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Abstract
First we generalize the notion of O-sets and then we establish some fixed point theorems for Banach’s
contraction and Suzuki type Θ-contraction in the setting of orthogonal modular metric spaces. The
obtained results extend, generalize and improve many fixed point results given by some authors in
the literature. Some examples are furnished to demonstrate the validity of these results.
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1. Introduction and Preliminaries

In order to generalize the well known Banach contraction principle, many authors introduced var-
ious types of contraction inequalities in various type of metric spaces (see [9, 14, 15, 18] and references
therein). On the other hand modular metric spaces are a natural and interesting generalization of
classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz,
Calderon-Lozanovskii spaces and others. The concept of Modular metric spaces were introduced in
[3, 4]. Here, we look at Modular metric space as the nonlinear version of the classical one introduced
by Nakano [16] on vector space and modular function space introduced by Musielak [13] and Orlicz
[17]. Also to study more you can see [5–8, 11, 12]

First we generalize the notion of O-sets and then we establish some fixed point theorems for
Banach’s contraction and Suzuki type Θ-contraction in the setting of orthogonal modular metric
spaces. The obtained results extend, generalize and improve many fixed point results given by some
authors in the literature. Some examples are furnished to demonstrate the validity of these results.
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Let X be a nonempty set and ω : (0,+∞)×X ×X → [0,+∞] be a function, for semplicity, we
will write

ωλ(x, y) = ω(λ, x, y),

for all λ > 0 and x, y ∈ X.

Definition 1.1 ([3, 4]). A function ω : (0,+∞) × X × X → [0,+∞] is called a modular metric
on X if the following axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

If in the above definition, we utilize the condition

(i’) ωλ(x, x) = 0 for all λ > 0 and x ∈ X;

instead of (i) then ω is said to be a pseudomodular metric on X. A modular metric ω on X is called
regular if the following weaker version of (i) is satisfied

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

Again, ω is called convex if for λ, µ > 0 and x, y, z ∈ X holds the inequality

ωλ+µ(x, y) ≤
λ

λ+ µ
ωλ(x, z) +

µ

λ+ µ
ωµ(z, y).

Remark 1.2. Note that if ω is a pseudomodular metric on a set X, then the function λ → ωλ(x, y)
is decreasing on (0,+∞) for all x, y ∈ X. That is, if 0 < µ < λ, then

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Definition 1.3 ([3, 4]). Suppose that ω be a pseudomodular on X and x0 ∈ X and fixed. So the
two sets

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0) → 0 as λ → +∞}
and

X∗
ω = X∗

ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) < +∞}.
Xω and X∗

ω are called modular spaces (around x0).

It is evident that Xω ⊂ X∗
ω but this inclusion may be proper in general. Assume that ω be a

modular on X, from [3, 4], we derive that the modular space Xω can be equipped with a (nontrivial)
metric, induced by ω and given by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ} for all x, y ∈ Xω.

Note that if ω is a convex modular on X, then according to [3, 4] the two modular spaces coincide,
i.e., X∗

ω = Xω, and this common set can be endowed with the metric d∗ω given by

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1} for all x, y ∈ Xω.

Such distances called Luxemburg distances.
Example 2.1 presented by Abdou and Khamsi [1] is an important motivation for developing the

modular metric spaces theory. Other examples may be found in [3, 4].
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Definition 1.4 ([14]). Assume Xω be a modular metric space, M a subset of Xω and (xn)n∈N be a
sequence in Xω. Therefore,

(1) (xn)n∈N is called convergent to x ∈ Xω if and only if ωλ(xn, x) → 0, as n → +∞ for all λ > 0.
x will be called the limit of (xn).

(2) (xn)n∈N is called Cauchy if ωλ(xm, xn) → 0, as m,n → +∞ for all λ > 0.

(3) M is called closed if the limit of a convergent sequence of M always belong to M .

(4) M is called complete if any Cauchy sequence in M is convergent to a point of M.

(5) M is called ω-bounded if for all λ > 0 we have δω(M) = sup{ωλ(x, y);x, y ∈ M} < +∞.

Recently, Moreno et al. [15] introduced the notion Banach’s contraction principle for nonlinear
contraction mappings in the setting of modular metric spaces as follow.
Definition 1.5. Let Xω be a modular metric space. A map T : Xω → Xω is a contraction if there
exits k ∈ (0, 1) such that for every λ > 0 and x, y ∈ Xω we have,

ωλk(Tx, Ty) ≤ ωλ(x, y) (1.1)

Eshaghi et al. [9] introduced the notion of orthogonal set and gave a real generalization of
Banach’ fixed point theorem in orthogonal metric spaces (Also see [2]). We extend and simplify the
definitions of [9] to modular metric spaces by the following methods. Throughout this paper, we
utilize the following version of O-set.

Definition 1.6. Let X ̸= ∅ and ⊥∈ X×X be an binary relation. Assume that there exists x0 ∈ X
such that x0 ⊥ x for all x ∈ X. Then we say that X is an orthogonal set(briefly O-set). We denote
orthogonal set by (X,A,⊥). Also, suppose that (X,⊥) be an O-set. A sequence {xn}n∈N is called
O-sequence if xn ⊥ xn+1 for all n ∈ N.

Definition 1.7. We say a modular metric space Xω is an orthogonal modular metric space if
(Xω,⊥) is an O-set (briefly, O-modular metric spaces). Also, T : Xω → Xω is ⊥ −continuous
in x ∈ Xω if for each O-sequence {xn}n∈N in Xω if limn→∞ ωλ(xn, x) = 0 for all λ > 0, then,
limn→∞ ωλ(Txn, Tx) = 0 for all λ > 0. Furthermore, T is ⊥-continuous if T is ⊥-continuous in each
x ∈ Xω. Also, we say T is ⊥-preserving if Tx ⊥ Ty whence x ⊥ y. Finally, Xω is ω-orthogonally
complete (in brief ω-O-complete) if every ω-Cauchy O-sequence is convergent.

Now we generalize the notions of O−sets and O-modular metric spaces by the following ways.

Definition 1.8. Let X ̸= ∅, ⊥∈ X ×X be an binary relation and ∅ ̸= A ⊆ X. Assume that there
exists x0 ∈ X such that x0 ⊥ x for all x ∈ A. Then we say that X is an orthogonal set with respect
to A (briefly A − O-set). We denote orthogonal set with respect to A by (X,A,⊥). Also, suppose
that (X,A,⊥) be an A − O-set. A sequence {xn}n∈N is called A − O-sequence if xn ⊥ xn+1 for all
n ∈ N.

Definition 1.9. We say a modular metric space Xω is an orthogonal modular metric space withe
respect to A if (Xω,A,⊥) is an A−O-set (briefly, A−O-modular metric spaces). Also, T : Xω → Xω

is A− ⊥ −continuous in x ∈ Xω if for each A−O-sequence {xn}n∈N in Xω if limn→∞ ωλ(xn, x) = 0
for all λ > 0, then, limn→∞ ωλ(Txn, Tx) = 0 for all λ > 0. Furthermore, T is A− ⊥-continuous
if T is A− ⊥-continuous in each x ∈ Xω. Also, we say T is A− ⊥-preserving if Tx ⊥ Ty whence
x ⊥ y. Finally, Xω is ω − A-orthogonally complete (in brief ω-A − O-complete) if every ω-Cauchy
A−O-sequence is convergent.



428 Hosseini, Eshaghi

Note that every O-set (X,⊥) is an orthogonal set with respect to A = X, but the converse is not
true. The following example shows this fact.

Example 1.10. Let

X = {(0, 5), (1, 2), (2, 3), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4)}

and
A = {(2, 3), (3, 4), (2, 2), (3, 3), (4, 4)}.

For (x, y), (u, v) ∈ X, assume, (x, y) ⊥ (u, v) if x ≤ u and y ≤ v if and only if (x, y) ≤ (u, v).
Then by putting x0 = (1, 2), X is an orthogonal set with respect to A. That is, (1, 2) ⊥ (x, y) for all
(x, y) ∈ A. But, (0, 5) ≰ (x, y) and (x, y) ≰ (0, 5) for all (x, y) ∈ X. That is, (X,⊥) is not a O-set.

Remark 1.11. Let X be a nonempty set. Assume, x ⊥ y if (x, y) ∈ X × X. Then clearly (X,⊥)
is an O-set (or O-set with respect to A = X). This example say us every set is an O-set (by
using this ⊥). Also assume T : X → X be a given mapping. If x ⊥ y, then (x, y) ∈ X ×X. Hence,
(Tx, Ty) ∈ X×X. i.e., Tx ⊥ Ty. This say us every mapping is an ⊥-preserving mapping. Similarly,
every sequence is an O-sequence.

2. Banach’s Contraction Principle in Orthogonal Modular Metric Spaces

Motivated by works of Eshaghi et al. [9] and Moreno et al. [15] we introduce the notion Banach’s
contraction principle for nonlinear contraction mappings in the setting of orthogonal modular metric
spaces as follows.

Definition 2.1. Let Xω be an A−O-modular metric space. A map T : Xω → Xω is an A− ⊥ −ω-
contraction if there exits k ∈ (0, 1) such that for every λ > 0 and x, y ∈ Xω with x ⊥ y we have,

ωλk(Tx, Ty) ≤ ωλ(x, y). (2.1)

The following example shows that contraction is A− ⊥ −ω-contraction but the converse is not true.

Example 2.2. Let X = N ∪ {0} endowed with the modular metric ωλ : X ×X × [0,+∞) given by

ωλ(m,n) =
1

λ
|m− n|.

Define T : Xω → Xω by

T (n) =


1
2
, n = 1

1, n = 2
0 n ∈ {0, 3, 4, ...},

also define m ⊥ n by mn ≤ max{m,n} (with A = X). Then the following cases are hold.

• if m = 0 and n = 1 (m ⊥ n and n ⊥ m). Then, Tm = 0 and Tn = 1
2
, and so,

ω0.6λ(Tm, Tn) =
1

0.6λ
· 1
2
=

1

1.2λ
≤ 1

λ
= ωλ(m,n)

• if m = 0 and n = 2 (m ⊥ n and n ⊥ m). Then, Tm = 0 and Tn = 1, and so,

ω0.6λ(Tm, Tn) =
1

0.6λ
≤ 2

λ
= ωλ(m,n)
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• if m = 0 and n ∈ {0, 3, 4, ...} (m ⊥ n and n ⊥ m). Then, Tm = Tn = 0, and so,

ω0.6λ(Tm, Tn) = 0 ≤ ωλ(m,n)

• if m = 1 and n = 2 (m ⊥ n and n ⊥ m). Then, Tm = 1
2

and Tn = 1, and so,

ω0.6λ(Tm, Tn) =
1

1.2λ
≤ 1

λ
= ωλ(m,n)

• if m = 1 and n ∈ {0, 3, 4, ...} (m ⊥ n and n ⊥ m). Then, Tm = 1
2

and Tn = 0, and so,

ω0.6λ(Tm, Tn) =
1

1.2λ
≤ 1

λ
≤ ωλ(m,n)

and hence,
ω0.6λ(Tm, Tn) ≤ ωλ(m,n)

holds for all m,n ∈ Xω and λ > 0. That is, T is A− ⊥ −ω−contraction. But,

ωkλ(T2, T3) =
1

kλ
>

1

λ
= ωλ(2, 3)

for all k ∈ (0, 1). That is, T is not Banach’s contraction.

Now we have the following results.

Theorem 2.3. Let (Xω,A,⊥) be an ω-A−O-complete modular metric space. Let T : Xω → Xω be
A− ⊥ −continuous, A− ⊥ −ω−contraction(with Lipschitz constant k ∈ (0, 1)), ⊥ −preserving and
TXω ⊆ A. Then T has a unique fixed point x∗ ∈ Xω. Furthermore, limn→∞ T nx = x∗ for all x ∈ Xω

(i.e., T is a Picard operator).

Proof . The proof is straightforward and is omitted here. See [3, 9]. □
If in Theorem 2.3 we take A = Xω then we have the following Corollary in the setting of

O−modular metric spaces.

Corollary 2.4. Let (Xω,⊥) be an ω-O-complete modular metric space. Let T : Xω → Xω be
⊥ −continuous and ⊥ −preserving. If there exits k ∈ (0, 1) such that for every λ > 0 and x, y ∈ Xω

with x ⊥ y we have,
ωλk(Tx, Ty) ≤ ωλ(x, y),

then T has a unique fixed point x∗ ∈ Xω. Furthermore, limn→∞ T nx = x∗ for all x ∈ Xω (i.e., T is
a Picard operator).

For A− ⊥ −ω−contraction that is not A− ⊥ −continuous we have the following theorem.

Theorem 2.5. Let (Xω,A,⊥) be an ω-A−O-complete modular metric space. Let T : Xω → Xω be
A− ⊥ −ω−contraction(with Lipschitz constant k ∈ (0, 1)), A− ⊥ −preserving and TXω ⊆ A. Also,
if {xn}n∈N be a A − O-sequence with xn → x ∈ Xω, then x ⊥ xn for all n ∈ N. Therefore, T has
a unique fixed point x∗ ∈ Xω. Furthermore, limn→∞ T nx = x∗ for all x ∈ Xω (i.e., T is a Picard
operator).
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Proof . The proof is straightforward and is omitted here. See [3, 9]. □
If in Theorem 2.5 we take A = Xω then we have the following Corollary in the setting of

O−modular metric spaces.

Corollary 2.6. Let (Xω,⊥) be an ω-O-complete modular metric space. Let T : Xω → Xω be a
⊥ −preserving mapping. If {xn}n∈N be a O-sequence with xn → x ∈ Xω, then x ⊥ xn for all n ∈ N.
Now, if there exits k ∈ (0, 1) such that for every λ > 0 and x, y ∈ Xω with x ⊥ y we have,

ωλk(Tx, Ty) ≤ ωλ(x, y),

therefore, T has a unique fixed point x∗ ∈ Xω. Furthermore, limn→∞ T nx = x∗ for all x ∈ Xω (i.e.,
T is a Picard operator).

If in Corollary 2.6 we take x ⊥ y, if (x, y) ∈ X × X and use Remark 1.11, then we have the
following Corollary in the setting of modular metric spaces.

Corollary 2.7. Let Xω be an ω-complete modular metric space. Let T : Xω → Xω be a mapping.
Now, if there exits k ∈ (0, 1) such that for every λ > 0 and x, y ∈ Xω we have,

ωλk(Tx, Ty) ≤ ωλ(x, y),

therefore, T has a unique fixed point x∗ ∈ Xω. Furthermore, limn→∞ T nx = x∗ for all x ∈ Xω (i.e.,
T is a Picard operator).

3. Suzuki Type Fixed Point Results

In this section we establish some Suzuki type results for Θ−contraction in the setting of orthogonal
modular metric spaces.

Consistent with Jleli and Samet [10], we denote by ∆Θ the set of all functions Θ : (0,+∞) →
(1,+∞) satisfying the following conditions:

(Θ1) Θ is increasing;

(Θ2) for all sequence {αn} ⊆ (0,+∞), lim
n→+∞

αn = 0 if and only if lim
n→+∞

Θ(αn) = 1;

(Θ3) there exist 0 < r < 1 and ℓ ∈ (0,+∞] such that lim
t→0+

Θ(t)−1
tr

= ℓ.

For Suzuki type Θ−contraction mapping that is ⊥ −continuous we have the following theorem.

Theorem 3.1. Let (Xω,A,⊥) be an ω-A−O-complete modular metric space with ω regular and let
T : Xω → Xω be a A− ⊥ −continuous, A− ⊥ −preserving self-mapping and TXω ⊆ A. Assume
that there exist a real number r ∈ [0, 1) and a function Θ ∈ ∆Θ such that for all λ > 0 and x, y ∈ Xω

with x ⊥ y, ωλ(x, Tx) ≤ ωλ(x, y) and ωλ(Tx, Ty) > 0, we have

Θ
(
ωλ(Tx, Ty)

)
≤

[
Θ
(
ωλ(x, y)

)]r
. (3.1)

Then T has a fixed point.
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Proof . Since, (Xω,A,⊥) is an A−O−set, then there exists x0 ∈ Xω such that,

x0 ⊥ y for all y ∈ A. (3.2)

Since TXω ⊆ A, then Tx0 ∈ A. This implies, x0 ⊥ Tx0. Assume,

x1 := Tx0, x2 = T 2x1, . . . , xn = T nx0 = Txn−1

for all n ∈ N. Since T is A− ⊥ −preserving, then {xn}n≥0 is an A − O-sequence. If there exists
n0 ∈ N∪{0} such that xn0 = xn0+1 = Txn0 , then xn0 is a fixed point of T and we have nothing to prove.
Hence, we assume that xn ̸= xn+1 for all n ∈ N∪{0}. Now, assume that there exists n0 ∈ N such that
ωλ(Txn0−1, Txn0) = 0 for some λ > 0. Then, ω regularity implies, xn0 = Txn0−1 = Txn0 = xn0+1,
which is a contradiction. Hence, ωλ(Txn−1, Txn) > 0 for all n ∈ N and λ > 0. Also, evidently,

1

2
ωλ(xn−1, Txn−1) ≤ ωλ(xn−1, xn) ≤ ωλ

2
(xn−1, xn)

for all n ∈ N and λ > 0. So from (3.1) we can derive

Θ
(
ωλ(Txn−1, Txn)

)
≤ Θ

(
ωλ(xn−1, xn)

)k
which implies that

Θ
(
ωλ(xn, xn+1)

)
≤ Θ

(
ωλ(xn−1, xn)

)k
. (3.3)

Therefore,
1 < Θ

(
ωλ(xn, xn+1)

)
≤ Θ

(
ωλ(xn−1, xn)

)k
≤ Θ

(
ωλ(xn−2, xn−1)

)k2 ≤ · · · ≤ Θ(ωλ(x0, x1))
kn .

(3.4)

Taking the limit as n → +∞ in (3.4), we get

lim
n→+∞

Θ
(
ωλ(xn, xn+1)

)
= 1

and since Θ ∈ ∆Θ, we obtain
lim

n→+∞
ωλ(xn, xn+1) = 0. (3.5)

Thus there exist 0 < r < 1 and 0 < ℓ ≤ +∞ such that

lim
n→+∞

Θ
(
ωλ(xn, xn+1)

)
− 1

[ωλ(xn, xn+1)]r
= ℓ. (3.6)

Now, let B−1 ∈ (0, ℓ). From the definition of limit, there exists n0 ∈ N such that

Θ
(
ωλ(xn, xn+1)

)
− 1

[ωλ(xn, xn+1)]r
≥ B−1 for all n ≥ n0

and so
n[ωλ(xn, xn+1)]

r ≤ nB[Θ
(
ωλ(xn, xn+1)

)
− 1] for all n ≥ n0.

From Theorem 2.3, we deduce

n[ωλ(xn, xn+1)]
r ≤ nB[Θ(ωλ(x0, x1))

kn − 1] for all n ≥ n0.
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Taking the limit as n → +∞ in the above inequality, we have

lim
n→+∞

n[ωλ(xn, xn+1)]
r = 0. (3.7)

From (3.7), it follows that there exists N0 ∈ N such that

n[ωλ(xn, xn+1)]
r ≤ 1 for all n ≥ N0.

Thus
ωλ(xn, xn+1) ≤

1

n1/r
for all n ≥ N0. (3.8)

Now, for n ≥ N0 and a arbitrary positive integer p, by (3.8), we get

ωλ(xn, xn+p) = ωpλ
p
(xn, xn+p) ≤

n+p−1∑
i=n

ωλ
p
(xi, xi+1) ≤

n+p−1∑
i=n

1

i1/r
.

Since 0 < r < 1, then

lim
n→+∞

∞∑
i=n

1

i1/r
= 0

and hence {xn} is a ω-Cauchy A − O−sequence. The hypothesis of ω-A − O−completeness of Xω

ensures that there exists x∗ ∈ Xω such that ωλ(xn, x
∗) → 0 as n → +∞. Now, since T is an

A− ⊥-continuous mapping, then ωλ(xn+1, Tx
∗) = ωλ(Txn, Tx

∗) → 0 as n → +∞. From

ωλ(x
∗, Tx∗) ≤ ωλ

2
(x∗, xn+1) + ωλ

2
(xn+1, Tx

∗),

taking limit as n → +∞, we get ω2(x
∗, Tx∗) = 0 and hence x∗ = Tx∗. □

Corollary 3.2. Let Xω be a complete modular metric space with ω regular and let T : Xω → Xω

be a continuous and self-mapping. Assume that there exist a real number r ∈ [0, 1) and a function
Θ ∈ ∆Θ such that for all λ > 0 and x, y ∈ Xω with ωλ(x, Tx) ≤ ωλ(x, y) and ωλ(Tx, Ty) > 0, we
have

Θ
(
ωλ(Tx, Ty)

)
≤

[
Θ
(
ωλ(x, y))

]r
.

Then T has a fixed point.

For Suzuki type Θ−contraction mapping that is not ⊥ −continuous we have the following theo-
rem.

Theorem 3.3. Let (Xω,A,⊥) be an ω-A − O-complete modular metric space with ω regular and
let T : Xω → Xω be a A− ⊥ −preserving self-mapping and TXω ⊆ A. Also, if {xn}n∈N be a
A − O-sequence with xn → x ∈ Xω, then x ⊥ xn for all n ∈ N. Assume that there exist a real
number r ∈ [0, 1) and a function Θ ∈ ∆Θ such that for all λ > 0 and x, y ∈ Xω with x ⊥ y,
1
2
ωλ(x, Tx) ≤ ωλ

2
(x, y) and ωλ(Tx, Ty) > 0, we have

Θ
(
ωλ(Tx, Ty)

)
≤

[
Θ
(
ωλ(x, y))

]r
. (3.9)

Then T has a fixed point.
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Proof . Since, (Xω,A,⊥) is an A−O−set, then there exists x0 ∈ Xω such that,

x0 ⊥ y for all y ∈ A. (3.10)

As in the proof of Theorem 2.3, we deduce that a Picard A − O-sequence {xn} starting at x0 is
ω-Cauchy and so converges to a point x∗ ∈ Xω. Hence, x∗ ⊥ xn for all n ∈ N. Also from (3.3) we
know that,

Θ
(
ωλ(xn, xn+1)

)
≤ Θ

(
ωλ(xn−1, xn)

)k ≤ Θ
(
ωλ(xn−1, xn)

)
.

This implies
ωλ(xn, xn+1) ≤ ωλ(xn−1, xn). (3.11)

First assume that, for each n ∈ N, there exists kn ∈ N such that ωλ
2
(xkn+1, Tx

∗) = 0 and kn > kn−1

where k0 = 1. Note that,

ωλ(x
∗, Tx∗) ≤ ωλ

2
(x∗, xkn+1) + ωλ

2
(xkn+1, Tx

∗)

and so we get, ω1(x
∗, Tx∗) = 0. That is, x∗ is a fixed point of T . Next we assume, ωλ(xn+1, Tx

∗) > 0.
Suppose that for some m ∈ N, we have

1

2
ωλ(xm−1, xm) > ωλ

2
(xm−1, x

∗) and 1

2
ωλ(xm, xm+1) > ωλ

2
(xm, x

∗).

Therefore from (3.11) and the above inequalities we get,

ωλ(xm−1, xm) ≤ ωλ
2
(xm−1, x

∗) + ωλ
2
(xm, x

∗)

<
1

2
ωλ(xm−1, xm) +

1

2
ωλ(xm, xm+1)

≤ 1

2
ωλ(xm−1, xm) +

1

2
ωλ(xm−1, xm) = ωλ(xm−1, xm),

which is a contradiction. Hence, either

1

2
ωλ(xn−1, xn) ≤ ωλ

2
(xn−1, x

∗) and 1

2
ωλ(xn, xn+1) ≤ ωλ

2
(xn, x

∗)

holds for all n ∈ N.
Let, 1

2
ωλ(xn−1, xn) ≤ ωλ

2
(xn−1, x

∗). Than from (3.9) we get,

Θ
(
ωλ(Txn, Tx

∗)
)
≤ Θ

(
ωλ(xn, x

∗)
)r ≤ Θ

(
ωλ(xn, x

∗)
)

(3.12)

which implies
ωλ(xn+1, Tx

∗) ≤ ωλ(xn, x
∗).

Then
lim

n→+∞
ωλ(xn+1, Tx

∗) = 0

and hence
ωλ(x

∗, Tx∗) ≤ lim
n→+∞

[ωλ
2
(x∗, xn+1) + ωλ

2
(xn+1, Tx

∗)] = 0.

Thus, we get x∗ = Tx∗. Similarly x∗ is fixed point of T whence 1
2
ωλ(xn, xn+1) ≤ ωλ

2
(xn, x

∗). There-
fore, T has a fixed point. □
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Corollary 3.4. Let Xω be a complete modular metric space with ω regular and let T : Xω → Xω be
a self-mapping. Assume that there exist a real number r ∈ [0, 1) and a function Θ ∈ ∆Θ such that
for all λ > 0 and x, y ∈ Xω with 1

2
ωλ(x, Tx) ≤ ωλ

2
(x, y) and ωλ(Tx, Ty) > 0, we have

Θ
(
ωλ(Tx, Ty)

)
≤

[
Θ
(
ωλ(x, y))

]r
.

Then T has a fixed point.

Example 3.5. Let X = M ∪ {(−1, 6)} where M = {(0, 0), (4, 0), (0, 4), (4, 5), (5, 4)}. We define a
binary relation ⊥ by

(x, y) ⊥ (u, v) ⇔ (x, y) ⪯ (u, v) ⇔ x ≤ u and y ≤ v.

Clearly, by putting x0 = (0, 0) and A = M, (X,A,⊥) is an A− O-set (but X is not a O-set). And
define modular metric ω on X by

ωλ((x1, x2), (y1, y2)) =
1

λ

(
|x1 − y1|+ |x2 − y2|

)
.

Evidently, Xω is an A−O−complete modular metric space. Define T : Xω → Xω by

T (x1, x2) =


(x1, 0), if (x1, x2) ∈ M with x1 ≤ x2

(0, x2) if (x1, x2) ∈ M with x1 > x2

(4, 5) if (x1, x2) = (−1, 6)

Also, TXω ⊆ A. Let (x, y) ⊥ (u, v). Clearly, if (0, 0) ⊥ (u, v), then T (0, 0) ⊥ T (u, v). Assume that,

(4, 0) ⊥ (4, 5), (4, 0) ⊥ (5, 4), (0, 4) ⊥ (4, 5), (0, 4) ⊥ (5, 4),

and so
T (4, 0) = (0, 0) ⊥ (4, 0) = T (4, 5), T (4, 0) = (0, 0) ⊥ (0, 4) = T (5, 4),

T (0, 4) = (0, 0) ⊥ (4, 0) = T (4, 5), T (0, 4) = (0, 0) ⊥ (0, 4) = T (5, 4).

That is, T is an A− ⊥ −preserving mapping.
Let Wn = (xn, yn) (for all n ≥ 0) be an O−sequence with Wn = (xn, yn) → (x, y) as n → ∞.

Equivalently, xn ≤ xn+1, yn ≤ yn+1, xn → x and yn → y as n → ∞. Then we have, xn ≤ x and
yn ≤ y for all n ≥ 0. That is, Wn = (xn, yn) ⊥ (x, y).

Assume that, x ⊥ y, 1
2
ωλ(x, Tx) ≤ ωλ

2
(x, y) and ωλ(Tx, Ty) > 0.

If x ⊥ y, then,

(x, y) ∈
{(

(0, 0), (4, 0)
)
,
(
(0, 0), (0, 4)

)
,
(
(0, 0), (4, 5)

)
,
(
(0, 0), (5, 4)

)
(
(4, 0), (4, 5)

)
,
(
(4, 0), (5, 4)

)
,
(
(0, 4), (4, 5)

)
,
(
(0, 4), (5, 4)

)}
If, ωλ(Tx, Ty) > 0, then elements of the above set reduce to,

(x, y) ∈
{(

(0, 0), (4, 5)
)
,
(
(0, 0), (5, 4)

)
,
(
(4, 0), (4, 5)

)
,
(
(4, 0), (5, 4)

)
,
(
(0, 4), (4, 5)

)
,
(
(0, 4), (5, 4)

)}
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Now since,
1

2
ωλ

(
(0, 0), T (0, 0)

)
= 0 ≤ 18

λ
= ωλ

2

(
(0, 0), (4, 5)

)
,

1

2
ωλ

(
(0, 0), T (0, 0)

)
= 0 ≤ 18

λ
= ωλ

2

(
(0, 0), (5, 4)

)
,

1

2
ωλ

(
(4, 0), T (4, 0)

)
=

2

λ
≤ 10

λ
= ωλ

2

(
(4, 0), (4, 5)

)
,

1

2
ωλ

(
(4, 0), T (4, 0)

)
=

2

λ
≤ 10

λ
= ωλ

2

(
(4, 0), (5, 4)

)
,

1

2
ωλ

(
(0, 4), T (0, 4)

)
=

2

λ
≤ 10

λ
= ωλ

2

(
(0, 4), (4, 5)

)
and

1

2
ωλ

(
(0, 4), T (0, 4)

)
=

2

λ
≤ 10

λ
= ωλ

2

(
(0, 4), (5, 4)

)
,

then we have the following cases:

• if (x, y) =
(
(0, 0), (4, 5)

)
, then,

ωλ(T (0, 0), T (4, 5)) =
4

λ
≤ 7.38

λ
= 0.82ωλ((0, 0), (4, 5))

• if (x, y) =
(
(0, 0), (5, 4)

)
, then,

ωλ(T (0, 0), T (5, 4)) =
4

λ
≤ 7.38

λ
= 0.82ωλ((0, 0), (5, 4))

• if (x, y) =
(
(4, 0), (4, 5)

)
, then,

ωλ(T (4, 0), T (4, 5)) =
4

λ
≤ 4.1

λ
= 0.82ωλ((4, 0), (4, 5))

• if (x, y) =
(
(4, 0), (5, 4)

)
, then,

ωλ(T (4, 0), T (5, 4)) =
4

λ
≤ 4.1

λ
= 0.82ωλ((4, 0), (5, 4))

• if (x, y) =
(
(0, 4), (4, 5)

)
, then,

ωλ(T (0, 4), T (4, 5)) =
4

λ
≤ 4.1

λ
= 0.82ωλ((0, 4), (4, 5))

• if (x, y) =
(
(0, 4), (5, 4)

)
, then,

ωλ(T (0, 4), T (5, 4)) =
4

λ
≤ 4.1

λ
= 0.82ωλ((0, 4), (5, 4))

and so we can write,

eωλ(Tx,Ty)
√

ωλ(Tx,Ty) ≤ e0.82ωλ(x,y)
√

0.82ωλ(x,y) =

[
eωλ(x,y)

√
ωλ(x,y)

](0.82)1.5
Define Θ : (0,∞) → (1,∞) by Θ(t) = et

√
t. Clearly, Θ ∈ ∆Θ. Then from the above inequality we

can write,
Θ(ωλ(Tx, Ty)) ≤ [Θ(ωλ(x, y))]

(0.82)1.5 .
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Therefore all conditions of Theorem 3.3 hold and T has a fixed point (here, (0, 0) is fixed point of
T ).

If x = (4, 5) and y = (5, 4), then,

Θ(d(Tx, Ty)) = Θ(8) ≥ Θ(2) > [Θ(d(x, y))]r

for all r ∈ (0, 1) and Θ ∈ ∆Θ. Hence results of Jleli and Samet [10] can not be applied for this
example.

If x = (0, 0) and y = (−1, 6) then we get,

θ(r)d(x, Tx) = 0 ≤ d(x, y) but d(Tx, Ty) > rd(x, y)

where,

θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2

(1− r)r−2 if (
√
5− 1)/2 < r < 2−1/2

(1 + r)−1 if 2−1/2 ≤ r < 1.

and so Theorem of Suzuki [18] can not be applied for this example.
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