
 

 

*Corresponding author, Tel.: +98-86-32625720; Fax: +98-86-34173450 

E-mail address: k-khorshidi@araku.ac.ir 

 Mechanics of Advanced Composite Structures 3 (2016) 89-98  
 

 

 
 

Semnan University 

Mechanics of Advanced Composite Structures 

journal homepage: http://MACS.journals.semnan.ac.ir  
Analytical Solution for Sound Radiation of Vibrating Circular 

Plates coupled with Piezo-electric Layers  

K. Khorshidi *, M. Pagoli 

Department of Mechanical Engineering, Arak University, Arak, Iran 
 

 
P A P E R  I N F O  

 

A B S T R A C T  

Pa per hist ory:  
Received: 2016-03-25 
Revised: 2016-08-21 
Accepted: 2016-08-28 

In the present study, the classical plate theory (CPT) was used to study sound radiation of forced 
vibrating thin circular plates coupled with piezoelectric layers using simply supported and 
clamped boundary conditions. The novelty of the study consists of an exact closed-form solution 
that was developed without any use of approximation. Piezoelectric, electrical potential loaded in 
the transverse direction satisfied the electric boundary conditions (open circuit) and Maxwell's 
electricity equation. It was assumed that no fluid loading occurred on the plate structure. The 
sound pressure and the sound power of the radiator were analytically obtained in a far field by 
using the Rayleigh integral. The proposed analytical method was validated using available data 
from the literature. Additionally, a few 2-D plots of the directivity pattern were illustrated for thin 
circular plates coupled with piezoelectric layers. Finally, the effect of boundary conditions, piezo-
electric thickness, and the piezoelectric layer on the acoustical parameters were examined and 
discussed in details. 
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1. Introduction 

Thin plates are important structural elements 
that are widely used in engineering applications. In 
particular, circular plates are employed in a wide 
range of engineering applications, such as aerospace 
structures, vehicles, ship and submarine bodies, air-
plane bodies and wings, and missiles.  

According to classical plate theory (CPT), Wang 
et al. [1] analyzed the free vibration of piezoelectric 
coupled circular plates with clamped and simply 
supported boundary conditions. Their proposed 
model provided a good structure from which to ob-
tain the distribution of the electric potential in pie-
zoelectric layers. An analytical model for vibration 
of circular plates with piezoelectric layers was also 
proposed by Hagood and McFarland [2]. They as-
sumed that the potential distribution of the circular 
plate in the radial direction was uniform. Heyliger 
and Ramirez [3] obtained free vibration characteris-
tics of a piezoelectric circular plate, using a discrete 
layer employing the harmonic equations of motion. 
Due to the development of smart structures, elastic 

plates with piezoelectric elements have been stud-
ied by several researchers. In those studies, the pie-
zoelectric layers were used as actuators and sensors 
to effectively control noise and vibration of these 
flexible structures. Therefore, the modeling and 
analysis of plates using piezoelectric layers are im-
portant. Hosseini-Hashemi et al. [4] and Khorshidi 
et al. [5] analyzed the vibration of piezoelectric, 
coupled, thick circular/annular functionally graded 
plates (FGPs) subjected to different combinations of 
soft simply supported, hard simply supported, and 
clamped boundary conditions, on the basis of 
Mindlin’s first-order shear deformation theory 
(FSDT). Those studies comprehensively investigated 
the coupling effects between in-plane and out-of-
plane displacements and boundary conditions. 

Unwanted vibrations in each of these structures 
can result in their destruction. In addition, vibration 
of the plates, especially thin plates, can often be a 
source of noise. Excessive noise can have a serious 
effect on the mechanical and electrical systems by 
producing vibration, stress, fatigue, and failure. This 
sound can be created by force or dynamic torque 
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that is imposed on the plate. Therefore, studying the 
vibrational behaviors, especially the sound radiated 
by vibrating plates, to optimize structural design, 
remains a significant endeavor, and the formulation 
of sound power reduction appears to be necessary.  

Early research efforts to calculate the radiated 
sound field for a flat plate in an infinite baffle dates 
back to the work of Rayleigh [6]. Lomas and Hayek 
[7] developed the Green function solution for the 
steady-state vibrations of an elastically supported 
rectangular plate coupled to a semi-infinite acoustic 
medium. Cremer and Heckl [8] analyzed the sound 
radiation of a planar source, using a Fourier trans-
formation approach in K-space (wave number 
space). Berry [9] studied the sound radiation from a 
rectangular plate with different boundary condi-
tions. In his work, both free and forced vibrations 
were considered, and the acoustic emission in the 
far field and sound power were calculated using a 
one-dimensional (1-D) Fourier transform. Yoo [10] 
investigated the general characteristics of sound 
radiation, using a point force excited rectangular 
plate with different boundary edge conditions. In 
this study, a plate under guided boundary condi-
tions and with the critical frequency only at high 
frequencies was related to radiation efficiency. This 
approach was similar to the results that Berry 
achieved for one force excitation. Rdzanek [11] used 
closed path integral techniques and stationary 
phase methods to find the active and passive acous-
tic powers. Exact acoustical analysis of sound radia-
tion from the free vibration of rectangular Mindlin 
plates, was performed by Khorshidi [12] and Hos-
seini-Hashemi et al. [13]. Vibration and sound radia-
tion of a plate-ended cylindrical shells were studied 
by Hongqiu [14]. Zhou et al. [15] calculated the 
sound pressure of a thin infinite plate in contact 
with a layered inhomogeneous fluid subject to single 
point excitation. Sound radiation by the vibrational 
modes of baffled, flat plates was analyzed by Frank 
and Paolo [16]. Zhang et al. [17] obtained sound 
radiation from a baffled rectangular plate, which 
was expressed using the plate displacement func-
tion as a 2-D Fourier cosine series and the unknown 
Fourier expansion coefficients were determined by 
using the Rayleigh–Ritz procedure. Lee and Singh 
[18] studied the sound radiated by a thin annular 
plate in a far field. Lee and Singh [19] studied mod-
erately thick, annular plates, using Mindlin plate 
theory in a far field. They also worked on sound ra-
diation of thick plates and used the results to obtain 
a semi-analytical method for calculating sound radi-
ation of a broken disk rotor [20]. 

The analytical analysis of the sound radiation of 
a thin circular plate exists in the literature, but this 
study investigated an exact closed-form formulation 
for the sound radiation of thin circular plates using 

piezoelectric layers. The novelty of the paper is that 
the exact closed-form solution was developed with-
out use of approximation. The exact closed-form 
solution presented in this study can be used in the 
solution of benchmark problems for validation of 
future numerical methods.  

First, it is assumed that no fluid loading occurs 
on the plate structure. To study the forced trans-
verse vibration of thin circular plates coupled with 
piezoelectric layers, the equations of motion were 
derived based on classical plate theory. Structural-
acoustic coupling was implemented for vibrating 
plate models. The radiation field of a vibrating plate 
with a specified distribution of velocity on the sur-
face can be computed using the Rayleigh integral 
approach. The acoustic pressure distribution and 
the sound powers of the radiator were analytically 
obtained in its far field. The proposed analytical 
method was validated using available data from the 
literature. Additionally, a few 2-D plots of the di-
rectivity pattern are illustrated for the thin circular 
plates coupled with piezoelectric layers. Finally, the 
effect of boundary conditions, piezoelectric thick-
ness, and the piezoelectric layer on the acoustical 
parameters were examined and discussed in detail. 

 

2. Free Vibrations of Thin Plates with Pi-
ezoelectric Layers 

A flat, piezoelectric coupled circular plate, including 
one host layer in the middle and two identical pie-
zoelectric layers bonded perfectly to the upper and 
lower surfaces of the host layer, with outer radius a , 

host plate thickness 2h , and piezoelectric layer 

thickness ph , are considered as shown in Figure 1. 

Both the top and bottom surfaces of each piezoe-
lectric layer are fully covered by electrodes, which 
are shortly connected. The thickness of the elec-
trodes is assumed to be extremely small compared 
to the plate thickness. Thus, in the following formu-
lation, the mechanical effects of the electrodes were 
neglected. Both piezoelectric layers were polarized 
perpendicular to the mid-plane in the positive direc-
tion of the plate’s thickness.  
 

 
Figure 1. A circular plate coupled with piezoelectric layers, 

showing the coordinate and displacement systems. 
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The plate geometry and dimensions were de-

fined in an orthogonal cylindrical coordinate system
( , , )r z , to extract mathematical formulations. The 

origin of the coordinate system was taken at the 
center of the plate in the middle plane. For conven-
ience in the formulation, the suffixes ‘p’ and ‘h’ were 
used to denote each piezoelectric layer and the host 
structure, respectively. 

According to the classical plate theory (CLP), the 
displacement field in the absence of in-plane dis-
placements are used as follows: 

( , , )zu w r t , 

(1a-c) 

( , , )
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w r t
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where zu , ru  and u  are the displacements in the 

z , radial, and tangential directions, respectively, 
and ( , , )w r t  denotes transverse displacement. The 

linear strain–displacement relationships were in-
troduced to describe the deformations of the plate. 
The strain components rr ,   and r , at an arbi-

trary point of the plate, are given for small defor-
mation as [5] 
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Based on Hooke's law, the stress-displacement 

components in the host plate are expressed as fol-
lows: 
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(3a-c) 

where E  is Young's modulus, and  / 2(1 )E    

is the shear modulus of the host plate. The constitu-
tive relations in the piezoelectric layer can be writ-
ten as 
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12 11 11
p E E E

rr zC C e E     , 
(4a-c) 
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where 11 12,  E EC C and 11
Ee are the reduced material 

constraints of the piezoelectric medium for plane 
stress problems given by 
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where 11
EC , 12

EC , 13
EC , and 33

EC  are the moduli of 

elasticity under a constant electric field; 11
Ee  and 33

Ee  

are the piezoelectric constants. The electric poten-
tial function is considered sinusoidal where it satis-
fied Maxwell's equations. Open circuit boundary 
conditions at the top and bottom of the piezoelectric 
layers are given by [4] 
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where  is the electric potential across the piezoe-

lectric middle layer. 1A , 1B , 2A , and 2B satisfy 

Maxwell's equations and open circuit boundary 
conditions (sensor conditions) that can be written 
as  
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where zD is the electric displacement along the z  

direction. The relationship between the electric field 
and electric displacement in the r ,   and z direc-

tions are given by 
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11r rD E E ,  11D E E  , 

31 33( )z rr zD e E E    . 
(9a-c) 

In Eq. (9), 11E  and 33E are reductions in the dielec-

tric constants, and they can be written as 
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Eqs. (10a) and (10b) satisfy both Maxwell's equa-
tions and open circuit boundary conditions (sensor 
conditions), so that 1A  and 1B are given by 
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The expressions for the stress resultants iM and 

iq ( , ,i r r  ) are [5] 
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Based on the strain-displacement relations and 
stress distribution, the resultant bending moments, 
twisting moments, and shear forces in terms of   

and w are obtained as follows [5]: 
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The governing differential equations, based on the 
Kirchhoff plate theory in terms of the stress result-
ants using Eqs. (13a-e), can be found as 
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Note that all of the electrical variables must satisfy 
Maxwell’s equation, which requires that the diver-
gence of the electric flux density vanishes at any 
point within the media. This condition can be satis-
fied approximately by enforcing the integration of 
the electric flux divergence across the thickness of 
the piezoelectric layers to be zero for any r and  , 

so the Maxwell’s equation after simplifying the re-
sult gives 
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Considering Eqs. (14) and (15), the six-order 
partial differential equation and the electric poten-
tial are obtained as follows 
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(18a-g) 

1 4
3

2

K D K d
P

K


 ,  2P D , 

 1
1

2

2 h p p

K
P h h

K
   , 

 0 2 h p pP h h   . 

(19a-d) 

After solving Eq. (17), the transverse displace-
ment function of circular plates has taken the fol-
lowing form [4] 

     
, ,

i p wt
w r t w r e





 , (20) 

where  w r  is the transverse displacement ampli-

tude in z  direction;   is the natural frequency of 

the plate, and p  is the wavelength in   direction. 

The transverse displacement amplitude is given by 

     

 

1 1 1 2 2 2

3 3 3 ,

p p p p

p p

w r A Z r A Z r

A Z r

 



  
 (21) 

where 

1 1x  ,  2 2x  ,  3 3x  ,  

 
 

 

0
, 1,2,3,

0

p i i

ip i

p i i

J r x
Z r i

I r x






 
 



 
(22a-d) 
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(23a-g) 

The clamped boundary conditions along the edg-
es of the circular plate are as follows 

0w w     . (24) 

Natural frequencies of piezoelectric coupled cir-
cular plates can be calculated by using the boundary 
conditions above as 

     

     

     

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

p p p

p p p

p p p

Z a Z a Z a

z a Z a a Z a a Z a

t a Z a t a Z a t a Z a

  

     

     

  

  

 (25) 

where 

4 2 23 01 4 1

2 2 2 2
i i i i

K PK D K K
t s

K d K K K d
  

     
              

       
and is  is the sign of ix . 

 

3. Forced Vibrations of a Thin Plate with 
Piezoelectric Layers 

The equations of motion for a thin circular plate 
coupled with piezoelectric layers subjected to dy-
namic transverse loading F  (generated by the pie-
zoelectric actuator) is given by 

2

3 2 1 2

2

0 2
( , , )

w
P w P w P

t

w
P F r t

t


 
        






. (26) 

Using the modal superposition method   

( ( , , ) ( , ) ( )mn mn

m 0 n 0

w r t w r T t 
 

 

 ),  

the forced vibration of the plate is expressed as  
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( ) ( )

( ) ( ) ( , , )

3 mn 2 mn mn

m 0 n 0

1 mn 0 mn mn

P w P w T t

P w P w T t F r t

 

 

 

 

 

 


, (27) 

where 
mnw  is the modal shape function, and ( )mnT t  

is the principal coordinate for the (m,n) modal of the 
plate. Substituting Eq. (17) into Eq. (27), the govern-
ing differential equations for forced vibration of the 
plate are obtained as  

( ( )) ( )

( ) ( ) ( , , )

2

mn 1 mn 0 mn mn

m 0 n 0

1 mn 0 mn mn

P w P w T t

P w P w T t F r t

 

 

 

 

  

 


. (28) 

Multiplying Eq. (28) by pqw , and integration of 

the summation of this equation over the plate area 
gives 

( )
( ) ( )2 mn

mn mn mn

mn

Q t
T t T t

Y
  , (29) 

where 




, ,

, ,

ro 2

mn 1 mn

0 0

0 mn pq

Y P w

0 m n p q
P w w r dr d

0 m n p q







 


 

 

 
, (30) 

( ) ( , , )

ro 2

mn mn

0 0

Q t F r t w r dr d



    . 
(31) 

Assuming zero initial conditions, Eq. (29) is 
solved as 

 ( ) ( )sin ( )

t

mn mn mn

mn mn 0

1
T t Q t d

Y
   


  . (32) 

Substituting Eq. (32) into 

( , , ) ( , ) ( )mn mn

m 0 n 0

w r t w r T t 
 

 

 ,  

the transverse deflection of the plate due to forced 
vibration will be obtained as 

 

( , , ) ( , )

( )sin ( )

mn

m 0 n 0 mn mn

t

mn mn

0

1
w r t w r

Y

Q t d

 


   

 

 

 







. (33) 

 
4. Acoustical Radiation Field of a Thin 

Plate with Piezoelectric Layers 

Assuming free harmonic motion, the velocity dis-
tribution on the surface of the plate may be written 
as 

0 0

( , , ) ( , ) mnj t
mn mn

m n

w r t j w r e
  

 

 

 , (34) 

where t  is the time, and -1j  . Here we assume 

that the circular plate radiator in flexural vibration 
is mounted on a flat rigid baffle of infinite extent. 

The coordinates shown in Figure 2 are positioned in 
the mid-plane surface of the plate. The acoustic 

pressure at the field point  , ,P R    can be ob-

tained by dividing the radiating surface of the flex-
ural plate into infinitesimal elements ( ds rdrd ), 

where each element acts as a simple baffled source 

of strength having midpoint coordinates  ,r  . 

The distance between the midpoint of the infini-
tesimal elements ( ds ) and the observation point  

( P ) may be given by 




/

( sin cos cos )

( sin sin sin ) ( cos )

2

1 2
2 2

d R r

R r R

  

   

  

 

, (35) 

where R is the distance between the center of the 
spherical coordinates and the observation point. 

The critical distance cD  between the near and 

the far fields for a vibrating plate radiator as given 
by Khorshidi [12] may be approximated as 

 

1c mnD  , (36) 

where 0mn mnc f  is the wave length and 

2mn mnf    is the frequency of the radiated 

sound that is also equal to the resonance frequency 
of the circular plate in the flexural vibration. Using 
the far field approximation, the distance d  in the 

acoustic pressure amplitude can be approximated as
R . The effect of distance on the phase of the acous-
tic pressure can be approximately expressed as 

cos cos sin sin sin sind R r r        . (37) 

Based on the theory of a Rayleigh integral [13], the 
total far field acoustic pressure is 

cos( )

( , ) ( sin( )) ,

jkR0 0

r

n
n

0

j c k
P e p

2 d

w r t 2 j J kr rdr






 

 


 (38) 

 
Figure 2. A circular plate and its field point in the spherical coor-

dinate system. 
 



 

K. Khorshidi and M. Pagoli / Mechanics of Advanced Composite Structures 3 (2016) 89-98 95 

 

 

where 0mnk c , 0 , and 0c  are the wave num-

ber, density of the medium, and speed of sound in 
the medium, respectively. Finally, the far field sound 
power of the radiator can be calculated using the 
following equation: 

/

sin
22 2

2
mn

0 0
0 0

1 P
R d d

2 c

 

   


   . (39) 

 
5. Comparison Study  

In this section, to ensure the correctness of com-
puter programs, results were compared with the 
results obtained by Lee and Singh [18]. Therefore, 
the simple annular plate without a piezoelectric lay-
er was considered. Material and geometry charac-
teristics of the plate appear in Table 1. 

It is assumed that the boundary conditions at r = 
b are clamped and at r = a are free. Therefore, the 
boundary conditions are expressed as 

( , ) ( , ) ,r rM a V a 0  

( , ) ( , ) .r
r

w
w b b 0

r
 


 


 

 

(40a-d) 

Comparison between natural frequencies ob-
tained by the method are presented in this paper, 
along with the exact solution, while the results that 
were obtained by Lee and Singh [18] are presented 
in Table 2. As shown in this table, there was very 
good agreement between the results obtained from 
the current method and the Lee and Singh results. 
After obtaining the natural frequencies and vibra-
tion modes, we can now obtain the sound radiation 
of the plate. Sound powers for two modes are calcu-
lated and compared with Lee and Singh [18] in Ta-
ble 3. There are two reasons for errors in the re-
sults. One reason can be attributed to the methods 
used to solve the problem. 

 

Table 1. Material and geometry characteristics of the plate. 

Outer radius (mm) 151.5 
Inner radius b (mm) 82.5 

Radii ratio 0.54 
Thickness (mm) 31.5 

Thickness ratio (h/a) 0.21 
Mass density (kg/m3) 7905.9 

Young’s modulus (GPa) 218 
Poisson ratio 0.305 

 
Table 2. Frequencies of a thin annular plate with fixed-free 

boundary conditions. 

Diff. (%) 

( )mn khz
 Mode sequence 

(m,n) Lee and 
Singh [18] 

Present 

0.24 5.465 5.478 (0,0) 
0.21 5.580 5.592 (0,1) 

0.098 6.091 6.097 (0,2) 
0 7.360 7.360 (0,3) 

 
 

     In reference vibration mode shape, shapes are 
approximated by a polynomial, whereas in the pre-
sent study an exact solution was used to obtain the 
vibration mode shape. Another reason is related to 
plate thickness and the relationship between the 
frequency of the classical and Mindlin plate theories. 
When the thickness-to-radii ratio is more than 1/20, 
the classical thin plate theory does not provide ac-
curate results. 
 

6. Numerical Results and Discussion  

After ensuring the accuracy of the formulation in 
this section, numerical results were calculated, ac-
cording to the developed exact solution for the 
sound radiation of the vibrating circular plates cou-
pled with piezoelectric layers. Calculations have 
been performed for the isotropic plate (host plate), 
using a Poisson ratio of 0.3 and a PZT-4 piezoelec-
tric layer by using commercial software, Mathemati-
ca (version 7). The results are presented in tabular 
and graphical forms for simply-supported and 
clamped boundary conditions, and plate and piezoe-
lectric layer parameters. Material properties of the 
plate and piezoelectric layers are defined as listed in 
Table 4. 
 

Table 3. Comparison of modal acoustic powers for two out-of-
plane modes with fixed-free boundaries. 

Diff. (%)  mn pW
 

( )mn khz
 

Method 
Mode 

sequence 
(m,n) 

13.1% 
84.2 6.097 Present 

(0,2) 
73.2 4.85 

Lee and Singh 
[18] 

15.1% 
86.8 7.360 Present 

(0,3) 
73.7 5.71 

Lee and Singh 
[18] 

 
Table 4. Material properties and dimensions of the plate and 

piezoelectric layer [5]. 

PZT-4 Host plate Material Property 

- 200 (GPa)E  

132 - (GPa)E
11C  

 

71 - (GPa)E
12C

 

115 - (GPa)E
33C

 

73  (GPa)E
13C  

 
- 0.3 Poisson's ratio 

7500 7800 Mass density (kg/m3)  

-4.1 - 2(C/m )31e
 

14.1 - 2(C/m )33e
 

10.5 - 2(C/m )15e
 

7.124 - ( F/m)11E n
 

5.841 - ( F/m)33E n
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In Figure 3, variation of sound pressure levels of the 
radiated plate coupled with a piezoelectric layer 
versus frequency are presented for the distance be-
tween the center of the spherical coordinates and 
the observation point R = 1.2 m, φ = 0.6 m, and ψ = 
90. Acoustic frequency response function P (ω) for 
radius R = 1.2 m from the center of the plate and φ = 
0, ψ = 90 are shown in Figure 3. The unit impulsive 
force was applied to the plate. As shown in Figure 3, 
peaks in this figure represent resonant frequencies 
(the undamped natural frequency of the plate is 
equal to the input excitation frequency). The natural 
frequencies of the plate were obtained using the 
graph acquired from the acoustic testing. 

Two-dimensional directivity patterns [12, 13] of 
the forced vibrations of a thin circular plate with a 
piezoelectric layer for the first four natural frequen-
cies are shown in Figure 4. In this figure, the rela-
tionship between sound pressure distribution and 
the spherical coordinate's ψ is described. Results 
were obtained for a constant spherical coordinate's 
angle φ and ψ , which varies from -π/2 to π/2. As 
shown in Figure 4, the sound pressure distribution 
for the mode (m = 0, n = 0) is uniform. The directivi-
ty pattern for the mode (m = 0, n = 1,2) and (m = 1, n 
= 0) dipped at ψ = 0, because ψ = 0 is the symmetry 
line of the sound pressure. In a mode shape that has 
a line of symmetry, this line affects the sound pres-
sure and causes a dip. 
 
6.1. Effect of Boundary Conditions on Sound Power 

Acoustic sound power for the first four modes 
with clamped and simply supported boundary con-
ditions are presented in Table 5. From the results 
displayed in Table 5, the sound powers of the vibrat-
ing plate under a clamped boundary condition were 
more than the sound powers of the vibrating plate 
under a simply supported boundary condition. 

 

 
Figure 3. Variation of sound pressure with respect to frequanct 
(Acoustic frequency response function) for radius R = 1.2 m, φ = 

0 , ψ = 90, given unit point force excitation (simply supported 
BCs). 

 
 

(a) 

 
(b) 

(c) 

 
(d) 

Figure 4. Two dimensional directivity pattern: (a) m = 0, n = 0, 𝜔 
= 902.5 rad/s; (b) m = 0, n = 1, 𝜔 = 1878.2 rad/s; (c) m = 0, n = 2, 

𝜔 = 3081.13 rad/s; (d) m = 1, n = 0, 𝜔 = 3513.43 rad/s. 
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6.2. Effect of Piezoelectric Thickness on Sound 
Power 

The influence of piezoelectric thickness, hp/2h, 
on sound powers of the radiated, vibrating simply 
supported circular plated coupled with piezoelectric 
layers is examined in Table 6. The results in Table 6 
are presented for the thickness ratio, hp/2h, which 
varied from 1/12 to 1/5. As the piezoelectric thick-
ness increased, the sound power decreased. This 
phenomenon occurred because the transverse dis-
placement and the transverse velocity of the plate 
decreased with increased piezoelectric thickness. 
 
6.3. Effect of the Piezoelectric Layer on the Sound 
Power 

In this section, to show the effects of the piezoe-
lectric layer on the sound radiation parameters, the 
sound power of a radiated vibrating clamped circu-
lar plate, with and without piezoelectric layers, for 
the first three vibrational modes were compared 
and presented in Table 7. According to the results 
with the piezoelectric layers, natural frequencies 
increased about 3.7%, and sound powers increased 
about 9%-12% for the mode sequence (0,0), (0,1) 
and (0,2). Therefore, considering the inertia and 
stiffness of the piezoelectric layer, the vibration and 
sound transmission were required to obtain an ac-
curate model for analysis. 
 

Table 5. Modal acoustic powers for rgw first four out-of-plane 
modes with simply supported and clamped boundary conditions. 

( )mn pW
 

( )mn Hz
 

Mode se-
quence 

Boundary 
conditions 

78.88 69.34 (0,0) 

Simply support-
ed 

87.68 195.37 (0,1) 

93.94 360.08 (0,2) 

73.76 417.83 (1,0) 

86.6 143.63 (0,0) 

Clamped 
90.54 298.92 (0,1) 

94.07 490.37 (0,2) 

75.58 559.18 (1,0) 

 
Table 6. Comparison between the sound powers ( )mn pW  of 

a simply supported circular plate coupled with piezoelectric 
layers with different piezoelectric thicknesses. 

Mode sequence 
/ph 2 h

 (1,0) (0,2) (0,1) (0,0) 

73.85 94.05 87.75 83.35 1/12 

73.76 93.94 87.68 78.88 1/10 
73.68 93.82 87.61 78.83 1/8 

73.53 93.71 87.53 75.78 1/5 

 
 

Table 7. Effect of piezoelectric layers on the natural frequencies 
and sound powers 

Diff. 
(%) 

Plate 
with 
Piezo  

Plate 
without 

Piezo  
Parameter Mode sequence 

3.77 902.494 869.671 ( / )mn rad s
 

(0,0) 
12.75 105.021 93.147 ( )mn pW

 

3.72 1878.2 1810.79 ( / )mn rad s
 

(0,1) 
10.29 110.54 100.23 ( )mn pW

 

3.75 3081.13 2969.65 ( / )mn rad s
 (0,2) 

9.83 113.96 103.76 ( )mn pW
 

 
7. Conclusions 

In this study the classical plate theory (CPT) was 
used to investigate the transverse sound radiation 
of vibrating circular plates coupled with piezoelec-
tric layers subjected to transverse external force. 
The exact closed-form solution was obtained for the 
system with simply supported and clamped bound-
ary conditions. The potential distribution function 
was earned by satisfying Maxwell's equation and 
boundary conditions. The frequencies, sound pres-
sures, and sound powers of the system were pre-
sented in both tabular and graphical forms. 

The significant advantages of the proposed 
closed-form vibro-acoustic equations consist of the 
following: 

 These equations are capable of predicting, 
with high accuracy, the frequency within the 
validity of the CPT for an exact analytical so-
lution. 

 These equations provided a closed-form so-
lution for sound radiation of circular plates 
coupled with piezoelectric layers excited by 
an external transverse force that can be easi-
ly solved numerically by designers and engi-
neers. 

Based on comparison with previously published 
results, the accuracy of the present results were val-
idated. 
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