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Abstract

When one solves differential equations, modeling physical phenomena, it is of great importance to
take physical constraints into account. More precisely, numerical schemes have to be designed such
that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for
positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method)
positivity is not ensured when applied to the inhomogeneous linear systems and the same result is
regained on nonlinear positivity for this method. Here we mean by positivity that the nonnegativity
of the components of the initial vector is preserved. Nonstandard finite differences (NSFDs) schemes
can improve the accuracy and reduce computational costs of traditional finite difference schemes. In
addition to NSFDs produce numerical solutions which also exhibit essential properties of solution.
In this paper, we investigate the positivity property for nonstandard RK3 method when applied
to the numerical solution of special nonlinear initial value problems (IVPs) for ordinary differential
equations (ODEs). We obtain new results for positivity which are important in practical applications.
We provide some numerical examples to illustrate our results.
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1. Introduction

Systems of partial differential equations (PDEs) and ordinary differential equations (ODEs) are used
extensively in the modeling of many physical, biological and economic applications. They constitute

Email address: muhammad.mehdizadeh@gmail.com (Mohammad Mehdizadeh Khalsaraei)

Received: December 2014 Revised: May 2015

http://dx.doi.org/10.22075/ijnaa.2016.480


38 Mehdizadeh Khalsaraei

a central component in applied mathematics and their numerical simulations are fundamental im-
portance in gaining the correct qualitative and quantitative information on the systems. Numerical
methods based on finite difference approximations, Taylor series expansion, and interpolation, such
as Euler, Runge-Kutta and Adams methods are widely used, e.g, [4, 5]. Traditionally, important
requirements in this context are, the investigation of the consistency of the discrete scheme with the
original differential equation and linear stability analysis for problems with smooth solutions. These
requirements are important, because they guarantee convergence of the discrete solution to the exact
one, but the essential qualitative properties of the solution are not transferred to the numerical solu-
tion. Thus, the stated disadvantage might be catastrophic. One way of avoiding this disadvantage is
to employ finite difference schemes that are nonstandard in the sense of Mickens’ [1, 15] definition.
Nonstandard finite difference techniques were developed empirically for solving practical problems in
applied sciences and in engineering, e.g., [9]. As mentioned above one of the main advantages of the
NSFDs that in addition to the usual properties of consistency, stability and hence convergence, they
produce numerical solutions which also exhibit essential properties of solution. Special nonlinear
stability properties indicated by fixed points and their stability, oscillatory, conservation of energy,
positivity, boundedness, and elementary stability, have received extensive attention in the design of
qualitatively stable NSFDs[8, 9, 10, 16]. In this paper we deal with the numerical solution (using
NSFD schemes) of initial value problems, for positive first-order and systems of ODEs, which can be
written in the form

d

dt
U(t) = F (U(t)), (t ≥ 0), U(0) = U0, (1.1)

where U may be a single function or a vector of functions of length k mapping [t0, T )→ Ck and the
corresponding F a single function or a vector of functions of length k mapping ([t0, T ), Ck) → Ck.
Discretization of the continuous differential equation, or beginning instead with a difference equation,
we define tn = t0 + n∆t, where ∆t is a positive step size, and say that the discretized version of the
function U at time tn is Un ≈ U(tn). Then the discretized version of Eq.(1.1) becomes

D∆tUn = Fn(F,Un), (1.2)

where D∆tUn represents the discretized version of d
dt
U(t) and Fn(F,Un) approximates F (U(tn)) at

time tn. We define the nonstandard one-step finite-difference method as follows.

Definition 1.1. (Anguelov and Lubuma [1]) Method (1.2) is called a nonstandard finite-difference
method if at least one of the following conditions is met:
• In the discrete derivatives D∆tUn the traditional denominator ∆t is replaced by a nonnegative
function ϕ(∆t) such that

ϕ(∆t) = ∆t+O(∆t2) as 0 < ∆t→ 0. (1.3)

• Nonlinear terms in F (U(t)) are approximated in a nonlocal way, i.e. by a suitable function of
several points of the mesh.

There are many problems of practical interest that can be medelled by positive ODEs. For
example, in electrical engineering, where the charge transport in semiconductor devices is usually
described by a convection-diffusion equation. Here the charge transport is described in terms of charge
carrier densities, which should be non-negative. Similar reasoning holds for the modeling of chemical
reactions or semi-discrete form of advection-diffusion equations. Also, in financial applications e.g.
the computation of the fair price of an option, it is a natural demand that the resulting numerical
approximations, should be non-negative. Further more, a negative value may cause under shoots
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or over shoots near a steep gradient. Therefor, we need to construct positivity preserving schemes
that avoid unrealistic negative values for the solution. One possibility are NSFDs. As our numerical
method, we consider the nonstandard RK3 method,

Un1 = Un,
Un2 = Un + 1

3
ϕ(∆t)F (tn, Un1),

Un3 = Un + 2
3
ϕ(∆t)F (tn + 1

3
ϕ(∆t), Un2)

Un+1 = Un + ϕ(∆t)(1
4
F (tn, Un1) + 3

4
F (tn + 2

3
ϕ(∆t), Un3)).

(1.4)

In the literature, we can find several papers devoted to discussing positivity property (e.g., [3,
6, 7, 8, 9, 11, 14, 18]). Positivity results have been presented for some Runge-Kutta methods by
Hundsdorfer et al[7]. Based on these results, with standard RK3 method positivity is not ensured
when applied to the inhomogeneous linear systems and the same result is regained on nonlinear
positivity for this method. Usually, step size coefficients γ are determined such that monotonicity, in
the sense of mentioned in [8, 9, 17, 19], is present for all ∆t with 0 < ∆t ≤ γτ0 (τ0 > 0 is a maximal
step size such that ‖v + ∆tF (t, v)‖ ≤ ‖v‖ for all t, 0 < ∆t ≤ τ0 and v ∈ Rm). General monotonicity
of Runge-Kutta methods presented in [17] shows that the maximal step size coefficient γ for standard
RK3, is equal to 0. Monotonicity-preserving methods, can prevent the occurrence of negative values
where even very small negative values are unacceptable, as for example, in the advective transport
of chemical species see e.g. [2]. On the other hand, monotonicity with step size coefficient γ implies
positivity with the same step size coefficient, see [11].

Applying the nonstandard RK3 method to special nonlinear ODEs (positive semi-discrete systems
arising 1D and 2D advection test problems and Bergers’ equation with limited third-order upwind-
biased spatial discretization), it is observed that the stepsize restriction here, is comparable to the
stepsize restriction for the explicit trapezoidal rule and explicit midpoint method with respect to
positivity(see e.g. [12]). Such a result will be confirmed in Figures 1-3. From this practical point of
view, the question arises whether it is theoretically possible to have positivity preservation for the
nonstandard RK3 method. To answer this question, nonstandard RK3 is applied to a special ODEs,
and some results are achieved theoretically that coincide with numerical experiments. Here, we focus
on positivity and for nonstandard RK3.

In the second section, general positivity results are presented for standard RK3 method. In the
third section, the main positivity results are obtained for nonstandard RK3 method. The numerical
results obtained are then compared in fourth section with respect to positivity. Both one and two-
dimensional linear scalar advection equations and Bergers’ equation are used as test cases.

2. General results on positivity for RK3 method

In this section, we study the general positivity for RK3 method. In many papers, one starts from
an assumption about F which, τ0 ≥ 0, to be the maximal step size such that positivity holds for the
forward Euler method, i.e.,

U + ∆tF (t, U) ≥ 0 (for all t and U ≥ 0),

whenever 0 < ∆t ≤ τ0 and U ∈ Rm. As we can see in [7], diagonally implicit Runge-Kutta methods
can be written as follows:

vi =
∑i−1

j=0

(
pij + qij∆tF (tn + cj+1∆t, vj)

)
+ si∆tF (tn + ci+1∆t, vi),

v0 = Un,
(2.1)
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for i = 1, . . . , s, and finally set Un+1 = vs. Here pij, qij and ci are parameters defining the method.
If
∑i−1

j=0 pij = 1 and qs = 0, this is just another way of writing the s-stage diagonally implicit form
of general Runge-Kutta method. If si = 0 for all indices i, the method is explicit. This form is
theoretically convenient because the whole process in Runge-Kutta methods is written in terms of
linear combinations of scaled forward and backward Euler steps.

We shall determine the step size coefficients γ, such that the positivity is valid for (2.1) under
the step size restriction ∆t ≤ γτ0. Following an idea of Shu-Osher [18] if all parameters pij, qij and
si with 0 ≤ j < i ≤ s are non-negative, then method (2.1) will be positive under the step size
restriction ∆t ≤ min0≤j<i≤s(pij/qij)τ0. Since RK3 rule can not be written as convex combinations
of Euler steps, with non-negative coefficients pij, qij, therefore, we have an empty positivity interval
(γ = 0) for this method . A proof for the non-existence of coefficients pij, qij ≥ 0 is given in [18].

General monotonicity results have been obtained in [17]. In that paper it has been shown that
the obtained step size coefficient (γ = 0) is necessary for monotonicity in the maximum norm. It
follows that the Shu-Osher form (2.1) is optimal.

3. Main results

In this section, we obtain the largest step size for nonstandard RK3 method for which the corre-
sponding numerical approximations are non-negative (component-wise non-negative) with arbitrary
non-negative initial vector. The new results are determined, whenever the underlying ODE possesses
the related positivity preserving property. Let us consider

U ′i =
si
(
U(t)

)
∆x

(
Ui−1(t)− Ui(t)

)
, i = 1, 2 . . . ,m, (3.1)

with the nonlinear function si(U) satisfying

si(U) ≥ 0 for any vector U, (3.2)

and ∆x = 1
m
, U = [U1, U2, . . . , Um]T , U0 = Um. This special semi-discrete system arises from a linear

advection problem after discretization using a flux limiter. Assuming (3.2) and Lipschitz continuity
for si in (3.1) with respect to U , this nonlinear system is positive (see [11]).

In the following we assume that there is a maximal step size τ0 > 0 under which positivity holds
for the forward Euler method,

U + ϕ(∆t)
si(U)

∆x

(
Ui−1 − Ui

)
≥ 0, for all 0 < ∆t ≤ τ0, U ≥ 0,

and we shall determine γ such that the positivity is valid for (1.4) under the step size restriction

∆t ≤ γτ0. Applying of (1.4) to (3.1) with ζ li = ϕ(∆t) si(Ul)
∆x

, l = n1, n2, n3 and i = 1, 2, . . . ,m, gives

(Un2)i = Un
i + 1

3
ϕ(∆t) si(Ul)

∆x
(Un

i−1 − Un
i ) = Un

i + 1
3
ζn1
i (Un

i−1 − Un
i ),

(Un3)i = Un
i + 2

3
ϕ(∆t) si(Ul)

∆x
((Un2)i−1 − (Un2)i)

= 2
9
ζn1
i−1ζ

n2
i Un

i−2 +
(

2
3
ζn2
i − 2

9
ζn2
i ζn1

i−1 − 2
9
ζn2
i ζn1

i

)
Un
i−1

+
(
1− 2

3
ζn2
i + 2

9
ζn2
i ζn2

i

)
Un
i ,
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where Un
i ≈ U(xi, tn) as mentioned above is the fully discrete approximation. Therefore, we have

Un+1
i = Un

i +
1

4
ζn1
i (Un

i−1 − Un
i ) +

3

4
ζn3
i

(
(Un3)i−1 − (Un3)i

)
,

after substituting and by rearranging

Un+1
i =

(
1− 1

4
ζn1
i − 3

4
ζn3
i

(
1− 2

3
ζn2
i + 2

9
ζn2
i ζn1

i

))
Un
i

+
(

1
4
ζn1
i + 3

4
ζn3
i

(
1− 2

3
ζn2
i−1 + 2

9
ζn2
i−1ζ

n1
i−1 − 2

3
ζn2
i + 2

9
ζn2
i ζn1

i−1 + 2
9
ζn2
i ζn1

i

))
Un
i−1

+3
4
ζn3
i

(
2
3
ζn2
i−1 − 2

9
ζn2
i−1ζ

n1
i−2 − 2

9
ζn2
i−1ζ

n1
i−1 − 2

9
ζn2
i ζn1

i−1

)
Un
i−2

+1
6
ζn3
i ζn1

i−2ζ
n2
i−1U

n
i−3.

(3.3)

Theorem 3.1. Sufficient for scheme (1.4) applied to (3.1), to be positive is 0 ≤ ϕ(∆t) si(U)
∆x
≤ γ, γ =

1, for all U ∈ Rm and i = 1, 2, . . . ,m.

Proof . From (3.3) it is enough to show that

A = (1− 2
3
ζn2
i + 2

9
ζn2
i ζn1

i ) ≥ 0,

B = (1− 2
3
ζn2
i−1 + 2

9
ζn2
i−1ζ

n1
i−1 − 2

3
ζn2
i + 2

9
ζn2
i ζn1

i−1 + 2
9
ζn2
i ζn1

i ) ≥ 0,

C = (2
3
ζn2
i−1 − 2

9
ζn2
i−1ζ

n1
i−2 − 2

9
ζn2
i−1ζ

n1
i−1 − 2

9
ζn2
i ζn1

i−1) ≥ 0.

(3.4)

Considering A and B as functions of multi-variables, our goal is to find the global minimum of these
three functions. Since the functions A and B are algebraic, to find critical points, we set the partial
derivatives equal to 0 and solved for variables. It can be shown that there is no interior critical point
and the global minimum occurs only at corner points. After evaluation functions A and B one can
easily find that the global minimum is 0 and, therefore this concludes the sufficiency of γ = 1 for A
and B to be non-negative. It is fair to say that for the last inequality in (3.4) we have no formal
proof. But, we have conclusive numerical evidence: we computed values Un with the Math Toolbox
software of Matlab and found for random independent uniform (0, 1) variables ζ li , l = n1, n2, n3, that
Un rounded to 16 decimal digits equals precisely 1 (for final time tf = 5). Combining this result with
(A,B ≥ 0) conclude the theorem. �

4. Test cases

In this section we perform numerical experiments to demonstrate the performance of the classical
fourth-order method with respect to positivity developed in the previous section. Several test cases
were run to assess the performance of this positivity-preserving flux-limited scheme. The cases in-
clude one and two dimensional linear advection test problems and Bergers’ equation.

Test case1: 1D scalar linear advection equation
First we have considered the scalar linear advection equation in one dimension

Ut + Ux = 0, 0 < x < 1, t > 0,
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with a periodic boundary condition. We have discretized in space on uniformly distributed grid
points xi = i∆x, and ∆x = 1

500
by means of the flux form

U ′i(t) =
1

∆x

(
Fi− 1

2

(
t, U(t)

)
− Fi+ 1

2

(
t, U(t)

))
, Fi± 1

2

(
t, U
)

= Ui± 1
2

i = 1, 2, . . . , 500,

where the values Ui±1/2 are defined at the cell boundaries xi±1/2. With the third-order upwind-biased
flux we have

Fi+ 1
2
(t, U) =

1

6

(
− Ui−1 + 5Ui + 2Ui+1

)
=
(
Ui + (

1

3
+

1

6
θi)(Ui+1 − Ui)

)
, (4.1)

where θi is the ratio

θi =
Ui − Ui−1

Ui+1 − Ui

i = 1, 2, . . . , 500.

The general discretization (4.1) written out in full gives

U ′i ==
1

∆x

(
1− ψ(θi−1) +

1

θi
ψ(θi)

)(
Ui−1 − Ui

)
i = 1, 2, . . . , 200,

with the limiter function ψ, here

ψ(θ) = max
(

0,min
(
1,

1

3
+

1

6
θ, θ
))
. (4.2)

This limiter function was introduced by Koren [10]. The numerical solution for method (1.4) is
shown in Figure 1, with ϕ(∆t) = 1−e−∆t and block initial profile: U0(x, t) = 1 for 0.3 ≤ x ≤ 0.7 and
0 otherwise. Our final time is tf = 1. It has used the number steps N = 400, 450, 500, 550, 600 and
this leads to values of ∆t ' 0.0025, 0.0022, 0.002, 0.0018, 0.0018 and the Courant (CFL) numbers ν =
∆t
∆x

= 500
N
' 1.25, 1.1111, 1, 0.9091, 0.8333. It can be seen easily that nonstandard RK3 performs well

up to CFL numbers =1 but it’s results quickly deteriorate when applied with larger CFL numbers.
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Figure 1: Numerical solutions obtained by nonstandard RK3. From left, with N=400, 425, 450, 500 time steps.

Table 1 gives some numerical solutions with ϕ(∆t) = 1 − e−∆t and two initial profiles, viz. the
peaked function U0(x, t) = sin100(πx) and above mentioned block function. Furthermore, in order
to characterize positivity, the value of the smallest component of the solutions is given. The corre-
sponding biggest component of the solutions shows that the positivity may also imply a maximum
principle (mini U

0
i ≤ Un

i ≤ maxi U
0
i for all n ≥ 1). Practical experience indicates that the smallest

number N is needed to achieve positivity with the peaked function, for nonstandard RK3, is equal to
500. In the case of block function, we see little difference for this method with respect to positivity.
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Table 1: Results for the scalar linear advection. N denotes the number of time steps.

1D advection with smooth profile 1D advection with non-smooth profile

N mini,n(Un
i ) maxi,n(Un

i ) mini,n(Un
i ) maxi,n(Un

i )

400 -0.0256e+000 1.0309e+000 -0.1104e+000 1.1104e+000
450 1.3509e-203 1.0002 -0.0390 1.0391
500 1.3349e-203 0.9998 -0.0219 1.0219
550 1.3461e-203 0.9995 -0.0181 1.0181
600 1.3723e-203 0.9995 0.0063 1.0063

With the block function nonstandard method, is free from negative values for N > 550. Considering,
an approximate solution positive if the smallest component is greater than −10−25, nonstandard
method perform well up to CFL numbers = 1 but their results quickly deteriorates when applied
with larger and larger CFL numbers.

Test case 2: Scalar Burgers’ equation
The second test case consists of the scaler Burgers’ equation

∂

∂t
U(x, t) +

∂

∂x

(1

2
U2(x, t)

)
= 0 t ≥ 0, −∞ < x <∞,

with the initial conditions set to:

U(x, 0) =

{
1 0.3 ≤ x < 0.7,
0 otherwise.

With the third-order upwind-biased flux we have

Fi+ 1
2
(t, U) =

1

12
(−U2

i−1 + 5U2
i + 2U2

i+1) =
1

2
(U2

i + (
1

3
+

1

6
ηi)(U

2
i+1 − U2

i ), (4.3)

where ηi is the ratio

ηi =
U2
i − U2

i−1

U2
i+1 − U2

i

i = 1, 2, . . . , 500. (4.4)

The general discretization (4.3) written out in full gives

U ′i =
1

2∆x

(
1− ψ(ηi−1) +

1

ηi
ψ(ηi)

)
(U2

i−1 − U2
i ) i = 1, 2, . . . , 500,

with the same limiter function ψ in (4.2). It is fair to say that for Un+1 ≥ 0, we have no formal proof
(our interest for future research), but we have conclusive numerical evidence (see Table 2) which
shows that positivity holds for (1.4). Our final time is tf = 0.25.

Also, the resulting nonlinear semi-discrete system (4.4) was integrated in time with the classical
fourth-order method and Courant number ∆t

∆x
equal to 1

2
. We get a nice total variation diminishing

(TVD) property in the sense that

‖Un+1‖TV ≤ ‖Un‖TV , n = 0, 1, 2, . . . .

Here for vectors v = (vi) the seminorm ‖v‖TV = TV (v) is defined by

TV (v) =
∑
i

| vi+1 − vi | .
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Table 2: Results for Burgers’ equation. N denotes the number of time steps.

Burgers’ equation with smooth profile Burgers’ equation with non-smooth profile

N mini,n(Un
i ) maxi,n(Un

i ) mini,n(Un
i ) maxi,n(Un

i )

150 -2.9515e+181 2.7251e+181 -Inf +Inf
175 0.0000 1.3506 -4.4119e+089 5.0665e+089
200 0.0000 1.0775 0.0000 1.2106
225 0.0000 1.0558 0.0000 1.1306
250 0.0000 1+3e-006 0.0000 1+6e-005

TVD assures that global undershoot and overshoot cannot occur. The evolution of the total variation
of UN (‖ UN ‖TV , N = T

∆t
) is shown in Figure 2 with ϕ(∆t) = 1 − e−∆t for the output times

T = 1, 2, . . . , 15, revealing a decreasing. On several occasions it has been mentioned that absence of
oscillations which are localized under and overshoots implies the positivity (see e.g. [7, 12, 13]).
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t

T
V

(U
n
)

Figure 2: Values of ‖ UN ‖TV for T = 1, 2, . . . , 5.

Test case 3: 2D advection equation
In the third test case, we deal with the numerical solution of the 2-dimensional advetion equation,

defined by
Ut + aUx + bUy = 0,

on the unit square with constant a, b = 1. The initial profile is a cylinder with height 1, centered at
(0.25, 0.25) with radius 0.1. Our final time is tf = 0.5, and at the inflow boundaries, homogeneous
Dirichlet conditions are imposed. Spatial discretization with one-dimensional limiters are also com-
mon for two-dimensional advection problem in two spatial directions. Therefore, the semi-discrete
system here can be written as

U ′ij(t) = αij(U(t))
(
Ui−1,j(t)− Uij(t)

)
+ βij(U(t))

(
Ui,j−1(t)− Uij(t)

)
,

with nonlinear functions αij,βij satisfying

0 ≤ αij(U) ≤ 2

∆x
, 0 ≤ βij(U) ≤ 2

∆y
,
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where ∆x and ∆y being the mesh width in the x-direction and y-direction, respectively. For more
details see [6, p. 307]. In Figure 3, some numerical results have been shown on a 50×50 grid for the
classical fourth-order method. For the solution the qualitative behaviour and temporal accuracy is
good with this method for the CFL numbers ≤ 0.25. Furthermore, we found that there are no global
undershoots or overshoots for this Runge-Kutta method. Our final time is taken as tf = 0.5 and
ϕ(∆t) = 1− e−∆t.
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Figure 3: Advection for the cylinder profile on a 50×50 grid. From left, solutions for the nonstandard RK3, time
stepping with 25, 35, 50, 80 time steps, respectively. Corresponding Courant numbers are 1, 0.7, 0.5, 0.3. Contour
lines at levels 0.1, 0.2,. . .,0.9.

5. Conclusion

Schemes preserving the positivity are great importance in practice. Such schemes can be employed
to prevent the occurrence of negative values where even very small negative values are unacceptable.
In Theorem 1, we have derived sufficient condition for the nonstandard RK3 method with respect to
positivity, for the model Ut + Ux = 0, with the limiter (4.2), spatial periodicity U(x± 1, t = U(x, t)
and two initial profiles, viz. the smooth function U0(x, t) = sin100(πx) and the nonsmooth function
U0(x, t) = 1 for 0.3 ≤ x ≤ 0.7 and 0 otherwise. Also, we studied the sufficient condition on
positivity for the nonstandard RK3 method with Bergers’ equation and 2D advection test equation,
exprimentally . We think, the necessity of non-zero interval of positivity, γ > 0 can be demonstrated.
This is still being investigated and is not yet ready for reporting. Further, a future work can be to
establish the TVD property of nonstandard RK3 method, since as mentioned in fourth section we
have numerical evidences show that this method is free of spurious oscillations around discontinuities,
when applied to the special nonlinear positive systems.
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