
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,942 |
تعداد دریافت فایل اصل مقاله | 7,656,400 |
Stable numerical solution of an inverse coefficient problem for a time fractional reaction-diffusion equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 28، دوره 12، شماره 1، مرداد 2021، صفحه 365-383 اصل مقاله (1.64 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4810 | ||
نویسندگان | ||
Afshin Babaei* 1؛ Seddigheh Banihashemi2؛ Javad Damirchi3 | ||
1Department of Mathematics, Faculty of Mathematical sciences, University of Mazandaran, P.O. Box: 47416-95447, Babolsar, Iran. | ||
2Department of Applied Mathematics, University of Mazandaran, P.O. Box: 47416-95447, Babolsar, Iran | ||
3Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran | ||
تاریخ دریافت: 19 مهر 1396، تاریخ بازنگری: 05 تیر 1399، تاریخ پذیرش: 26 تیر 1399 | ||
چکیده | ||
In this paper, an inverse problem of determining an unknown reaction coefficient in a one-dimensional time-fractional reaction-diffusion equation is considered. This inverse problem is generally ill-posed. For this reason, the mollification regularization technique with the generalized cross-validation criteria will be employed to find an equivalent stable problem. Afterward, a finite difference marching scheme is introduced to solve this regularized problem. The stability and convergence of the numerical solution are investigated. In the end, some numerical examples are presented to verify the ability and effectiveness of the proposed algorithm. | ||
کلیدواژهها | ||
Inverse problem؛ Time fractional reaction-diffusion equation؛ Caputo's fractional derivative؛ Mollification؛ Marching scheme | ||
مراجع | ||
[1] A. Aldoghaither, D.Y. Liu and T.M. Laleg-Kirati, Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation, SIAM J. Sci. Comput. 37 (2015) 2813–2839. [2] S.R. Arridge and J.C. Schotland, Optical tomography: forward and inverse problems, Inverse Probl. 25 (2009) 123010. [3] A. Babaei and S. Banihashemi, A stable numerical approach to solve a time-fractional inverse heat conduction problem, Iran J. Sci. Technol. Trans. Sci. 42 (2018) 2225–2236. [4] A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction–diffusion–convection problem, Numer. Methods Part. Differ. Equ. 35 (2018) 976–992. [5] D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo, Fractional Dynamics and Control, Springer, New York, 2012. [6] J.V. Beck, B. Blackwell and C.R. Clair, Inverse Heat Conduction: Ill-Posed Problems, New York, 1985. [7] A.S. Chaves, A fractional diffusion equation to describe Levy flights, Phys. Lett. A 239 (1998) 13–16. [8] F.F. Dou and Y.C. Hon, Numerical computation for backward time-fractional diffusion equation, Eng. Anal. Boundary Elem. 40 (2014) 138–146. [9] D.N. Ghosh Roy and L.S. Couchman, Inverse Problems and Inverse Scattering of Plane Waves, Academic Press, New York, 2002. [10] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini and P. Paradisi, Fractional diffusion: probability distributions and random walk models, Phys. A 305 (2002) 106–112. [11] B.I. Henry and S.L. Wearne, Fractional reaction–diffusion, Phys. A 276 (2000) 448–455. [12] H. Jafari, K. Sayevand, H. Tajadodi and D. Baleanu, Homotopy analysis method for solving Abel differential equation of fractional order, Cent. Eur. J. Phys. 11 (2013) 1523–1527. [13] B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl. 31 (2015) 035003. [14] B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Probl. 28 (2012) 075010. [15] Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation, Inverse Probl. 29 (2013) 065019. [16] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004) 65–77. [17] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000) 1–77. [18] D.A. Murio, Mollification and space marching, K. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press, Boca Raton, FL, (2002). [19] D.A. Murio, On the stable numerical evaluation of Caputo fractional derivatives, Comput. Math. Appl. 51 (2006) 1539–1550. [20] D.A. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. Appl. 56 (2008) 2371–2381. [21] K.B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974. [22] V. Penenko, A. Baklanov, E. Tsvetova and A. Mahura, Direct and inverse problems in a variational concept of environmental modeling, Pure Appl. Geophys. 169 (2012) 447–465. [23] C.M.A. Pinto, A.R.M. Carvalho, A latency fractional order model for HIV dynamics, J. Comput. Appl. Math. 312 (2017) 240–256. [24] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [25] M. Prato and L. Zanni, Inverse problems in machine learning: an application to brain activity interpretation, J. Phys. Conf. Ser. 135 (2008) 012085. [26] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000) 376–384. [27] K. Seki, M. Wojcik and M. Tachiya, Fractional reaction–diffusion equation, J. Chem. Phys. 119 (2003) 2165–2174. [28] X. Song, G. Zheng and L. Jiang, Recovering the reaction coefficient for two-dimensional time fractional diffusion equations, (2017),- arXiv:1707.00671 [math.NA]. [29] C. Sun, G. Li, and X. Jia, Simultaneous inversion for the diffusion and source coefficients in the multi-term TFDE, Inverse Probl. Sci. Eng. 25 (2017) 1–21. [30] A. Taghavi, A. Babaei, A. Mohammadpour, A stable numerical scheme for a time-fractional inverse parabolic equation, Inverse Probl. Sci. Eng. 25 (2017) 1474–1491. [31] D. Trucu, D.B. Ingham and D. Lesnic, Inverse space-dependent perfusion coefficient identification, J. Phys. Conf. Ser. 135 (2008) 012098. [32] V.K. Tuan, Inverse problem for fractional diffusion equation, Fract. Calc. Appl. Anal. 14 (2011) 31–55. [33] V.K. Tuan and N.S. Hoang, An inverse problem for a multidimensional fractional diffusion equation, Anal. 36 (2016) 107–122. [34] N.H. Tuan, L.D. Long, V.T. Nguyen and T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source, Inverse Probl. Sci. Eng. 25 (2017) 1367–1395. [35] T. Wei and Z.Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional diffusion equation, Eng. Anal. Boundary Elem. 37 (2013) 23–31. [36] L. Yan and F. Yang, Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems, Comput.Math. Appl. 67 (2014) 1507–1520. [37] X.J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher LLC, New York, USA, 2012. [38] G.H. Zheng and T. Wei, Spectral regularization method for the time fractional inverse advection-dispersion equation,J. Comput. Appl. Math. 233 (2010) 2631–2640. [39] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. | ||
آمار تعداد مشاهده مقاله: 15,596 تعداد دریافت فایل اصل مقاله: 580 |