∈ N, (3.4)

with starting point x1 ∈ R. Clearly,

JA1(xn) = (A1 + Id)−1(xn)

= {y ∈ R : xn ∈ (A1 + Id)(y)}

=
{1

2
xn

}
. (3.5)

and similarly,

JA2(xn) =
{1

2
(xn − 1)

}
. (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en

= βnf(xn) + (1− βn)
2∑
i=1

λiJAixn + en

=
1

2n
xn +

1

2

(
1− 1

n

)(1

2
xn +

1

2
(xn − 1)

)
+

1

nn
, n ∈ N.

It follows from Theorem 2.7 that {xn} converges, say to x. Since {xn} is bounded, by letting n→∞
in the above equality we obtain

x = 0 +
1

2

(1

2
x+

1

2
(x− 1)

)
.

Therefore, x = −1
2
. The numerical results with starting point x1 = 0, which are shown in Table 1,

shows that xn → −1
2
.

Table 1: Results for given starting point x1 = 0 in Example 3.1

n 1 10 100 1000 2000 3000 4000 5000 10000 ...

xn 0 -0.42656 -0.49489 -0.49949 -0.49975 -0.49983 -0.49987 -0.4999 -0.4999 ...

Example 3.2. Let A1(x) = 2x − 1, A2(x) = x, A3(x) = x + 1 and A4(x) = 2x + 3. Set A =
(2x − 1, x, x + 1, 2x + 3), f(x) = 2x

3
and λi = 1

4
for each 1 ≤ i ≤ 4. Assume that en =

{
1
nn

}
is the

sequence of errors and βn =
{

1
n

}
for n ∈ N. We have A−1 =

(
1+x
2
, x, x − 1, x−3

2

)
. Then by easy

calculation, we get

JA−1
1

(xn) =
{1

3

(
2xn − 1

)}
, JA−1

2
(xn) =

{1

2
xn

}
,

JA−1
3

(xn) =
{1

2
(xn + 1)

}
, JA−1

4
(xn) =

{1

3
(2xn + 3)

}
. (3.7)
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By using (2.6) and (3.7), we obtain

(R(A,λ))−1(0) =
{
− 1

2

}
.

Therefore, Z = (R(A,λ))−1(0) =
{−1

2

}
. Hence

PZ(f(z)) = P{− 1
2
}

(
f
(
− 1

2

))
= P{− 1

2
}
(
− 1

4

)
= −1

2
(3.8)

Let {xn} be the sequence generated by

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en, n ∈ N, (3.9)

with starting point x1 ∈ R. We have

JA1(xn) =
{1

3
(xn + 1)

}
, JA2(xn) =

{1

2
xn

}
,

JA3(xn) =
{1

2
(xn − 1)

}
, JA4(xn) =

{1

3
(xn − 3)

}
. (3.10)

Substituting (3.10) into (3.9), we obtain

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en

=
2

3n
xn +

1

4

(
1− 1

n

)(1

6

(
10xn − 7

))
+

1

nn
, n ∈ N.

Now, Theorem 2.7 implies the convergence of {xn}, say to x. By letting n→∞ in the above equality
we obtain

x = 0 +
1

24
(10x− 7);

i.e., x = −1
2
. The numerical results in Table 2 with starting point x1 = 0 show that xn → −1

2
.

Table 2: Results for given starting point x1 = 0 in Example 3.2

n 1 10 100 1000 2000 3000 4000 5000 10000 ...

xn 0 -0.45656 -0.49708 -0.49971 -0.49985 -0.4999 -0.49992 -0.49994 -0.49997 ...

Example 3.3. Let A = (x3 − 1, x − 1, (x − 1)3), f(x) =
99x

100
and λi = 1

3
for every 1 ≤ i ≤ 3.

Assume that en =
{

1
nn

}
and βn =

{
1

n+1

}
. We have A−1 =

(
(1 + x)

1
3 , 1 + x, 1 + x

1
3

)
. Then

JA−1
1

(xn) =
{
xn +

(2

3

) 1
3

h1(xn)
− h1(xn)(

2
) 1

3
(
3
) 2

3

}
, JA−1

2
(xn) =

{1

2

(
xn − 1

)}
,

JA−1
3

(xn) =
{
xn −

(
2
3

) 1
3

h2(xn)
+

h2(xn)(
2
) 1

3
(
3
) 2

3

− 1
}
, (3.11)
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where h1(xn) =
(

9+9xn−
√

3
√

31 + 54xn + 27x2n

) 1
3

and h2(xn) =
(

9−9xn+
√

3
√

31− 54xn + 27x2n

) 1
3
.

Let {xn} be the sequence generated by

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en, n ∈ N, (3.12)

with starting point x1 ∈ R. We have

JA1(xn) =

{
h1(xn)(
2
) 1

3
(
3
) 2

3

−
(
2

3
)
1
3

h1(xn)

}
, JA2(xn) =

{1

2

(
1 + xn

)}
,

JA3(xn) =
{ (

2

3
)
1
3

h2(xn)
− h2(xn)(

2
) 1

3
(
3
) 2

3

+ 1
}
. (3.13)

Substituting (3.13) into (3.12), we obtain

xn+1 = βnf(xn) + (1− βn)JR(A,λ)xn + en

=
99

100(n+ 1)
xn +

1

3

(
1− 1

n+ 1

)(3

2
+

1

2
xn +

(2
3
)
1
3

h2(xn)
− h2(xn)(

2
) 1

3
(
3
) 2

3

+
h1(xn)(
2
) 1

3
(
3
) 2

3

−
(
2

3
)
1
3

h1(xn)

)
+

1

nn
, n ∈ N.

The numerical results in Table 3 with starting point x1 = 0 show that xn → 1.

Table 3: Results for given starting point x1 = 0 in Example 3.3

n 1 10 100 1000 2000 5000 10000 ...

xn 0 1.01732 0.999754 0.999976 0.999988 0.999995 0.999998 ...
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