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In this study, static and free vibration analyses of functionally graded (FG) nanocomposite plates, 
reinforced by wavy single-walled carbon nanotubes (SWCNTs) resting on a Pasternak elastic 
foundation, were investigated based on a mesh-free method and modified first-order shear de-
formation theory (FSDT). Three linear types of FG nanocomposite plate distributions and a uni-
form distribution of wavy carbon nanotubes (CNTs) were considered, in addition to plate thick-
ness. The mechanical properties were by an extended rule of mixture. In the mesh-free analysis, 
moving least squares (MLS) shape functions were used for approximation of the displacement 
field in the weak form of a motion equation, and the transformation method was used for imposi-
tion of essential boundary conditions. Effects of geometric dimensions, boundary conditions, the 
type of applied force, and the waviness index, aspect ratio, volume fraction, and distribution pat-
tern of CNTs were examined for their effects on the static and frequency behaviors of FG carbon 
nanotube reinforced composite (CNTRC) plates. Waviness and the distribution pattern of CNTs 
had a significant effect on the mechanical behaviors of FG-CNTRC plates, even more than the 
effect of the CNT volume fraction.  
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1. Introduction    

The extraordinary and outstanding characteris-
tics of carbon nanotubes (CNTs) have broadly at-
tracted researchers’ attention since their discovery 
in the 1990s [1]. Conventional fiber-reinforced 
composite materials are normally made of stiff and 
strong fillers with microscale diameters embedded 
into various matrix phases. The discovery of CNTs 
may lead to a new ways to improve the properties of 
the resulting composites by the changing reinforce-
ment phases for nano-scaled fillers [2]. Carbon 
nanotubes are considered as a potential candidate 
for the reinforcement of polymer composites, which 
provide a good interfacial bonding between CNTs 
and the polymer, and proper dispersion of the indi-
vidual CNTs in the polymeric matrix can be guaran-

teed [3]. The CNT/polymer structures may also be 
supported by an elastic foundation. These kinds of 
plates are mainly used in concrete roads, rafts, and 
mat foundations for buildings, and reinforced con-
crete pavements for airport runways. To describe 
the interaction between the plate and the founda-
tion, various kinds of foundation models have been 
proposed. The simplest one is the Winkler or one-
parameter model, which regards the foundation as a 
series of separated springs without coupling effects 
between them. This model was improved by Paster-
nak by adding a shear spring to simulate the interac-
tions between the separated springs in the Winkler 
model. The Pasternak model is widely-used to de-
scribe the mechanical behavior of structure-
foundation interactions [4].  
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On the other hand, the mechanical properties of 
CNTRCs decrease if the volume fraction of CNTs ris-
es beyond certain limit [5]. Therefore, due to the 
high cost of CNTs, the modeling of CNTRCs incorpo-
rates the concept of functionally graded materials 
(FGMs) to effectively and efficiently make use of the 
CNTs. FGMs are classified as novel composite mate-
rials with gradient compositional variation. The 
concept of FGMs can be utilized for the management 
of a material's microstructure, so that the mechani-
cal behavior of a structure made of such materials 
can be improved. The composites, which are rein-
forced by CNTs with grading distribution, are called 
functionally graded carbon nanotube reinforced 
composites (FG-CNTRCs). Several works on FG-
CNTRC structures were carried out in the wake of 
new research using FGMs. For example, Shen [6, 7] 
suggested that the interfacial bonding strength 
could be improved through the use of a graded dis-
tribution of CNTs within the matrix. He examined 
post-buckling and the nonlinear bending behavior of 
FG-CNTRC cylindrical shells and plates, respectively, 
and demonstrated that the linear FG reinforcements 
can increase the material’s mechanical behaviors. 
Zhu et al. [8] evaluated bending and performed free 
vibration analyses of thin-to-moderately thick FG-
CNTRC plates, using the finite element method 
(FEM) based on the first-order shear deformation 
theory (FSDT). Centered on a three-dimensional 
theory of elasticity, Alibeigloo [9] discussed static 
analysis of FG-CNTRC plates imbedded in piezoelec-
tric layers using three cases of CNT distribution. 
Malekzadeh et al. [10] studied the free vibration be-
haviors of quadrilateral laminated thin-to-
moderately-thick FG-CNTRC plates, using the FSDT 
and the differential quadrature method (DQM). 
Alibeigloo and Liew [11] presented the bending be-
haviors of FG-CNTRC rectangular plates with simply 
supported edges, subjected to thermo-mechanical 
loads based on a three-dimensional theory of elas-
ticity. Moradi-Dastjerdi et al. [12] used the Navier 
method and a refined plate theory to investigate the 
free vibration analysis of simply supported sand-
wiched plates with FG-CNTRC face sheets resting on 
a Pasternak elastic foundation. They used straight 
and randomly oriented CNTs in the FG-CNTRC face 
sheets.  

In addition, some forms of mesh-free methods 
were used to analyze FG-CNTRC structures. For ex-
ample, Moradi-Dastjerdi et al. [13-14] presented 
static and dynamic analyses of FG nanocomposite 
cylinders reinforced by straight CNTs carried out by 
a mesh-free method based on an MLS shape func-
tion. Additionally, they reported the effects of orien-
tation and aggregation of CNTs on the axisymmetric 
natural frequencies of FG-nanocomposite cylinders. 
In this work, they used the Eshelby–Mori–Tanaka 

approach to estimate the mechanical properties 
[15]. Lie et al. [16] studied free vibration analysis of 
FG-CNTRC plates, using the element-free kp-Ritz 
method based on FSDT. Finally, in two related 
works, Zhang et al. [17, 18] used an element-free 
based improved moving least squares-Ritz (IMLS-
Ritz) method and FSDT to study the buckling behav-
iors of FG-CNTRC plates resting on a Winkler foun-
dation and the nonlinear bending of the same type 
of plates resting on a Pasternak elastic foundation.  

In all the above-mentioned studies concerning 
FG-CNTRC structures, they assumed that the CNTs 
were straight and did not consider the effects of the 
CNT aspect ratios or waviness, while CNT curvature 
(waviness index) and CNT aspect ratios dramatical-
ly decreased the modulus of elasticity. However, 
some researchers have studied the effects of FG-
CNTRC structures. For example, Martone et al. [19] 
presented the reinforcement effects of CNTs with 
different aspect ratios in an epoxy matrix. They 
showed that progressive reduction of the nano-
tubes’ effective aspect ratios occurred because of 
the increasing connectedness between the nano-
tubes with an increase in their concentration. In 
addition, they investigated the effects of nanotube 
curvature on the average contact number between 
tubes by means of the waviness that accounts for 
the deviation from straight particles’ assumptions.  

Based on a three-dimensional theory of elastici-
ty, Jam et al. [20] investigated the effects of CNTs 
aspect ratios and waviness on the vibrational behav-
ior of nanocomposite cylindrical panels, and their 
results indicated that the distribution pattern and 
volume fraction of CNTs have a significant effect on 
the natural frequencies of nanocomposite cylindri-
cal panels. Moradi-Dastjerdi et al. [21, 22] also stud-
ied the effects of CNTs’ waviness and aspect ratios 
on the vibrational and dynamic behaviors of FG-
CNTRC cylinders. They used a new version for the 
rule of mixture to show the effect of CNT waviness 
on the reinforcement behaviors of the nanocompo-
sites. They considered different distribution pat-
terns and waviness conditions with variable aspect 
ratios, and they reported significant effects on the 
natural frequency and stress wave propagation of 
nanocomposite cylinders. Finally, Shams et al. [23] 
investigated the effects of CNT waviness and aspect 
ratios on the buckling behavior of FG-CNTRC plates 
subjected to in-plane loads. They employed a repro-
ducing kernel particle method (RKPM) based on 
modified FSDT.  

In this study, a mesh-free method, based on 
FSDT, was developed to consider the effects of a 
two-parameter elastic foundation, CNT waviness, 
and CNT aspect ratios, on the static and free vibra-
tion analyses of nanocomposite plates reinforced by 
wavy CNTs. Material properties were estimated by a 
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micromechanical model. Micromechanics’ equations 
cannot capture the scale difference between the 
nano- and micro-levels. In order to overcome this 
difficulty, the efficiency parameter was defined and 
estimated by matching the Young's moduli for the 
NTRCs obtained by the extended rule of mixture to 
those obtained by MD simulation. In the mesh-free 
method, MLS shape functions were used for approx-
imation of the displacement field in the weak form 
of a motion equation, and the transformation meth-
od was used for imposition of essential boundary 
conditions. This mesh-free method did not increase 
the calculations against the element-free Galerkin 
(EFG) method. Four linear types of CNT distribu-
tions were considered: uniform distribution, and 
three kinds of FG distributions. In addition, the oth-
er variables examined consisted of plate thickness, 
and the effects of geometric dimensions, boundary 
conditions, applied force, waviness index, aspect 
ratio, volume fraction, and the distribution pattern 
of CNTs. All of these variables were investigated for 
their effects on the deflection, stress distributions, 
and natural frequencies of FG-CNTRC plates. 

2. Material Properties of FG-CNTRC 
Plates 

In this paper, FG-CNTRC plates based on the Pas-
ternak elastic foundation were considered with 
length a, width b, and thickness h (Figure 1). The 
FG-CNTRC plates were made from a mixture of wavy 
SWCNTs in an isotropic matrix. The wavy SWCNT 
reinforcement were either uniformly distributed 
(UD) or functionally graded (FG) within the plate 
thickness. To obtain mechanical properties of 
CNT/polymer composites, a new rule of mixture 
equation assumed that the fibers were wavy and 
had uniform dispersion within the polymer matrix. 
This equation cannot consider the length of fibers, 
so it can be modified by incorporating an efficiency 

parameter ( * ) to account for the nanotube aspect 

ratio (AR) and waviness (w) [19]. The effective me-
chanical properties of the CNTRC plates were ob-
tained based on a micromechanical model according 
to [6] 
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and where CN
iE , CNG12 , CN , *

E , c  and CN  are 

the elasticity modulus, shear modulus, Poisson's 
ratio, effective reinforcement modulus, the average 
number of contacts per particle, and density, respec-

tively, of the carbon nanotubes. mE , mG , m  and 
m  are corresponding properties for the matrix. 

CNV  and mV  are the fiber (CNT) and matrix volume 

fractions, and they are related by 1 mCN VV . The  

equation )3,2,1( jj showed the CNT efficiency pa-

rameters, and the efficiency parameters can be 
computed by matching the elastic modulus of the 
CNTRCs observed during the molecular dynamic MD 
simulation results with the numerical results ob-
tained from the new rule of mixture in Eqs. (1)–(5). 

The average number of contacts, c , for the 

nanotubes is dependent on their aspect ratio [19] 
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where the waviness index w has been introduced to 
account for the CNTs’ curvature within the real 
composite. According to the literature [19], the vari-
ation of the excluded volume due to nanotubes cur-
vature was investigated by introducing the waviness 
parameter w. The accuracy of this method can be 
demonstrated through comparison with available 
literature data.  

The profile of the fiber volume fraction variation 
has important effects on plate behaviors. In this pa-
per, three linear types (FG-V, FG-, and FG-X) were 
assumed for the distribution of CNT reinforcements 
along the thickness in FG-CNTRC plates. In addition, 
a UD of CNTs within the nanocomposite plate of the 
same thickness, referred to as UD-CNTRCs, were 
considered as a comparator.  

These distributions along the plate’s thickness 
were presented as follows (see Figure 2): 
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Figure 1.  Schematic of the plate resting on a two-parameter 

elastic foundation.  

 

 
Figure 2. Variation of the nanotubes’ volume fraction CNV  along 

the thickness of the plate for different CNT distributions. 
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and CNw is the mass fraction of the nanotubes. 

 

3. Governing Equations 

Based on the FSDT, the displacement compo-
nents can be defined as 
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where u, v and w are displacements in the x, y, z di-
rections, respectively. The variables u0, v0 and w0 

denote midplane displacements, while x  
and y  

represent rotations of normal to the midplane about 

the y-axis and x-axis, respectively. The kinematic 
relations can be obtained as follows:  
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The linear constitutive relations of a FG plate can 
be written as 
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in which   denotes the transverse shear correction 

coefficient, which is suggested as 6/5  for ho-

mogeneous materials. For FGMs, the shear correc-
tion coefficient is taken to be  

))(6/(5 mmCNCN VV    [24].  

also where 

321

132132311312212332
1255

31

311232
23

32

233121
12

21

1221
33

32

322131
13

31

1331
22

32

3223
11

21
,

,,
1

,
1

,
1

EEE
Gc

EE
c

EE
c

EE
c

EE
c

EE
c

EE
c








































 
(18) 

In addition, by considering the Pasternak foun-
dation model, total energy of the plate is as 
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where f is the applied load, and kw and ks are coeffi-
cients of the Winkler and the Pasternak foundations, 
respectively. If the foundation was modeled as the 
linear Winkler foundation, the coefficient ks in Eq. 
(19) is zero. 
 

4. Mesh-Free Numerical Analysis 

In these analyses, moving least square shape 
functions introduced by Lancaster and Salkauskas 
[25] were used for approximation of the displace-
ment vector in the weak form of the motion equa-
tion. Displacement vector d can be approximated by 
the MLS shape functions as follows: 
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where N is the total number of nodes; d̂  is the vir-

tual nodal values vector, and i  is the MLS shape 

function of the node located at X(x,y) = Xi, and they 
are defined as follows: 
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the base vector, and H is the moment matrix. The 
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By using the MLS shape function, Eq. (15) can be 
written as  
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In addition, for the elastic foundation, wφ  and 

pB  can be defined as 
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Substitution of Eqs. (17) and (25) into Eq. (19) 
leads to 
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in which the components of the extensional stiffness 

A , bending-extensional coupling stiffness B , 

bending stiffness D , transverse shear stiffness sA

and also iG  and M , are introduced into the mass 

matrix. They are defined as  
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where 0I , 1I , and 2I  are the normal, coupled nor-

mal-rotary and rotary inertial coefficients, respec-
tively, defined by 
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The arrays of the bending-extensional coupling 

stiffness matrix, B , are zero for symmetric lami-
nated composites.  

Finally, using a derivative with respect to the 

displacement vector, d̂ , the Eq. (28) can be ex-

pressed as 

FdKdM  ˆ̂
 (32) 

in which, M , K , and F  are the mass matrix, stiff-
ness matrix, and force vector, respectively, which  
are defined as 

dA
A

j
T
i GMGM  (33) 

pwsbm KKKKKK 
 

(34) 

dAf
A

T
w φF  (35) 

in which, mK , bK , and sK  are the stiffness matri-

ces of the extensional, bending-extensional, and 

bending, respectively, while wK  and pK  are the 

stiffness matrices that represented the Winkler and 
Pasternak elastic foundations. They are defined as  

 

dAdA
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z
ss

T
ss
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T
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T
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 (36) 

dAkdAk
A

ps
T
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A
ww

T
ww   BBKφφK ,

 
(37) 
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For numerical integration, the problem domain 
is discretized to a set of background cells with gauss 
points inside each cell. Then, the global stiffness ma-
trix K  is obtained numerically by sweeping all 
gauss points.  

Imposition of essential boundary conditions in 
the system of Eq. (32) was not possible because MLS 
shape functions do not satisfy the Kronecker delta 
property. In this work, the transformation method is 
used for imposition of essential boundary condi-
tions. For this purpose, a transformation matrix is 
formed by establishing the relationship between 

nodal displacement vector d  and virtual displace-

ment vector d̂ . 

dTd ˆ  (38) 

T  is the transformation matrix that is a (5N × 5N) 
matrix defined as 


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
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(39) 

where )55( I  is an identity matrix of size 5. By us-

ing Eq. (38), the system of linear Eq. (32) can be re-
arranged to 

FdKdM ˆˆˆ   (40) 

where 

FTFKTTKMTTM
TTT   ˆ,ˆ,ˆ 11

 (41) 

Now the essential BCs. can be enforced within 
the modified equations system in Eq. (40) easily, 
like the FEM.  

For a static problem, the mass matrix is elimi-
nated, and Eq. (40) is changed to 

FdK ˆˆ   
(42) 

Therefore, the stress and displacement fields of 
the plate can be derived, solving this equation sys-
tem. Additionally, in the absence of external forces, 
Eq. (40) is simplified as follows: 

0ˆˆ  dKdM 
 

(43) 

Thus, the natural frequencies and mode shapes 
of the plate are determined by solving this eigenval-
ue problem. 

Table 1. Comparisons of Young's moduli for polymer/CNT com-
posites reinforced by (10,10) SWCNT at T0 = 300 K [7]. 

 

MD  Extended rule of mixture 

E1 
(GPa) 

E2 
(GPa) 

 
E1 

(GPa) 
η1 

E2 
(GPa) 

η2 

0.12 94.6 2.9  94.78 0.137 2.9 1.022 
0.17 138.9 4.9  138.68 0.142 4.9 1.626 
0.28 224.2 5.5  224.50 0.141 5.5 1.585 

 

5. Results and Discussions 

In the following simulations, static and vibration 
behaviors of the nanocomposite plates are charac-
terized as FG plates reinforced by wavy CNTs. The 
polymer (methyl-methacrylate), referred to as 
PMMA, was selected as the matrix material. The rel-
evant material properties for CNTs and PMMA are 
as follows [7]: 

GPaEm 5.2 , 3/1150 mKgm   and 34.0m   

for PMMA. For (10,10) SWCNTs 

6466.51 CNE , 0800.7
2

CNE , TPaGCN 9445.112  , 

3/1400 mKgCN   and 175.012 CN   

and the material properties of the nanocomposite 
are derived from Eqs. (1)–(6) with respect to 

23 7.0    [26] and the  values in Table 1 [14]. The 

accuracy of this method was investigated by com-
parison with experimental results [20-22].  

In this work, the static and free vibration anal-
yses were presented to investigate the mechanical 
characteristics of FG-CNTRC plates using several 
numerical examples. The plates were assumed to be 
resting on two-parameter elastic foundations, and 
the developed mesh-free method was used. At first, 
the convergence and accuracy of the mesh-free 
method on the static and vibrational behaviours of 
the plates were examined by a comparison between 
the results and reported results in the literature 
concerning homogeneous FGMs and straight CNTRC 
plates. Then, new mesh-free results on the static and 
free vibration characteristics of the wavy CNTRC 
plates on the elastic foundation were reported.  

In all examples of CNTRC plates, the foundation 
parameters were presented in the non-dimensional 
form of Kw = kwa4/D and Ks=ksa2/D, in which D = 
Emh3/12(1-υm

2) was the reference bending rigidity 
of the plate. In addition, the non-dimensional deflec-
tions and the natural frequencies of the CNTRC 
plates are defined as [27] 

4
0

3210ˆ afqhEq m  (44) 

mEh  ˆ  (45) 

where, f0 is the value of applied (concentrated or 
uniform) load, and q is the central deflection.  

 
5.1. Validation of models 

In the first example, consider a simply supported 
homogeneous square plate under uniformly distrib-
uted load f0. The convergence of the developed 
mesh-free method in a central non-dimensional de-

flection q̂  of the plate with h/ac= 0.02, is shown in 

Figure 3. The applied mesh-free method has an ex-
cellent convergence and agreement with the exact 
results reported by Akhras et al. [28] in the bending 
analysis of the plate. The deflections of this plate for 

*
CNV
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various values of h/a (=0.1, 0.05, 0.02 and 0.01) are 
listed in Table 2. The accuracy of the applied meth-
od was evident by comparison with exact [28] and 
other reported results [27,29,30]. Figure 3 and Table 
2 results show that by using an 11 × 11 node ar-
rangement, the applied method provided more ac-
curacy than FEM.  

The bending analysis of the FG nanocomposite 
plate reinforced by straight CNT and without an 
elastic foundation was also validated. Consider a 
square clamped FG-CNTRC plate with a CNT volume 

fraction 17.0* CNV , and values of b/h at 50, 20, and 

10. Table 3 shows good agreement between the re-
sults of the applied mesh-free method, and the FEM 
reported results by Zhu et al. [8] for both UD and FG 
nanocomposite reinforced by straight CNTs. 
 

 
Figure 3. Convergence of the central non-dimensional deflection 

q̂ , for different numbers of nodes in each direction (data com-

parision with Akhares et al. [28]). 
 

Table 2. Comparison of the central non-dimensional deflection q̂    

in simply supported square plates subjected to uniformly distrib-
uted load. 

Non-dimensional Deflection Method h/a 
4.7864 Present 

0.1 
4.7910 Exact [28] 
4.7866 Ferreira et al. [29] 
4.7912 Ferreira et al. [27] 
4.7700 FEM (Reddy [30]) 
4.6274 Present 

0.05 
4.6250 Exact [28] 
4.6132 Ferreira et al. [29] 
4.6254 Ferreira et al. [27] 
4.5700 FEM (Reddy [30]) 
4.5829 Present 

0.02 
4.5790 Exact [28] 
4.5753 Ferreira et al. [29] 
4.5788 Ferreira et al. [27] 
4.4960 FEM (Reddy [30]) 
4.5765 Present 

0.01 
4.5720 Exact [28] 
4.5737 Ferreira et al. [29] 
4.5716 Ferreira et al. [27] 
4.4820 FEM (Reddy [30]) 

 
 
 
 

Table 3. Comparison of the central non-dimensional deflection 

q̂ , in clamped square plates reinforced by straight CNTs. 

b/h 
UD  FG-X  

Mesh-Free 
(35×35) 

Zhu 
et al. [8] 

Mesh-Free 
(35×35) 

Zhu 
et al. [8] 

50 0.1690 0.1698 0.1213 0.1223 

20 8.309×10-2 8.561×10-2 7.039×10-3 7.290×10-3 
10 1.353×10-3 1.412×10-3 1.261×10-3 1.318×10-3 

 
In the second stage of validation, consider a 

simply supported FGM square plate as reported in 
Thai and Choi [4] in which the material properties of 
plate are varied as follows: 

n
btb

h

z
PPPzP )

2

1
)(()(   (46) 

where P is an indicator for the material properties 
of a plate that were used in place of the modulus 
elasticity, E, Poisson's ratio,  , and density,  . Ad-

ditionally, n is the volume fraction exponent, and the 
subscripts b and t represent the bottom and top 
constituents, respectively. The convergence of the 
applied mesh-free method in a non-dimensional 
fundamental frequency ̂ , for plates resting on a 

Winkler-Pasternak elastic foundation with h/a = 0.2, 
Kw = 100, Ks = 100, and a volume fraction exponent 
of n = 1, are shown in Figure 4. This figure also 
shows that by using only a 5 × 5 node arrangement, 
the applied method had very good accuracy and 
agreement with the results reported by Thai and 
Choi [4] for FGM (n = 1) plates. The non-
dimensional fundamental frequencies for this plate 
are presented in Table 4, using various values of h/a 
that equal 0.05, 0.1, and 0.2, and including elastic 
foundation coefficients. This table reveals that the 
applied method had very good accuracy and agree-
ment with the reported results, especially for thin-
ner plates. 
 

 
Figure 4. Convergence of the non-dimensional fundamental fre-

quency ̂ , for the FGM plates with n=1, h/a=0.2, Kw=100, Ks=100 

for different numbers of nodes in each direction (data compari-
son with Thai and Choi [4]). 
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Table 4. Comparison of the fundamental frequency, ̂ , in simply 

supported square FGM plates. 
Kw Ks h/a Method n=0 n=1 

0 0 

0.05 
Present 0.0291 0.0222 

Baferani et al. [31] 0.0291 0.0227 
Thai & Choi [4] 0.0291 0.0222 

0.1 
Present 0.1135 0.0869 

Baferani et al. [31] 0.1134 0.0891 
Thai & Choi [4] 0.1135 0.0869 

0.2 
Present 0.4167 0.3216 

Baferani et al. [31] 0.4154 0.3299 
Thai & Choi [4] 0.4154 0.3207 

100 100 

0.05 
Present 0.0411 0.0384 

Baferani et al. [31] 0.0411 0.0388 
Thai & Choi [4] 0.0411 0.0384 

0.1 
Present 0.1618 0.1519 

Baferani et al. [31] 0.1619 0.1542 
Thai & Choi [4] 0.1619 0.1520 

0.2 
Present 0.6167 0.5857 

Baferani et al. [31] 0.6162 0.5978 
Thai & Choi [4] 0.6162 0.5855 

 
Table 5. Comparison of the fundamental frequency ̂ , in simply 

supported square plates reinforced by straight CNTs 

b/h 

UD FG-X 

Mesh-
Free 

(31×31) 

FEM 
(31×31) 

Zhu 
et al. 
[8] 

Mesh-
Free 

(31×31) 

FEM 
(31×31) 

Zhu 
et al. 
[8] 

10 17.0010 17.0189 16.815 18.5240 18.5382 18.278 

20 21.5053 21.541 21.456 24.8639 24.8973 24.764 
50 23.6323 23.6791 23.697 28.3400 28.3891 28.413 

 
Finally, consider square simply supported FG-

CNTRC plates with a CNT volume fraction 17.0* CNV , 

and values of b/h equal to 50, 20, and 10. Table 5 
shows a good agreement between the non-

dimensional fundamental frequency ̂  of the ap-

plied mesh-free method, FEM, and FEM reported 
results by Zhu et al. [8], for both UD and FG nano-
composites reinforced by straight CNTs. 

 
5.2. Static analysis of FG-CNTRC plates 

Consider square clamped nanocomposite plates 
reinforced by wavy CNTs subjected to uniformed 
distribution load of f0 = -1e5, resting on a Pasternak 
foundation with the values Kw = 100, Ks = 10, and h/a 
= 0.1. Table 6 shows the central non-dimensional 

deflection q̂ , for the plates for different types of 

CNT distributions and various values of CNT volume 
fraction *

CNV , aspect ratio, and waviness index. The 

deflection parameter was decreased by increasing 
the CNT volume fraction, CNT aspect ratio, and by 
decreasing the waviness index. Table 6 reveals that 
the CNT waviness had the biggest effect (even more 
than the CNT volume fraction), and CNT aspect ratio 
had the smallest effect (especially at its higher val-
ues) on the bending behaviors of FG-CNTRC plates. 
Additionally, in more cases, the FG-X and FG-O types 
of CNTRC plates have the minimum and maximum 
values for non-dimensional deflection, respectively.  

Table 6. Central non-dimensional deflections q̂ , in clamped 

square FG-CNTRC plates, with the values Kwv  = 100, Ksv = 10, f0v = 
v-1e5, and h/a = 0.1 

*
CNV  w AR UD FG-V FG-X FG-O 

0.12 

0 
100 0.5470 0.5825 0.5010 0.6369 
500 0.4984 0.5212 0.4726 0.5530 

1000 0.4949 0.5165 0.4705 0.5465 

0.425 
100 0.9536 0.9623 0.9470 0.9669 
500 0.9221 0.9183 0.9235 0.9046 

1000 0.9172 0.9102 0.9198 0.8928 

0.17 

0 
100 0.3459 0.3691 0.3101 0.4103 
500 0.3145 0.3295 0.2929 0.3544 

1000 0.3122 0.3263 0.2915 0.3500 

0.425 
100 0.6653 0.6595 0.6427 0.6765 
500 0.6603 0.6501 0.6402 0.6575 

1000 0.6592 0.6471 0.6396 0.6524 

0.28 

0 
100 0.2864 0.2936 0.2512 0.3259 
500 0.2702 0.2713 0.2437 0.2916 

1000 0.2689 0.2695 0.2430 0.2889 

0.425 
100 0.6377 0.6219 0.5841 0.6595 
500 0.6360 0.6141 0.5826 0.6439 

1000 0.6356 0.6118 0.5823 0.6399 

 
Despite increased CNT volume fractions from 

17.0* CNV  to 28.0* CNV , deflection can be reduced by 

using a proper CNT distribution. Also, Figure 5 
shows variations in the normalized deflection of the 
plates versus the waviness index for the FG-X type 
of distribution of CNTs, AR = 1000, and various val-
ues of CNT volume fractions. Increasing the CNT 
volume decreased the deflection values for the 
plates with straight or wavy CNTs. In most cases, the 
deflection was increased with an increased wavi-
ness index. 

To investigate the effect of the type of applied 
force on bending behaviors of these plates, consider 
square clamped nanocomposite plates subjected to 
a uniformed distribution load or a concentrated 
force with the same values of f0 = -1e5, with h/a = 

0.1, AR = 1000, and 17.0* CNV . Table 7 shows the 

non-dimensional deflection of these plates for elas-
tic foundation parameters of Kw = 0 or 100, and Ks = 
0 or 100, and for w = 0 or 0.425. The table shows 
that the concentrated forces and the wavy type of 
CNTs dramatically increased the deflection of the 
plate. Additionally, in wavy nanocomposite plates, 
UD distribution caused the largest value in the de-
flection parameter. Elastic foundations decreased 
the deflection of all plates.  

The effect of essential boundary conditions on 
the deflection of square and rectangular FG-CNTRC 
plates, subjected to uniform distributed force f0 = -
1e5, with the values Kw = 100, Ks = 10, w = 0.425, AR 

= 1000, and 17.0* CNV , was investigated in Table 8, 

where C, S, and F represented clamped, simply sup-
ported, and free edges. The table shows that the 
clamped plates have the smallest values of deflec-
tion, while the simply supported plates have the 
largest ones. Evidently, the deflection parameter 
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was dramatically increased by increasing the ratio 
of a/b from 1 to 3 because the plate nearly reveals 
the beam’s manners. Increasing the thickness of the 
plate increased the non-dimensional deflections q̂ , 

because of their definition, but the deflection was 
decreased by increasing the plate’s thickness.  

In the next example, the elastic foundation coef-
ficients of FG-CNTRC plates, subjected to uniform 
distributed load, are investigated.  

Figures 6 and 7 demonstrate the non-
dimensional deflection of FG-CNTRC plates versus 
the Winkler coefficient Kw, and shear coefficient Ks, 
respectively. These plates are square and clamped 
using an FG-X type CNT distribution, and with the 

values f0 =-1e5, w = 0.425, AR = 1000, 17.0* CNV , 

and h/a = 0.1. These figures revealed that increased 
foundation coefficients decreased the plates’ deflec-
tion, but the shear coefficient had a larger effect, 
particularly in the smaller values of the Winkler co-
efficient.  

 

 
Figure 5. Central normalized deflections q̂ , versus the waviness 

index in clamped square X-CNTRC plates, with the values AR = 
1000, Kw = 100, Ks =10, f0 =-1e5, and h/a = 0.1. 

 
 

 
Figure 6. Central non-dimensional deflections q̂ , versus Kw  in 

square clamped X-CNTRC plates, with the values f0  = -1e5, w = 

0.425, AR = 1000, 17.0* CNV , and h/a = 0.1. 

 
 

 
Figure 7. Central non-dimensional deflections q̂ , versus Ks in 

square clamped X-CNTRC plates, with the values f0 = -1e5, w = 

0.425, AR = 1000, 17.0* CNV , and h/a = 0.1. 

 

 

Table 7. Central non-dimensional deflections q̂ , in clamped, square FG-CNTRC plates with the values AR = 1000, 17.0* CNV , and h/a = 0.1 

Kw Ks w 
Uniform distributed force  Concentrated force 

UD FG-V FG-X FG-O  UD FG-V FG-X FG-O 

0 0 
0 0.3334 0.3496 0.3100 0.3768  3.4612 3.4922 3.3146 3.6275 

0.425 0.7595 0.7435 0.7335 0.7505  5.1815 5.0946 5.0442 5.1396 

100 100 
0 0.2267 0.2341 0.2157 0.2459  2.5988 2.6083 2.5241 2.6687 

0.425 0.3648 0.3611 0.3589 0.3626  3.1911 3.1607 3.1464 3.1730 

 

Table 8. Central non-dimensional deflections q̂ , in CNTRC plates with Kw = 100, Ks = 10, f0 = -1e5, w = 0.425, AR = 1000, and 17.0* CNV  

h/a b/a 
CCCC  CSCF  SSSS 

UD FG-X  UD FG-X  UD FG-X 

0.05 
1 0.5545 0.5345  0.9102 0.8332  1.4703 1.4081 
3 0.9980 1.0477  6.6235 6.5770  3.0439 3.1287 

0.1 
1 0.6592 0.6396  1.0440 0.9706  1.5315 1.4710 
3 1.1474 1.1933  6.6585 6.6150  3.1014 3.1826 

0.2 
1 1.0153 0.9959  1.4961 1.4344  1.7566 1.7017 
3 1.6705 1.7029  6.7670 6.7315  3.3130 3.3814 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

  

Figure 8. (a) xx , (b) yy ,  (c) xy  , (d) xz , and  (e) yz , square FG-CNTRC plates clamped along the thickness, with the values Kw 

= 100, Ks = 10, f0  = -1e5, w = 0.425, AR = 1000, 17.0* CNV , and h/a = 0.1. 

 
Finally, stress distributions of square nanocom-

posite plates clamped along the thickness of the 
plate are illustrated in Fig. 8 for plates with the val-
ues Kw = 100, Ks = 10, f0 = -1e5, w= 0.425, AR = 1000, 

17.0* CNV , and h/a = 0.1. CNT distribution had a 

significant effect on the stress distribution, and the 
values of normal stresses were more than the shear 
stress values. 

 
5.3. Free vibration analysis of FG-CNTRC plates 

Consider square clamped nanocomposite plates 
reinforced by wavy CNTs resting on a Pasternak 
foundation with the values Kw = 100, Ks = 10, and h/a 
= 0.1.  

Table 9 shows the frequency parameter ̂ , for 

the plates with different types of CNT distribution, 

and various values of CNT volume fraction *
CNV , as-

pect ratio, and waviness index. The frequency pa-
rameter was increased by increasing the CNT vol-
ume fraction and CNT aspect ratio, and by decreas-
ing the waviness index. This table reveals that the 
CNT waviness had the largest effect (even more 
than the CNT volume fraction), while the CNT aspect 
ratio had the smallest effect, particularly in its larger 
values, on the frequencies of FG-CNTRC plates. With 
the FG-X and FG-O CNT distribution types, the 
CNTRC plates showed the maximum and minimum 
values in the frequency parameter, respectively.  
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Table 9. Non-dimensional fundamental frequency ̂ , in 

clamped square plates with the values Kw = 100, Ks = 10, and h/a = 
0.1 

*
CNV  w AR UD FG-V FG-X FG-O 

0.12 

0 

100 16.4091 15.9619 17.0870 15.3134 

500 17.1010 16.7771 17.5304 16.3236 
1000 17.1542 16.8447 17.5649 16.4092 

0.425 
100 12.6534 12.5975 12.6980 12.5673 
500 12.8625 12.8890 12.8559 12.9806 

1000 12.8962 12.9446 12.8811 13.0626 

0.17 

0 

100 20.5661 19.9943 21.6430 19.0273 

500 21.4565 21.0409 22.1945 20.3333 

1000 21.5275 21.1309 22.2398 20.4479 

0.425 

100 15.1032 15.1681 15.3568 14.9845 

500 15.1631 15.2817 15.3910 15.2004 
1000 15.1757 15.3169 15.3990 15.2597 

0.28 

0 
100 22.2456 22.0692 23.7155 20.9892 
500 22.8240 22.8535 24.0347 22.0557 

1000 22.8716 22.9211 24.0630 22.1479 

0.425 
100 15.2542 15.4474 15.9190 15.0170 
500 15.2785 15.5516 15.9444 15.2017 

1000 15.2839 15.5810 15.9495 15.2491 

In the next example, the effects of the elastic founda-
tion coefficients were investigated on the square 
clamped nanocomposite plates, with values of AR = 

1000, 17.0* CNV , and h/a = 0.1. 

Table 10. Non-dimensional fundamental frequency ̂ , in 

clamped square plates with the values AR = 1000, 17.0* CNV , 

and h/a = 0.1 

Kw Ks w UD FG-V FG-X FG-O 

0 
0 

0 20.8588 22.4490 21.5944 19.7404 
0.425 14.1890 14.3402 14.4291 14.2778 

100 
0 24.9941 24.6572 25.6049 24.0851 

0.425 19.9084 20.0160 20.0734 19.9774 

100 
0 

0 21.0740 20.6684 20.8023 19.9675 
0.425 14.5020 14.6499 14.7370 14.5890 

100 
0 25.1741 24.8396 25.7806 24.2717 

0.425 20.1328 20.2393 20.2960 20.2012 

 
Table 10 displays the non-dimensional frequen-

cy parameters of these plates for elastic foundation 
parameter values of Kw= 0 or 100, Ks=0 or 100, and 
w = 0 or 0.425. This table reveals that the elastic 
foundation increased the frequency parameters of 
the plates, but the shear coefficient had a larger ef-
fect than the Winkler coefficient. 
 
 

 

Table 11. Non-dimensional fundamental frequency ̂ , in CNTRC plates with Kw = 100, K s= 10, w =  0.425, AR = 1000, and 17.0* CNV  

h/a b/a 
CCCC  CSCF  SSSS  FFFF 

UD FG-X  UD FG-X  UD FG-X  UD FG-X 

0.05 
1 16.7546 17.0581  11.1890 11.7203  10.1382 10.3576  4.4405 4.4398 
3 11.5422 11.3124  3.8505 3.8805  6.6867 6.6199  3.1906 3.1916 

0.1 
1 15.1757 15.3990  10.4140 10.8249  9.8516 10.0493  4.4217 4.4207 
3 10.7021 10.5348  3.8350 3.8630  6.5908 6.5289  3.1893 3.1902 

0.2 
1 11.9603 12.0720  8.6479 8.8533  9.0085 9.1504  4.3500 4.3482 
3 8.7779 8.7176  3.3025 3.3217  3.6705 3.6903  3.1843 3.1850 

 
Finally, the effects of the essential boundary 

conditions on the frequencies of square and rectan-
gular FG-CNTRC plates, with the values Kw = 100,    

Ks = 10, w = 0.425, AR = 1000, and 17.0* CNV , were 

investigated and are displayed in Table 11. This ta-
ble reveals that the clamped plates had the largest 
values for the frequency parameters, while the free 
plates had the smallest values. The frequency pa-
rameter values for square plates were also more 
than the values for the rectangular plates. 

6. Conclusions 
In this paper, a mesh-free method, based on 

FSDT, was developed to analyze static and free vi-
bration of FG nanocomposite plates, reinforced by 
wavy CNTs resting on a Pasternak elastic founda-
tion. Material properties of the CNTRC plates were 
assumed to be graded within the thickness of the 
plate and estimated by an extended rule of mixture. 
Therefore, the effects of the aspect ratios, waviness 
index, distribution pattern, volume fraction of CNTs, 
boundary conditions, and dimensions of the plates, 
were investigated regarding the static and vibra-
tional behaviors of the FG-CNTRC plates.  

 
The following results were obtained: 

 The developed mesh-free method had an excel-
lent convergence and accuracy in both the static 
and free vibration analysis of FG-CNTRC plates. 

 The waviness and distribution pattern of CNTs 
had a significant effect on the static and vibra-
tional behaviors of FG-CNTRC plates, even more 
than the effect of the CNT volume fractions. 

 The aspect ratio of CNTs had a small effect on the 
static and vibrational behaviors of FG-CNTRC 
plates, particularly at its larger values. 

 In most CNT distributions, FG-X and FG-O 
showed the best and worst reinforcement behav-
iors, respectively.  

 With the same values, a concentrated force led to 
more deflection than a uniform distributed force.  

 The shear coefficient of an elastic foundation had 
a larger effect on the mechanical behaviors of 
FG-CNTRC plates than the Winkler coefficient. 

 The values of normal stresses increased more 
than the values of shear stresses. 
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