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Abstract

In this paper, locally topologically transitive (or J-class) C0-semigroups of operators on Banach
spaces are studied. Some similarity and differences of locally transitivity and hypercyclicity of C0-
semigroups are investigated. Next the Kato’s limit of a sequence of C0-semigroups are considered
and their locally transitivity relations are studied.
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1. Introduction and preliminaries

A continuous linear operator T on a Banach space X is called hypercyclic if it has a hypercyclic
vector x ∈ X, i.e. there is a vector x ∈ X such that orb(T, x) := {T nx : n ∈ N0} is dense
in X. In [13], Kitai, and in [9] Gethner and Shapiro gave independently a sufficient condition for
hypercyclicity which is useful in applications. Using Baire’s category theorem, it can be shown that a
bounded linear operator T on a separable Banach space is hypercyclic if and only if it is topologically
transitive, i.e. for every two open, non-empty subsets U, V of X there is a natural number n such
that U ∩ T n(V ) ̸= ∅.

An operator T ∈ B(X), the space of all bounded linear operators on X, is called a J-class
operator, if there exists 0 ̸= x ∈ X such that JT (x) = X, where

JT (x) : = {y ∈ X : there exists a strictly increasing sequence

of natural numbers (kn)n and a sequence

(xn)n in X such that xn → x and T kn(xn) → y}.
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The vector x is said to be a J-class vector. It is clear that topologically transitive operators are
J-class.
Many facts about hypercyclic and J-class operators are investigated by G. Costakis and A. Manoussos
in [4] and [3]. For more properties of J-class operators, one can see [14, 15] and [19].
In the continuous case, a one-parameter family T = {T (t)}t≥0 of continuous linear operators on X,
is a strongly continuous semigroup (or C0-semigroup) of operators, if T (0) = I, T (t)T (s) = T (t+ s),
for all t, s ≥ 0, and limt→0 T (t)x = x for all x ∈ X. The operator A : D(A) ⊆ X → X defined

by Ax = limt→0
T (t)x−x

t
is called the generator of the C0-semigroups T , where D(A) = {x ∈ X :

limt→0
T (t)x−x

t
exists }. For further information about C0-semigroups we refer the reader to the books

[8, 16].
A C0-semigroup T = {T (t)}t≥0 is said to be hypercyclic if orb(T, x) := {T (t)x : t ≥ 0} is dense

in X for some x ∈ X. Desch, Schappacher and Webb in [6] initiated the investigation of hypercyclic
semigroups. So far, several specific examples of hypercyclic strongly continuous semigroups have been
studied, see for example [1, 2, 6, 7, 10, 11, 17]. As in the single operator case, the first example of
a hypercyclic C0-semigroup was given by Rolewicz [18], in 1969. J-class C0-semigroups of operators,
also called topologically transitive C0-semigroups, where else studied by Nasseri in [14].

Definition 1.1. A C0-semigroup {T (t)}t≥0 on a normed space X is called J-class if there exists
0 ̸= x ∈ X such that JT (x) = X, where

JT (x) : = {y ∈ X : there exist a strictly increasing sequence

(tn)n ⊆ [0,∞) with tn → ∞ and a sequence

(xn)n in X such that xn → x and T (tn)(xn) → y}.

Trivially if there exists t0 ≥ 0 such that T (t0) is J-class, then {T (t)}t≥0 is also a J-class C0-semigroup.
Put

AT := {x ∈ X : JT (x) = X}.

By Theorem 4.1.9 [14], AT and JT (x) are closed subsets of X.
Using proof similar to the proof of Proposition 4.1.8 of [14], one can see that

JT (x) = {y ∈ X : for every neighborhood Uof x and neighborhood

V of y there exists t > 0 such that T (t)U ∩ V ̸= ∅}.

Remark 1.2. i) For a C0-semigroup {T (t)}t≥0, if ∥T (t)∥ ≤ 1 for all t ≥ 0, i.e. T is contraction
C0-semigroup, then T is not J-class. Indeed if in this case, there exists x ∈ X such that JT (x) = X,
then with M = ∥x∥+1 and any y ∈ X, there exist a sequence (xn) ⊆ X and and a sequence (tk) ⊆ R
such that xk → x and T (tk)xk → y. For large enough k we know

∥xk∥ ≤ ∥xk − x∥+ ∥x∥ < 1 + ∥x∥ = M.

Thus ∥T (tk)xk∥ ≤ ∥xk∥ ≤ M , which implies that ∥y∥ ≤ M and this is a contradiction.
ii) If X is a finite dimensional Banach space then one can prove that there is no J-class C0-semigroup
on X. Indeed this follows from the fact that C0-semigroups on finite dimensional spaces are of the
form exp(tA) with A bounded. If the C0-semigroup exp(tA) is J-class, then the spectrum σ(A) of
A has to intersect the unit circle. But in finite dimensional case σ(A) = σp(A), where σp(A) is the
point spectrum of A. This implies that σp(A

∗) intersect the unite circle. This together with [14]
Proposition 4.1.12 turn to a contradiction (This part is contributed by A. B. Nasseri).
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In this paper, we study properties of J-class C0-semigroups. In Section 2, some elementary properties
of J-class C0-semigroups are studied. In particular, by some examples, it is proved that many prop-
erties of hypercyclic C0-semigroups are not valid for locally topologically transitive C0-semigroups.
In Section 3, the Kato’s limit of C0-semigroups and their locally topologically transitivity properties
are studied.

2. J-class C0-semigroups of operators

The following characterization of J-class C0-semigroup will be useful in the rest of the paper.

Theorem 2.1. For a C0-semigroup {T (t)}t≥0 on a Banach space X, the following assertions are
equivalent:

i) {T (t)}t≥0 is J-class;

ii) There exists a non-zero x ∈ X such that for every y ∈ X and ε > 0, there exist u ∈ X and
t > 0 with ∥u− x∥ < ε and ∥T (t)u− y∥ < ε.

Proof . Let {T (t)}t≥0 be J-class. So there exists 0 ̸= x ∈ X such that JT (x) = X.
For given y ∈ X and ε > 0, letting V = Nε(y) and U = Nε(x) (Nε(y) is the neighborhood of y with
reduce ε), we may find t > 0 such that

T (t)U ∩ V ̸= ∅.

So there exists u ∈ U such that ∥T (t)u−y∥ < ε and ∥u−x∥ < ε. Conversely, suppose that (ii) holds
for some x ∈ X. We shall show that JT (x) = X.
Let y ∈ X and U be an arbitrary neighborhood of x. There exists ε0 such that Nε0(x) ⊆ U . For
every neighborhood V of y there exists ε1 such that Nε1(y) ⊆ V . Put ε = min{ε0, ε1}. By (ii) there
exists u ∈ Nε(x) ⊆ U and t > 0 such that T (t)u ∈ Nε(y) ⊆ V , which implies that T (t)U ∩ V ̸= ∅. □

Theorem 2.2. Let T = {T (t)}t≥0 and S = {S(t)}t≥0 be two C0-semigroups on Banach spaces X and
Y , respectively and ϕ : X → Y be a continuous function with dense range such that ϕ(AT \{0}) ̸= {0}
and S(t) ◦ ϕ = ϕ ◦ T (t), for all t ≥ 0. If T is J-class, then so is S.

Proof . If T is J-class, then by the fact that ϕ(AT ) ̸= {0} we may choose 0 ̸= x ∈ X such that
JT (x) = X and ϕ(x) ̸= 0. We claim that JS(ϕ(x)) = Y .
Let z ∈ ran ϕ, then there exists y ∈ X = JT (x) such that ϕ(y) = z.
So there exists (xn) ⊆ X and a strictly increasing sequence of positive real numbers (tn)n such that
tn → ∞, xn → x and T (tn)xn → y. By continuity of ϕ, yn := ϕ(xn) → ϕ(x) and S(tn) ◦ ϕ(xn) =
ϕ(T (tn)xn) → ϕ(y) = z.
Thus JS(ϕ(x)) ⊇ ran ϕ. But JS(ϕ(x)) is closed and ran ϕ is dense so JS(ϕ(x)) = Y . □ The following
example shows that the hypothesis ϕ(AT ) ̸= {0} cannot be removed. Also it shows that if the direct
sum of two C0-semigroups is J-class then its is not necessary that these C0-semigroups are J-class.

Example 2.3. Let X, Y be two complex Banach spaces, where X is separable. Let A ∈ B(Y )
with σ(A) ⊂ {z ∈ C : Rez > 0}. If {T (t)}t≥0 is a hypercyclic C0-semigroup on X, then the system
B(t) := etA⊕T (t) is a J-class C0-semigroup on the Banach space X⊕Y and AB = {0}⊕X (Theorem
4.1.13, [14]). Now consider ϕ : X ⊕ Y → Y defined by ϕ(x⊕ y) = y. Then with S(t) := etA we have
ϕ ◦ B(t) = S(t) ◦ ϕ, B(t) is J-class but S(t) is not J-class, since σ(A) ∩ iR = ∅ (see Lemma 4.1.14,
[14]). Indeed in this case ϕ(AB) = {0}.
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This example also shows that if {T (t)}t≥0 is a J-class C0-semigroup on a Banach space X and M1,
M2 are two non-trivial invariant closed subspaces of X, where X = M1 ⊕M2, then {T (t)|Mi

}t≥0 is
not J-class on Mi, i = 1, 2, in general.

The following proposition shows that locally topologically transitivity of the direct sum of a
C0-semigroup with itself, implies that it is also locally topologically transitive.

Proposition 2.4. Let {T (t)}t≥0 be a C0-semigroup on a Banach space X. If {T (t) ⊕ T (t)}t≥0 is
locally topologically transitive C0-semigroup on X ⊕X, then so is {T (t)}t≥0.
Proof . Let JT⊕T (x ⊕ y) = X ⊕X, for some non-zero x ⊕ y ∈ X ⊕X. Without loss of generality
let x ̸= 0. Thus for every z ∈ X, there exist a sequence (xn ⊕ yn)n ∈ X ⊕X and a strictly increasing
sequence (tn) ∈ [0,∞) with tn → ∞ such that xn ⊕ yn → x⊕ y and T (tn)⊕ T (tn)(xn ⊕ yn) → z ⊕ z.
These imply that xn → x and T (tn)xn → z, i.e. JT (x) = X. □

As a consequence of this proposition one can see that if X is a real-Banach space, X̃ is the complex-
ification of X, {T (t)}t≥0 is a C0-semigroup on X and {T̃ (t)}t≥0 is the complexification of {T (t)}t≥0,

then locally topologically transitivity of {T̃ (t)}t≥0 implies that {T (t)}t≥0 is locally topologically tran-
sitive.

In the following proposition, we show that the direct sum of two J-class C0-semigroups is not
J-class in general. Note that the adjoint of a C0-semigroup on a Hilbert space is again a C0-semigroup.

Proposition 2.5. Let {T (t)}t≥0 be a J-class C0-semigroup on a Hilbert space H such that {T ∗(t)}t≥0

is also J-class. Then T (t)⊕ T ∗(t) is not a J-class C0-semigroup.

Proof . Assume that T (t) ⊕ T ∗(t) is a J-class C0-semigroup. So there exist x, y ∈ H such that
JT⊕T ∗(x⊕ y) = H ⊕H and x⊕ y ̸= 0.
Case I: Suppose that one of the vectors x, y is zero. Without loss of generality assume x = 0. Then
there exist a strictly increasing sequence (tn)n ⊆ [0,∞) with tn → ∞ and sequences (xn)n, (yn)n ∈ H
such that xn → x = 0, yn → y, T (tn)xn → y and T ∗(tn)yn → x = 0. Taking limits in the following
equality ⟨T (tn)xn, yn⟩ = ⟨xn, T

∗(tn)yn⟩ we get that ∥x∥ = ∥y∥ = 0 and hence y = 0. Therefore
x⊕ y = 0, which yields a contradiction.
Case II: Suppose that x ̸= 0 and y ̸= 0. Let us show first that JT⊕T ∗(λx⊕ µy) = H ⊕H, for every
λ, µ ∈ C\{0}. Indeed, fix λ, µ ∈ C\{0}. Take any z, w ∈ H. Since JT⊕T ∗(x⊕y) = H⊕H, there exist
a strictly increasing sequence (tn)n ⊆ [0,∞) with tn → ∞ and sequences (xn)n, (yn)n ∈ H such that
xn → x, yn → y, T (tn)xn → λ−1z and T ∗(tn)yn → µ−1w. This implies that z ⊕ w ∈ JT⊕T ∗(λx⊕ µy),
hence JT⊕T ∗(λx ⊕ µy) = H ⊕ H. With no loss of generality we may assume that ∥x∥ ̸= ∥y∥
(because if ∥x∥ = ∥y∥, by multiplying with a suitable λ ∈ C \ {0} we have λ∥x∥ ̸= ∥y∥ and
JT⊕T ∗(λx ⊕ y) = H ⊕H). Taking limits in the following equality ⟨T (tn)xn, yn⟩ = ⟨xn, T

∗(tn)yn⟩ we
get that ∥x∥ = ∥y∥, which is a contradiction. □

Proposition 2.6. Suppose X is a normed space, C0-semigroup {T (t)}t≥0 is J-class on X, and Y is
a Banach space containing X as a dense subspace. Then the extension of T in Y is J-class.

Proof . Let for 0 ̸= x ∈ X, JT (x) = X. For every ε > 0 and y ∈ Y = X̄ there exists y1 ∈ X such
that ∥y1−y∥ < ε

2
. For y1 ∈ X there exist u ∈ X and t1 > 0 such that ∥u−x∥ < ε

2
, ∥y1−T (t)u∥ < ε

2
.

So
∥y − T (t)u∥ ≤ ∥y − y1∥+ ∥y1 − T (t)v∥ <

ε

2
+

ε

2
= ε.

□
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3. Limit of C0-semigroups in the sense of Kato

A sequence {(Xn, ∥ · ∥n) : n ∈ N} of Banach spaces is said to be convergent to a Banach space

(X, ∥ · ∥) in the sense of Kato (see [12], Chap. IX, Sect. 4) and is denoted by Xn
K−→ X, if for any n

there is a linear operator Pn ∈ B(X,Xn) (called an approximating operator) satisfying the following
two conditions:

(K1) limn→∞ ∥Pnf∥n = ∥f∥ for any f ∈ X;

(K2) for any fn ∈ Xn, there exists f (n) ∈ X such that fn = Pnf
(n) with ∥f (n)∥ ≤ C∥fn∥n (C is

independent of n).

Let Xn
K−→ X and Bn ∈ B(Xn). The sequence (Bn)n∈N is said to be convergent to B in the sense

of Kato if limn→∞ ∥BnPnf − PnBf∥n = 0, for any f ∈ X. In this case we write Bn
K−→ B.

Theorem 3.1. Let {(Xn, ∥ · ∥n) : n ∈ N} be a sequence of Banach spaces convergeing to a Banach
space (X, ∥ · ∥) in the sense of Kato. Suppose that T = {T (t)}t≥0 is a J-class C0-semigroup on X for
which Pn(AT ) ̸= {0} and {Tn(t)}t≥0 is a C0-semigroup on (Xn, ∥ · ∥n). If for some n ∈ N one has

PnT (t)f = Tn(t)Pnf, (f ∈ X, t ≥ 0), (3.1)

then {Tn(t)}t≥0 is also J-class.

Proof . Let {T (t)}t≥0 be J-class. So there exists a non-zero f ∗ ∈ X such that JT (f
∗) = X. By our

hypothesis, we may choose f ∗ such that Pnf
∗ ̸= 0. We shall prove that JTn(Pnf

∗) = Xn. For any
gn ∈ Xn from (K2), there exists g(n) ∈ X such that gn = Png

(n) and ∥g(n)∥ ≤ C∥gn∥n. For arbitrary
ε > 0, there exist u ∈ X and t > 0 such that ∥u− f ∗∥ < ε and ∥g(n) − T (t)u∥ < ε. Put f ∗

n := Pnf
∗ ,

un := Pnu and tn := t. The assumption (K1) implies the uniform boundedness of {Pn}. Therefore

∥un − f ∗
n∥n = ∥Pnu− Pnf

∗∥n ≤ ∥Pn∥ ∥u− f ∗∥ ≤ ∥Pn∥ε

and

∥gn − Tn(tn)un∥ = ∥Png
(n) − Tn(t)Pnu∥n

= ∥Png
(n) − PnT (t)u∥n

≤ ∥Pn∥∥g(n) − T (t)u∥ ≤ ∥Pn∥ε.

□ For any constant C and fn ∈ Xn, define

lC(fn) := {f (n) ∈ X : Pnf
(n) = fn with ∥f (n)∥ ≤ C∥fn∥}.

Theorem 3.2. Suppose that (3.1) holds for some n ∈ N and {Tn(t)}t≥0 is J-class. If there exists a
constant C such that for every f ∈ X and ε > 0 there is an f (n) ∈ lC(Pnf) with ∥f − f (n)∥ < ε, then
{T (t)}t≥0 is also J-class.

Proof . Let {Tn(t)}t≥0 be J-class on Xn. So there exists a non-zero f ∗
n ∈ Xn such that JTn(f

∗
n) = Xn.

From (K2), there exists f
(n)
∗ ∈ X such that f ∗

n = Pnf
(n)
∗ . By the linearity of Pn, f

(n)
∗ ̸= 0. We shall

show that JT (f
(n)
∗ ) = X.
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Let g ∈ X and ε > 0 be given. Put gn := Png. So there exist t > 0 and u∗
n ∈ Xn such that

∥u∗
n − f ∗

n∥ < ε and ∥gn − Tn(t)u
∗
n∥n < ε. From (K2), there exists u

(n)
∗ ∈ X such that u∗

n = Pnu
(n)
∗ .

Now for h = g − T (t)u
(n)
∗ , there exists h(n) ∈ Pnh, with ∥h− h(n)∥ < ε and

Pnh
(n) = Pnh = gn − PnT (t)u

(n)
∗ .

As a consequence of (3.1), we obtain that

gn − PnT (t)u
(n)
∗ = gn − Tn(t)Pnu

(
∗n).

So

∥g − T (t)u(n)
∗ ∥ ≤ ∥h− h(n)∥+ ∥h(n)∥

≤ ε+ C∥gn − Tn(t)Pnu
(n)
∗ ∥n

≤ (1 + C)ε

and
∥u(n)

∗ − f (n)
∗ ∥ ≤ C∥Pnu

(
∗n)− Pnf

(n)
∗ ∥n ≤ C∥Pn∥ε.

□

Remark 3.3. Let Tn = {Tn(t)}t≥0 and T = {T (t)}t≥0 be C0-semigroups on the Banach spaces
(Xn, ∥ · ∥) and (X, ∥ · ∥), respectively, n ∈ N. The sequence (Tn) is said to be convergent to T in the
sense of Kato if for any τ > 0,

lim
n→∞

sup
t∈[0,τ ]

∥Tn(t)Pn(f)− PnT (t)f∥n = 0, (f ∈ X).

If Tn is J-class then it is not true that T is also J-class, in general. For showing this, we apply
Theorem 3.3 of [5]. Let Xn = X := l1, B is the backward shift on l1 and A = α(B − I), for some
α > 0. If T = {T (t)}t≥0 is the C0-semigroup generated by A then

∥T (t)∥ = ∥eαt(B−I)∥ = e−αt∥etαB∥ ≤ e−αte∥tαB∥ = 1.

This, by Remark 1.2, implies that T is not J-class. Now, by [5] Theorem 3.3, the C0-semigroup
{Tn(t)}t≥0 generated by An := −αI + βnB is hypercyclic and so is J-class, where βn > α > 0 and
βn → α. Also the sequence (Tn)n∈N converges to T , in the sense of Kato (see [5] Theorem 3.3).
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