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Abstract

This paper is devoted to finding a zero point of a weighted resolvent average of a finite family of
monotone operators. A new proximal point algorithm and its convergence analysis is given. It is
shown that the sequence generated by this new algorithm, for a finite family of monotone operators
converges strongly to the zero point of their weighted resolvent average. Finally, our results are
illustrated by some numerical examples.
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1. Introduction

Let H be a real Hilbert space with norm ||.|| and inner product (.,.). For each x,y € H, we have [9]
lz+yll* < llzl* +2(y, 2 +y). (1.1)

The operator T': H — H is called nonezpansive (resp. firmly nonexpansive) if ||Tz — Ty|| <
|lz—y|| (resp. ||Tz—Ty|*+|(Id—T)z—(1d-T)y|]* < ||x—yl||?) for all z,y € H, where Id is the identity
mapping on H. The set of all fixed points of T is denoted by Fix(T), i.e., Fix(T) = {z € H : Tx = x}.

Let A be a set-valued mapping with the domain DomA = {x € H : A(z) # 0} and the range
ranAd = {u € H : 3z € DomA such that v € A(x)}. The graph of A is the set grad = {(z,u) €
HxH:ue A(z)}.
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An operator A : H — H is said to be monotone if
(x—y,u—v> Z 07 V(m,u),(y,v) € graA.

A monotone operator A is called mazimal monotone if there exists no monotone operator B such
that graA is a proper subset of graB.

The resolvent of A is the mapping J4 = (A + Id)~!. It is well known that (see Proposition 23.7
in [2]) J4 is single-valued and firmly nonexpansive if A is monotone. In addition, if A is maximal
monotone, then J, is also maximal monotone and, in this case we have DomJ4 = H. Moreover,
0 € A(z) if and only if z € Fix(J4). For each z,y € ran(Id + A) we have (see [11])

| raz — gl < = ol — [z — Jraz) — (u— a) 1> (12)

Let us consider the zero point problem for monotone operator A on a real Hilbert space H, i.e.,
finding a point z € DomA such that 0 € A(x). It was first introduced by Martinet [8] in 1970.
Rockafellar [10] defined the proximal point algorithm of Martinet by generalizing a sequence {z,}
such that

Tpi1 = Js, ATn + €y, N €N, (1.3)

for arbitrary point xq € H, where {e,} is a sequence of errors and {s,} C (0,00). The sequence
{x,} is known to converge weakly to a zero of A, if liminf, , s, > 0 and Y |le,]| < oo, see [10],
but fails in general to converge strongly [6]. Recently, Xu [12] investigated a modified version of the
initial proximal point algorithm studied by Rockafellar with xy € H chosen arbitrary,

Tntl1 = ﬁnl‘o + (1 - Bn)anAxn + €n, N E N7 (14)

where {e,} is the error sequence. For {e,} summable, it was proved that (see [12]) {x,} is strongly
convergent if s,, — oo and /3, C (0,1) with >~ ° /8, = oo and lim,,_, f,, = 0.

In this paper, we prove strong convergence of a proximal point algorithm to a zero point of
weighted resolvent average of a finite family of monotone operators.

2. The main results

In this section, we present a new proximal point algorithm for a finite family of monotone operators
and its convergence analysis.

First, we recall (see [I]) the definition of the proximal average and resolvent average. To this end,
we assume that m € N and I = {1,2,...,m}. For every i € I, let A, : H — H be a set-valued
mapping and let A\; >0, 3., A = 1. Weset A = (A;,...,Ay) and A= (Ar,..., \p).

The A-weighted resolvent average of A is defined by

-1
R(AN) = (Z A(A; + Id)‘1> ~1d. (2.1)
icl
The equation (2.1)) is equivalent to the following equation:
Traan) = Y Aida,. (2.2)

el
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Here, we consider some useful lemmas.

Lemma 2.1. Let for each i € I, A; : H — H be a monotone operator. Then (R(A,X))71(0) =
FiX(JR(A,A)).

Proof . It follows from and that
z € (R(A,X)10) = 0€ R(A, ) (2)
-1
s0c <<Z)\i(Ai + Id)*l) - Id) ()

S x € (ZAi(Ai + Id)—l)l(x)
sre (ZMAi +Id)’1)(x)

1Y N (z) & 2 € Jpan (@)
el
=T c FiX(JR(A)\)).

0

Lemma 2.2. Let {A; : H — H}icr be a finite family of monotone operators with (R(A, X))~1(0) #
0, where \; >0 and )., A\; = 1. Let K ba a nonempty closed and convex subset of H such that

DomR(A,A) C K Cran(Id + R(A,\)). (2.3)

Assume that f is a k-contraction mapping on K into itself. Let {x,} be the sequence generated by
r1 € K and

Tn41 = ﬁnf(xn) + (1 - ﬁn)JR(A,)\)xn +e,, neE Na (24)

where {B,} C (0,1) and {e,} is a sequence of errors such that e, € H and ), _y |en]| < co. Then
{l|lz, — 2|l : n € N} is bounded for each z € (R(A,X))™*(0). Consequently, {x,} is bounded.

Proof . By using our assumption, nonexpansivity of the resolvent and Lemma [2.1, we have

|Zns1 — 2] = |Buf(20) + (1 = Brn) JrR(A N Tn + €0 — 2]
= [|8u(f(20) — 2) + (1 = Bu) (Jr(anTn — 2) + €3]
< Ballf(zn) = 2l + (L = Ba) | JrR(an®n — Tran 2| + lenl|
< Ballf(zn) = 2l + (L = Bo)llzn — 2|l + llenll
< Bullf (@n) = F( + Ball f(2) = 2l + (1 = Ba)llzn — 2] + [exl|
< kBullzn — 2l + Ball f(2) — 2l + (1 = Ba)llzn — 2] + [lenll

< (1= (1= D))t — 2+ Bl =~ BT [1£(2) = 2l + flea]

1
< max{||:xn —z||, m“f(z) - Z||} + [len]|-
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This shows by induction that
i1 — 2l < max {{|z — 2], —Hf —z||} + Z el

Therefore, {|z, — z|| : n € N} is bounded for each z € R(A, X)~'(0). Hence {x,} is bounded. O

Lemma 2.3. [7] Let {t,} be a sequence of real numbers such that there exists a subsequence {n;} of
{n} with t,, < t,,+1 for alli € N. Then there exists a nondecreasing sequence {s(n)} C N such that
s(n) — oo and the following properties are satisfied by all (sufficiently large) numbers n € N:

ts(n) < ts(n)+1
In fact
s(n) = max{k <n:ty <tpi1}.

Lemma 2.4. Let x € H and {a,} be a bounded sequence in H. Then there exists a constant L > 0
such that ||z + a,||* < ||lz||* + L]l

Proof . By Cauchy-Schwarz inequality and for L > 2||z|| + sup |||, we have
neN

Iz + anll* = llzl* + 2 (2, o) + [l
< [l2ll* + 2l anll + llow 1*
< [l2l* + llow | Il [l + v )
< [l2l* + Llow].

O

Lemma 2.5. Let {A; : H — H}icr be a finite family of monotone operators with (R(A, X))~1(0) #
0, where \; > 0 and Y ,.;\i = 1. Let K be the same as in Lemma . Assume that f is a
k-contraction mapping on K into itself. Let {z,} be the sequence generated by satisfy the
following conditions:

(i) en € H and ), . |len]| < 00,
(ii) lim f, = 0.
n—oo

Then lim ||z, — JranZn|| = 0.
n—oo

Proof. Let z € R(A,X))71(0) be arbitrary. By using Lemma and ([1.2]), for some appropriate
constant L > 0 obtained from Lemma [2.4] we get

1 = 2l1* = 180f (@a) + (1 = Bu) Jrian@n + €0 — 2]1°
< 1Buf () + (1 = Ba) Jran@n — 2II° + Lien|
< Ballf (@n) = 21* + (1 = Bu)ll Jram@n — Jran 2l + Lileall
< Ballf (@n) = 217 + (1 = Bu)(llzn = 21° = llzn = Jranzall®) + Llen]-

Tn
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Therefore,

(1= B)llzn = Trean@all* < (1= Bu)llzn — 201 = N2nss — 2l* + Ball f(a) — 201 + Lileal]

<1
<l = 211 = l[2nsr = 2I* + Ball f(2n) = 211 + Lllenl| (2.5)

We consider two cases:

Case 1. Suppose that {||z,—z|/} is a monotone sequence. It follows from Lemma[2.2]that {||z, —z| }
is bounded and hence {||z,, — z||} is convergent. Clearly,

|1 = 2lI* = [l — 2]|* = 0.

Since lim,, o B, = lim, .« ||en|| = 0 and {f(x,)} is a bounded sequence, from (2.5 we obtain
that lim, o0 (1 — Bn) ||z — JR(A)\)ZL‘H”2 = 0. Then

lim ||:Bn — JR(A,A)anH =0.

n—oo

Case 2. Assume that {||z,, — z||} is not a monotone sequence. Then, we can define an integer
sequence {7(n)} for all n > ny (for some ng large enough) by

7(n) =max{k € N: k <n, ||zy — z|| < ||zgs1 — 2]}
Clearly, 7(n) is a nondecreasing sequence such that 7(n) — oo as n — oo and for all n > ny,
|27y = 2l < [|#7(n)41 — 2]|-

From Case 1, we obtain that lim |- — Jreaxn)Zrm)| = 0. Now, from Lemma [2.3, we have
n—oo

0 < [|zn = JreanZnll < max{||z-m) — JreanTrm) s |20 — Tr(anTall }

< ||@rmy+1 — JrR(AN Trm)+]-

Hence lim, o ||2n — Jr(a,n)Tn|| = 0. O
Lemma 2.6. [12, Lemma 2.5] Assume that {a,} is a sequence of nonnegative real numbers such that
any1 < (1 —=n)an + Ynbn + Bn, n >0,
where {v,}, {Bn} and {6,} satisfy the conditions:

(i) o € [0,1], 222 7 = 00,

(ii) imsup,_,. 6, <0 or Y > [1,0,] < 00,
(iii) B, >0 for allm >0 with Y~ B, < 0o.
Then lim,,_ oo @, = 0.

Let K be a closed convex subset of H. Then for every point x € H, there exists a unique nearest
point in K, denoted by Pk (x), such that

lo = Pr (@) < llz = yll, vy € K.
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The operator P is called metric projection of H onto K. It is well known that Py (x) is nonexpansive.
The metric projection Pk (z) is characterized by Pk (z) € K and
(u— Pg(x),x — Px(z)) <0, Yu € K.

Theorem 2.7. Suppose that {A; : H — H}icr is a finite family of monotone operators with Z =
(R(A,X)71(0) # 0, where \; > 0 and Y ,.; N = 1. Let K be the same as in Lemma . Assume
that f is k-contraction on K into itself. Let {B,} be a real sequence in (0,1) and {e,} be a sequence
of errors. Let {x,} be the sequence generated by . Assume that the following conditions are
satisfied:

(i) e, € K, satisfies ), . |len]| < 00,
(ii) lim B, =0 and > " B, = 00.
n—oo
Then {x,} converges strongly to z = Py f(2).

Proof . First, we show that there exists a unique z € Z such that z = P;f(z). Since Z =
R(A,X)71(0) is closed and convex, the projection Py is well defined. Tt is enough to show that Py f
is contraction on K. Since Py is nonexpansive and f is k-contraction, we get

1Pz f(x) = Pzf)l < 1f (@) = F)ll < klle —yll, 2,y € H.

It follows from Banach Contraction Theorem that there exists a unique element z € Z such that
z = Py f(2). Lemma 2.5/ implies that nlggl() |2n — Jr(aNTa|| = 0.

Next, we show that there exists a unique z € Z such that limsup,_, . (f(z2) — z, 2, —2) < 0,
where z = P f(z). To show this inequality, we choose a subsequence {z,,, } of {z,} such that

ah—g}o (f(2) — z,2p, — z) = limsup (f(2) — 2z, 2z, — 2) .

By Lemma , the sequence {zy, } is bounded, so there exists a subsequence {@y,, } of {2y, } which
converges weakly to u. Without loss of generality, we can assume that {z,, } — u. We show that
u € Z. To see this,

120, = Jreanull < 12n, = Jrean@nal + | TreanTna — Jreanull
< ||$na - JR(A,A)xnaH + Hxna - u”?
which implies that

limsup ||z, — Jreanul| < limsup ||z, — ul|.

By the Opial property of Hilbert space H, we obtain u = Jg4 xyu. Hence u € Z.
Therefore, we have

limsup (f(z) — z,z, — 2) = lim (f(2) — z,2,, — 2) = (f(2) — z,u — z) <0.

n—o00 Qa—00

Finally, we show that z,, — Pzf(2). In fact, using Lemma (1.1) and Lemma 2.2 of [5], for
some appropriate constant L > 0, we have

1zn1 = 2l* = 1B f (@n) + (1 = Bu) Jran@n + €n — 2|



Weighted Resolvent Average of Monotone Operators 11 (2020) No. 2, 469-481 475

= [1Buf (@n) + (1 = Ba) Jrian@n + €n — Buz — (1 = Ba)2|”

|(1— n)JR(AA Ty +en — (1= Bn)z H2 + 28, (f(2n) — 2, Tny1 — 2)

[(1 = Ba)Trean@n — (1= Ba)2| + 280 (f(2n) = 2, 2041 — 2) + Llea|

(1= Ba)?llen — 217 + 28, (f(20) — 2, Tns1 — 2) + Lllen]|

(1= Ba)?[lwn — 201 + 280 {f (2n) = £(2), Tns1 = 2) +2Ba (f(2) = 2,Tn41 — 2) + Lle|
(1= Ba)?llzn = 2|I* + 2kBallwn — 2lllwnsr — 2l + 2B, (f(2) = 2, Zns1 — 2) + Lllenl|
(1= Ba)?llzn = 2P+ kBallon — 2P+ lwnss — 2[°) + 264 (f(2) = 2, Zat1 — 2)+ Llenll,

VAN VAN VAN VAN VAN VAN

This implies that

1—8,)%+ kB, 208,
fones — 2l < SR, sy 2B (1) — s 2+ el
_ 2
< ann =l Al g ) = 5 )
+ e
( )Bn 2(1 — k)ﬁn /BnN 1
< (1= =g, e =l S (G TR V) — e = 9)
L
+ el

< (1= y)llwn = 21* + 3ndn + 1,

where N = sup{|lz, — 2||*> : n € N}, v, = 2(117:5)5”, Oy = 2(1 k) + 2 (f(2) — 2, xp41 — 2) and

N = 1= kﬁ llen||. By assumption vy, — 0, >~ 7, = oo and we have limsup d,, < Oand )"~ 7, < oo.
n n—0

Hence, applying Lemma [2 -, we immediately deduce that x, — z where z = P, f(z). O

Remark 2.8. In general, ﬂleIA ({z}) € R(A,XN)({z}). From Theorem 2.5 of [1] we know that, if
A;’s are monotone and (;c; A4;(0) # 0, then (R(A, X))~1(0) = N;c; A; ' (0). On the other hand, we

have

-1

(R(A, X)) =R(A, ) (2.6)

see Theorem 2.2 in [1] for more details. Therefore, one can replace R(A, X)~*(0) # 0 by ,; A; *(0) #
0 in Theorem[2.7. The following example shows that there is a finite family of monotone operators
{A;: H —o H}Zej such that (V;e; 4;71(0) = 0, but (R(A,X))~1(0) # 0.

Example 2.9. Let A = (A1, Ay), A™" = (AT', A7Y) and N\ = L for each i = 1,2,. Let for each
i=1,2, A; : H— H be defined by

H T = a,
Ailo) = { 0 T F# a;,
where a1,ay € H with a; # ay. We have A;' : H — H, A7 (x) = {a;} for each i = 1,2. Clearly,
Mizy A7 1(0) = 0.
On the other hand, for each i = 1,2, we have

(A7 +1d) ! (x) = {2 — a;}. (2.7)
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By using and , we get
(R(A,X))7(0) = R(A™, A)(0)
—1
( (A7 +1d) l(A—l +Id)‘1> ~1d)(0)

(
{xEH 0€ {x—al}—i- {x—aQ}}
{a1+a2}

Therefore, (R(A,X))~(0) # 0.
Theorem 2.10. Let {A; : H — H}ier be a finite family of mazimal monotone operators with
Z = R(A,X)"*(0) # 0, where \; > 0 and Y ,.; N\, = 1. Assume that f is k-contraction of H into

itself. Let {B,} be a real sequence in (0,1) and {e,} be a sequence of errors. Let {x,} be the sequence
generated by (2.4)). Assume that the following conditions are satisfied:

(i) e, € K, satisfies Y, |len|l < 00,
(i) Jim B, =0 and 5%, B, = oo,
then the sequence {x,} converges strongly to z € Z, where z = Py f(z).
Proof . Since A;’s are maximal monotone, then A;’s are monotone and satisfy the following condition:
DomR(A, ) C K C ran(Id + R(A, \)).
Putting K = H, the desired result holds. [

Theorem 2.11. For everyn € N andi € I, let A; : H — H be a finite family of maximal monotone
operators with Z = R(A,X)71(0) # 0, where \; > 0 and y_,.; X\; = 1. Let {B,} be a real sequence in
(0,1) and {e,} be a sequence of errors. Let {x,} be the sequence generated by u,z1 € H and

Tpi1 = Jran (Bou + (1 = Br)a, +€,), n€N. (2.8)
Assume that the following conditions are satisfied:
(i) e, € K, satisfies Y, . |len]] < 00,
(i1) nh_)nolo Bn =0 and ) >, B, = o0,
then the sequence {x,} converges strongly to z € Z, where z = Pyu.
Proof . First, we show that equation is equivalent to the following equation:
Tpp1 = (1 = Bn)Jran (@n) + Bou + e, n €N,
Set y, == Bou+ (1 — B,)x, + e,. We can rewrite as

Ynt1 = (1 — ﬁnH)JR(A,A)(yn) + Bny1u + eny1, n €N, (2.9)
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Re-denoting z,, := yn, B := Bny1 and e, := e,41 in (2.9), algorithm (2.8 reads
Tpt1 = (1 - ﬁn)JR(A,)\)@jn) + ﬂnu +én, nE N7 (210)

which is exactly the algorithm that is proposed in Theorem [2.10] [J

Algorithm 1 Iterative algorithms for resolvent average
Input: z; € H, {ﬂn}neN C (O, 1), {Ai}lgigm C (0, 1), {en} €eH, A= (Al, e ,Am)
Output: z,
for i =1 tom do
Ta, () = (A; +1d) " (20)
end for .

Set JR(A,)\)(xn) Z Ai JA (xn)

forn=1to .. do

Tn1 = /an( n) ( - ﬁn)JR(A,)\)(xn) +eén
end for

3. Numerical examples

In this section, we have supported our new iterative algorithm for monotone operators by numer-
ical examples.

Example 3.1. Let Aij(x) = x and Az(x) =x+ 1. Set A = (a:,aH—l), M=X=1and f(z)=1%
Assume that e, = {%} is the sequence of errors and 3, = { } forn € N.

First note that Ay (x) = x and Ay (x) =x—1. So, A™' = (z,2 —1). Then by easy calculation,
we get

Tyor(aa) = (AT +10) M) = {20} (3.1)

and
Tyt () = {%(xn w1l (3.2)
By using and , we obtain
(R(A,X))7H0) = (R(A™, X))(0)
(% AT 1A 4+ 1(142‘1 +Ia)H) T - Id) (0)

(AP 1) (@) + 5 (45" +10) () }

() + 1+ n))

Il
}_\

xERO(
1
2

(G
{
{xER 0e
{-3}

Therefore, Z = (R(A,X))71(0) = { — 1}. Hence,

o) = Py (F( = 5)) = Py =3 (33)
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Let {x,} be the sequence generated by

Tn41 = ﬁnf(xn> + (1 - ﬂn)JR(A,A)QJn + En, N C N7 (34)
with starting point x; € R. Clearly,

Tay(xa) = (A1 +1d) ! (z)
={yeR:z, € (A +1d)(y)}

_ {%x} (3.5)

and stmilarly,

Substituting (3.5) and (| into , we obtain

Tp41 = ﬁnf(xn) + (1 - Bn)JR(A,A)-Tn + e,

2

1 1 1./1 1 1
L oY M)+ L e
50 +2( ) x +2(ac ) —i—nn n e

It follows from Theorem[2.7 that {x,} converges, say to x. Since {x,} is bounded, by letting n — oc
i the above equality we obtain

—0+1(1 o D)

Therefore, x = —%. The numerical results with starting point x1 = 0, which are shown in Table 1,

shows that x, — —%.

Table 1: Results for given starting point x; = 0 in Example

ERE 10 100 1000 2000 3000 4000 5000 10000 ... |
[#, [0 -0.42656 -0.49489 -0.49949 -0.49975 -0.49983 -0.49987 -0.4999 -0.4999 .. |

Example 3.2. Let Ai(z) = 2
(2x — 1,z,2 + 1,20 + 3), f(x)
sequence of errors and (3, = {
calculation, we get

x—1, As(x) = x, As(z) = x4+ 1 and Ay(z) = 20+ 3. Set A =
= 2—“: and \; = ; L for each 1 < i < 4. Assume that e, = {nin} s the

%} forn e N. We have A™' = (HTx,x,x — 1,“”7’3). Then by easy

N = W =

(an — 1)}, JAgl({L'n) = {%mn},
(e 4 D} Tyr() = {%(2% w3)b (3.7)
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By using (2.6) and (3.7), we obtain
1
1 . 2
(rAX)0) = { -5}
Therefore, Z = (R(A,X))7*(0) = {5t }. Hence
1 1 1
PAfE) =Py (F(=3)) = Aop(- ) =3 (35)
Let {x,} be the sequence generated by
Tpt1 = ﬁnf(xn) + (1 - ﬁn)JR(A,}\)xn +én, NE Na (39)
with starting point 1 € R. We have
1
Jas(ea) = { 5@+ D} Janlwa) = {5},
1 1
Ty () = {§(xn - 1)}, Ta, () = {g(xn - 3)}. (3.10)

Substituting (3.10) into (3.9), we obtain

Tpy1 = an(xn) + (1 - 5n)JR(A,A)5Cn +en
2 1 1 1 1

Now, Theorem implies the convergence of {x,}, say to x. By letting n — oo in the above equality
we obtain

1
=04 —(10x = 7);
x + 24( x—T7);
e, T = —%. The numerical results in Table 2 with starting point x1 = 0 show that x,, — —%.

Table 2: Results for given starting point z; = 0 in Example [3.2]
ERE 10 100 1000 2000 3000
[ @, [0 -0.45656 -0.49708 -0.49971 -0.49985 -0.4999

4000 5000 10000 ‘
-0.49992  -0.49994 -0.49997 ‘

99
Example 3.3. Let A = (2% — 1,z — 1,(z — 1)?), f(z) = r.g and N; = 3 for every 1 < i < 3.
Assume that e, = { ==} and B, = {#1} We have A™' = (1 —1—.7:)%, 1+2,1 —l—a:%). Then

R
-1 (zn) = {xn + hl?()xn) - <;§(3;§ }a JAgl(xn) = {_(x" - 1)}7
Jasr(n) = {xn - h(i);) + (;)25%) — 1}, (3.11)



480 Bagheri, Roohi

1 1
where hy(z,) = (9+9xn—\/§\/31 + 54x,, + 271‘,21) ® and ho(zy) = <9—9xn+\/§\/31 — bdx,, + 27:(;%) °
Let {x,} be the sequence generated by

Tp+1 = an(xn) + (1 - ﬂn)JR(A,A)xn + ey, N E N7 (312)

with starting point x1 € R. We have

1
’]Al('xn> - { (2> (3)% - h1($n> }7 JA2<xn) - {5(1 +xn)}7

2.1
G ()
Jas () = {th) - (2)%(3)§ + 1}. (3.13)

Substituting (3.13) into (3.12), we obtain

Tn4+1 = an(xn) + (1 - Bn)JR(A,)\)In + €n

99 1 1 /3 1 (2)s ho(2,)
_100(n+1)xn+§(1_n+1)(§+§xn+hg(xn) (2)5(3)F

(2
hi () _ 3 ’ 1 n
* (2)%(3,)% hl(xn)> T e N

The numerical results in Table 3 with starting point 1 = 0 show that x, — 1.

Table 3: Results for given starting point z; = 0 in Example [3.3]

ENE 10 100 1000 2000 5000 10000 ... |
[z, [0 1.01732 0.999754 0.999976 0.999988 0.999995 0.999998 ... |
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