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Abstract

In this paper, we develop the existence theory for some boundary value problems of nonlinear nth-
order ordinary differential equations supplemented with nonlocal Stieltjes boundary conditions. Our
results are based on some standard theorems of fixed point theory and are well illustrated with the
aid of examples.
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1. Introduction

The study of nonlinear boundary value problems of differential equations is of central importance
in mathematics in view of their extensive applications in applied sciences such as fluid mechanics,
geophysics, mathematical physics, etc. The recent development of the subject includes several kinds
of nonlocal and integral boundary conditions. The nonlocal conditions take care of peculiarities of
physical, chemical or other processes occurring at some intermediate positions of the given domain
while the integral conditions provide an alternative for the assumption of ‘circular cross-section’
throughout the vessels in the study of fluid flow problems. For examples and details of nonlocal
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problems, we refer the reader to a series of papers ([1]-[12]), whereas the works involving integral
boundary conditions can be found in ([13]-[21]) and the references cited therein.

In this paper, we consider nonlocal multi-point and strip type Riemann-Stieltjes integral bound-
ary conditions and establish the existence theory for boundary value problems of nth-order ordinary
differential equations supplemented with these conditions. The concept of Stieltjes conditions pro-
vides a unified approach for dealing with a variety of boundary conditions such as multipoint and
integral boundary conditions. For details on Riemann-Stieltjes integral conditions, we refer the re-
views by Whyburn [22] and Conti [23]. Recently, Webb [24, 25] and Webb and Infante [26] studied
the higher order problems with Stieltjes integral boundary conditions via fixed point index. Some
more works on Riemann-Stieltjes integral conditions can be found in a series of papers [27, 28, 29, 30]
and the references cited therein.

The rest of the paper is organized as follows. In Section 2, we formulate and solve a model
problem. The existence results for this problem are obtained via contraction mapping principle and
Schauder’s fixed point and are explained with the help of some examples. In Section 3, we discuss
some more problems involving Stieltjes conditions.

2. Model Problem

We consider a nonlocal Stieltjes type boundary value problem involving an nth-order nonlinear
ordinary differential equation given by

u(n)(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = δu(ξ), u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(1) + βu′(1) =

∫ 1

0

u(s)dµ(s), 0 < ξ < 1,

(2.1)

where f : [0, 1] × R −→ R is a given continuous function, µ is function of bounded variation and
α, β, δ, ξ are real constants satisfying the relation:

Λ =
(
α−

∫ 1

0

dµ(s)
)(
δξn−1

)
+
(
α + β(n− 1)−

∫ 1

0

sn−1dµ(s)
)(

1− δ
)
̸= 0. (2.2)

In the following lemma, we solve a linear variant of problem (2.1).

2.1. Basic result

Lemma 2.1. For any y ∈ C([0, 1],R), the linear differential equation

u(n)(t) = y(t), t ∈ [0, 1], (2.3)

supplemented with boundary conditions of problem (2.1) is equivalent to the integral equation:

u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+ σ1(t)

[ ∫ 1

0

(∫ s

0

(s− p)n−1

(n− 1)!
y(p)dp

)
dµ(s)

−
∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
y(s)ds

]
+σ2(t)

∫ ξ

0

(ξ − s)n−1

(n− 1)!
y(s)ds,

(2.4)
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where

σ1(t) =
1

Λ
[δξn−1 + tn−1(1− δ)], (2.5)

σ2(t) =
δ

Λ

[
α + β(n− 1)−

∫ 1

0

sn−1dµ(s)− tn−1
(
α−

∫ 1

0

dµ(s)
)]
, (2.6)

and Λ is given by (2.2).
Proof . It is well known that the solution of the differential equation (2.3) can be written as

u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+ c0 + c1t+ c2t

2 + . . .+ cn−2t
n−2 + cn−1t

n−1, (2.7)

where ci (i = 0, 1, . . . n − 1) are arbitrary real constants. Using the boundary conditions: u′(0) =
0, u′′(0) = 0, . . . , u(n−2)(0) = 0 in (2.7), we find that c1 = c2 = . . . = cn−2 = 0, and consequently,
(2.7) takes the form:

u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+ c0 + cn−1t

n−1. (2.8)

Now using the remaining boundary conditions:

u(0) = δu(ξ), αu(1) + βu′(1) =

∫ 1

0

u(s)dµ(s),

in (2.8), we get
A1c0 − A2cn−1 = A3 and E1c0 + E2cn−1 = E3, (2.9)

where

A1 = 1− δ, A2 = δξn−1, A3 = δ

∫ ξ

0

(ξ − s)n−1

(n− 1)!
y(s)ds,

E1 = α−
∫ 1

0

dµ(s), E2 = α + (n− 1)β −
∫ 1

0

sn−1dµ(s), E3 = B3 −B2 −B1,

B1 = α

∫ 1

0

(1− s)n−1

(n− 1)!
y(s)ds, B2 = β

∫ 1

0

(1− s)n−2

(n− 2)!
y(s)ds,

B3 =

∫ 1

0

(∫ s

0

(s− p)n−1

(n− 1)!
y(p)dp

)
dµ(s).

Solving the system (2.9), we obtain

c0 =
E3A2 + E2A3

E1A2 + A1E2

, cn−1 =
E3A1 − A3E1

A2E1 + A1E2

,

where A2E1 + A1E2 ̸= 0. Substituting the values of c0, cn−1 in (2.8), we get the solution (4.3). □
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3. Existence results

In view of Lemma 2.1, we define a fixed point problem related to problem (2.1) as Fu = u, where
F : C([0, 1],R) −→ C([0, 1],R) is defined by

(Fu)(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s))ds+ σ1(t)

[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
f(g, u(g))dg)dµ(s)

−
∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
f(s, u(s))ds

]
+σ2(t)

∫ ξ

0

(ξ − s)n−1

(n− 1)!
f(s, u(s))ds,

(3.1)

For the subsequent analysis, we define ∥u∥ = supt∈[0,1] |u(t)|, and

ϑ =
{ 1

n!
+ h1

[ ∫ 1

0

sn

n!
dµ(s) +

(βn+ α)

n!

]
+ h2

ξn

n!

}
, (3.2)

where maxt∈[0,1] |σ1(t)| = h1, maxt∈[0,1] |σ2(t)| = h2.

Theorem 3.1. Assume that f : [0, 1] × R −→ R is a continuous function satisfying the Lipschitz
condition: |f(t, u)−f(t, v)| ≤ ℓ|u−v|, ℓ > 0, ∀ u, v ∈ R, t ∈ [0, 1]. Then the boundary value problem
(2.1) has a unique solution if ℓϑ < 1, where ϑ is given by (3.2).

Proof . In the first step, we show that FBa ⊂ Ba, where F is the operator defined by (3.1) and

Ba = {u ∈ C([0, 1],R) : ∥u∥ ≤ a}, with a ≥ bϑ

1− ℓϑ
and b = supt∈[0,1] |f(t, 0)|. Using |f(t, u(t))| =

|f(t, u(t))− f(t, 0) + f(t, 0)| ≤ |f(t, u(t))− f(t, 0)|+ |f(t, 0)| ≤ ℓ∥u∥+ b ≤ ℓa+ b for any u ∈ Ba, t ∈
[0, 1], we obtain

|(Fu)(t)| ≤ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u(s))|ds

+|σ1(t)|
[ ∫ 1

0

(∫ s

0

(s− g)n−1

(n− 1)!
|f(g, u(g))|dg

)
dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
|f(s, u(s))|ds

]
+|σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
|f(s, u(s))|ds

}
.

≤ (ℓa+ b) sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
ds+ |σ1(t)|

[ ∫ 1

0

(∫ s

0

(s− g)n−1

(n− 1)!
dg

)
dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
ds
]
+ |σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
ds
}

≤ (ℓa+ b)ϑ ≤ a,

which implies that ∥Fu∥ ≤ a. In consequence, it follows that FBa ⊂ Ba. Next, for u, v ∈ C([0, 1],R)
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and for each t ∈ [0, 1], we have that

|(Fu)(t)− (Fv)(t)|

≤ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u(s))− f(s, v(s))|ds

+|σ1(t)|
[ ∫ 1

0

(∫ s

0

(s− g)n−1

(n− 1)!
|f(g, u(g))− f(g, v(g))|dg

)
dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
|f(s, u(s))− f(s, v(s))|ds

]
+|σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
|f(s, u(s))− f(s, v(s))|ds

}
≤ ℓ∥u− v∥ sup

t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
ds

+|σ1(t)|
[ ∫ 1

0

(∫ s

0

(s− g)n−1

(n− 1)!
dg

)
dµ(s) +

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
ds
]

+|σ2(t)|
∫ ξ

0

(ξ − s)n−1

(n− 1)!
ds
}
.

Taking maximum over the interval [0, 1], we get ∥(Fu) − (Fv)∥ ≤ ℓϑ∥u − v∥, where ϑ is given by
(3.2). By the assumption: ℓϑ < 1, we deduce that F is a contraction. Hence, by the contraction
mapping principle, problem (2.1) has a unique solution. □

Example 3.2. Consider the following boundary value problem
u′′′(t) =

3

8

( |u|
1 + |u|

+ u+
1

2

)
, t ∈ [0, 1],

u(0) =
1

2
u(1/4), u′(0) = 0, u(1) + u′(1) =

∫ 1

0

u(s)dµ(s).

(3.3)

Here n = 3, α = 1, β = 1, δ = 1/2, ξ = 1/4, and f(t, u) = (3/8)
( |u|
1 + |u|

+ u +
1

2

)
and

µ(s) = s2/2. Using the given data, we find that ℓ = 3/4 as |f(t, u) − f(t, v)| ≤ (3/4)∥u − v∥,
ϑ ≃ 0.436189, Λ ≃ 1.390625. Obviously ℓϑ ≃ 0.327141854 < 1. Thus, all the conditions of Theorem
3.1 are satisfied. Hence, by the conclusion of Theorem (3.1), problem (3.3) has a unique solution on
[0, 1].

Our next existence result is based on Schauder’s fixed point theorem.

Theorem 3.3. Assume that

(A1) f : [0, 1]× R −→ R is continuous;

(A2) there exists a positive constant M such that |f(t, u)| ≤M for each t ∈ [0, 1] and all u ∈ R.

Then the problem (2.1) has at least one solution on [0, 1].
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Proof . We show that the operator F defined by (3.1) satisfies the hypotheses of Schauder’s fixed
point theorem. This will be done in several steps.
Step 1: F is continuous.
Let {uk} be a sequence such that uk −→ u in C([0, 1],R). Then, for each t ∈ [0, 1], we have

|F (uk)(t)− F (u)(t)|

≤
∫ t

0

(t− s)n−1

(n− 1)!
|f(s, uk(s))− f(s, u(s))|ds

+|σ1(t)|
[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
|f(g, uk(g))− f(g, u(g))|dg)dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
|f(s, uk(s))− f(s, u(s))|ds

]
+|σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
|f(s, uk(s))− f(s, u(s))|ds

≤ ∥f(., uk(.))− f(., u(.))∥ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
ds+ |σ1(t)|

[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
dg)dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
ds
]
+ |σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
ds
}

≤ ϑ∥f(., uk(.))− f(., u(.))∥ −→ 0 as k −→ ∞,

in view of continuity of f (ϑ is given by (3.2).
Step 2: F maps bounded sets into bounded sets in C([0, 1],R).
Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant L such that for each
u ∈ Bη∗ = {u ∈ C([0, 1],R) : ∥u∥ ≤ η∗}, we have ∥F (u)∥ ≤ L. For each t ∈ [0, 1], by the condition
(A2), we have that

|F (u)(t)| ≤
∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u(s))|ds

+|σ1(t)|
[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
|f(g, u(g))|dg)dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
|f(s, u(s))|ds

]
+|σ2(t)|

∫ ξ

0

(ξ − s)n−1

(n− 1)!
|f(s, u(s))|ds.

Taking the norm for t ∈ [0, 1], the above inequality yields ∥F (u)∥ ≤ ϑL, where ϑ is given by (3.2).
Step 3: F maps bounded sets into equicontinuous sets of C([0, 1],R).
Let t1, t2 ∈ (0, 1), t1 < t2, and Bη∗ be a bounded set in C([0, 1],R) as in Step 2. Then, for u ∈ Bη∗ ,
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we have

|F (u)(t2)− F (u)(t1)|

≤
∣∣∣ ∫ t1

0

[(t2 − s)n−1 − (t1 − s)n−1]

(n− 1)!
f(s, u(s))ds+

∫ t2

t1

(t2 − s)n−1

(n− 1)!
f(s, u(s))ds

∣∣∣
+|Λ(1− δ)(tn−1

2 − tn−1
1 )|

[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
f(g, u(g))dg)dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
f(s, u(s))ds

]
+
∣∣∣Λδ(α−

∫ 1

0

dµ(s)
)
(tn−1

2 − tn−1
1 )

∣∣∣ ∫ ξ

0

(ξ − s)n−1

(n− 1)!
f(s, u(s))ds.

≤ M
{
|
∫ t1

0

[(t2 − s)n−1 − (t1 − s)n−1]

(n− 1)!
ds+

∫ t2

t1

(t2 − s)n−1

(n− 1)!
ds|

+|Λ(1− δ)(tn−1
2 − tn−1

1 )|
[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
dg)dµ(s)

+

∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
ds
]

+
∣∣∣Λδ(α−

∫ 1

0

dµ(s)
)
(tn−1

2 − tn−1
1 )

∣∣∣ ∫ ξ

0

(ξ − s)n−1

(n− 1)!
ds
}
.

≤ M

n!
[2(t2 − t1)

n + |tn2 − tn1 |]

+M |Λ(1− δ)(tn−1
2 − tn−1

1 )|
[ ∫ 1

0

sn

n!
dµ(s) +

(βn+ α)

n!

]
+
Mξn

n!

∣∣∣Λδ(α−
∫ 1

0

dµ(s)
)
(tn−1

2 − tn−1
1 )

∣∣∣.
Clearly the right hand side of the above inequality tends to zero independent of u as (t2 − t1) −→ 0.
In view of the above three Steps, the Arzelá-Ascoli theorem applies and consequently the operator
F : C([0, 1],R) −→ C([0, 1],R) is continuous and completely continuous.
Step 4: A priori bounds.
We show that the set ε = {u ∈ C([0, 1],R) : u = λF (u) for some 0 < λ < 1} is bounded. Let u ∈ ε.
Then u = λF (u) for some 0 < λ < 1. Thus, for each t ∈ [0, 1], we have

u(t) = λ
{∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s))ds+ σ1(t)

[ ∫ 1

0

(

∫ s

0

(s− g)n−1

(n− 1)!
f(g, u(g))dg)dµ(s)

−
∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
f(s, u(s))ds

]
+σ2(t)

∫ ξ

0

(ξ − s)n−1

(n− 1)!
f(s, u(s))ds

}
.

Using the condition (A2), it is easy to show that ∥F (u)∥ ≤ Mϑ. This shows that set ε is bounded.
Thus, it follows by Schauder’s fixed point theorem that the operator F has a fixed point, which is a
solution of the problem (2.1). □
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Example 3.4. Consider the following nonlinear boundary value problem
u(4)(t) =

e−u2(t) + 2 sin(1 + 3u(t)) + cos(3 + 5u3(t)) + 3t4

1 + u2(t)
, t ∈ [0, 1],

u(0) = u(1/3), u′(0) = 0, u′′(0) = 0,
2

3
u(1) +

3

4
u′(1) =

∫ 1

0

u(s)dµ(s).

(3.4)

Here f(t, u(t)) =
e−u2(t) + 2 sin(1 + 3u(t)) + cos(3 + 5u3(t)) + 3t4

1 + u2(t)
. Clearly f(t, u(t)) is continuous

and |f(t, u(t))| ≤ M with M = 7 for each t ∈ [0, 1] and all u ∈ R. Thus the conclusion of Theorem
3.3 applies and the problem (3.4) has a solution on [0, 1].

4. Some related problems

In this section, we study two more nth-order boundary value problems involving Stieltjes type
integral boundary conditions.

4.1. Problem I

We consider the following nth-order ordinary differential equation

u(n)(t) = f(t, u(t)), t ∈ [0, 1], (4.1)

supplemented with the Stieltjes integral boundary conditions:
u(0) = δ

∫ ξ

0

u(s)dτ(s), u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(1) + βu′(1) =
m∑
i=1

γi

∫ βi

0

u(s)dψ(s), 0 < ξ < β1 < 1,

(4.2)

where f : [0, 1]×R −→ R is a given continuous function, α, β, γi, δ, ξ, βi (i = 1, 2, . . . ,m) are real
constants to be chosen appropriately, τ(s) and ψ(s) are functions of bounded variation.

Observe that the problem (4.1)-(4.2) differs from the problem (2.1) in the sense that it considers
the boundary conditions:

u(0) = δ

∫ ξ

0

u(s)dτ(s), αu(1) + βu′(1) =
m∑
i=1

γi

∫ βi

0

u(s)dψ(s)

instead of the following conditions assumed in the problem (2.1):

u(0) = δu(ξ), αu(1) + βu′(1) =

∫ 1

0

u(s)dµ(s),

whereas the other conditions remain the same.
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Lemma 4.1. The unique solution of problem (4.1)-(4.2) is equivalent to the integral equation:

u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s))ds

+λ1(t)
[ m∑

i=1

γi

∫ βi

0

(∫ s

0

(s− x)n−1

(n− 1!)
f(x, u(x))dx

)
dψ(s)

−
∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
f(s, u(s))ds

]
+λ2(t)

∫ ξ

0

(∫ s

0

(s− x)n−1

(n− 1!)
f(x, u(x))dx

)
dτ(s),

(4.3)

where

λ1(t) =
1

χ

[
δ

∫ ξ

0

sn−1d(τ(s)) + tn−1
(
1− δ

∫ ξ

0

dτ(s)
)]
, (4.4)

λ2(t) =
1

χ
δ
[
α + (n− 1)β −

m∑
i=1

γi

∫ βi

0

sn−1dψ(s)

− tn−1
(
α− Σm

i=1γi

∫ βi

0

dψ(s)
)]
, (4.5)

χ =
(
α−

m∑
i=1

γi

∫ βi

0

dψ(s)
)(
δ

∫ ξ

0

sn−1dτ(s)
)

−
(
α + (n− 1)β −

m∑
i=1

γi

∫ βi

0

sn−1dψ(s)
)(

1− δ

∫ ξ

0

dτ(s)
)
̸= 0. (4.6)

Proof . The proof is similar to that of Lemma 2.1. So we omit it. □

By Lemma 4.1, we consider a fixed point problem associated with the problem (4.1)-(4.2) as Gu = u,
where the operator G : C([0, 1],R) −→ C([0, 1],R) is defined by

(Gu)(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s))ds

+λ1(t)
[ m∑

i=1

γi

∫ βi

0

(

∫ s

0

(s− x)n−1

(n− 1)!
f(x, u(x))dx)dψ(s)

−
∫ 1

0

(1− s)n−2[β(n− 1) + α(1− s)]

(n− 1)!
f(s, u(s))ds

]
+λ2(t)

∫ ξ

0

(

∫ s

0

(s− x)n−1

(n− 1)!
f(x, u(x))dx)dτ(s).

(4.7)

Moreover, we set

ϑI =
{ 1

n!
+m1

[ m∑
i=1

γi

∫ βi

0

sn

n!
dψ(s) +

(βn+ α)

n!

]
+m2

∫ ξ

0

sn

n!
dτ(s)

}
, (4.8)

where maxt∈[0,1] |λ1(t)| = m1, maxt∈[0,1] |λ2(t)| = m2 (λ1 and λ2 are respectively given by (4.4) and
(4.5)).

Following the method of proof used for obtaining the two existence results for the problem (2.1)
in the previous section, we can establish the similar results for the problem (4.1)-(4.2) with the aid
of the operator G defined by (4.7) and the constant ϑI given by (4.8). The existence results for the
problem (4.1)-(4.2) can be formulated as follows.
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Theorem 4.2. Let f : [0, 1]× R −→ R be a continuous function satisfying the Lipschitz condition:
|f(t, u)− f(t, v)| ≤ ℓ1|u− v|, ℓ1 > 0, ∀ u, v ∈ R, t ∈ [0, 1]. Then there exists a unique solution for
the problem (4.1)-(4.2) on [0, 1] if ℓ1ϑI < 1, where ϑI is given by (4.8).

Theorem 4.3. Assume that the function f : [0, 1] × R −→ R is continuous and there exists a
positive constant M1 such that |f(t, u)| ≤M1 for each t ∈ [0, 1] and for all u ∈ R. Then the problem
(4.1)-(4.2) has at least one solution on [0, 1].

Example 4.4. Consider the third-order boundary value problem given by
u′′′(t) = f(t, u(t)), t ∈ [0, 1],

u(0) =
1

2

∫ ξ

0

u(s)dτ(s), u′(0) = 0, u(1) + u′(1) =
4∑

i=1

γi

∫ βi

0

u(s)dψ(s).
(4.9)

Here n = 3, α = 1, β = 1, δ = 1/2, ξ = 1/4, m = 4, β1 = 1/3, β2 = 1/2, β3 = 2/3, β4 =

3/4, γ1 = 3/4, γ2 = 2/3, γ3 = 1/2, γ4 = 1/3, f(t, u) =
2|u|

3(1 + |u|)
+
u

3
+ et, τ(s) = s, and

ψ(s) = s2. Using the given values, it is found that χ ≃ 1.083833, ϑI ≃ 0.715664 and ℓ1 = 1 as
|f(t, u) − f(t, v)| ≤ ∥u − v∥. Obviously ℓ1ϑI ≃ 0.715664 < 1. Thus, all the conditions of Theorem
(4.2) are satisfied. In consequence, by the conclusion of Theorem (4.2), the problem (4.9) has a
unique solution on [0, 1].

4.2. Problem II

We replace the condition ‘αu(1)+βu′(1) =
m∑
i=1

γi

∫ βi

0

u(s)dψ(s)’ by ‘αu(η)+βu′(η) =
∫ 1

ζ
u(s)dρ(s)’

in (4.2) and consider the following problem:

u(n)(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = δ

∫ ξ

0

u(s)dµ(s), u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(η) + βu′(η) =

∫ 1

ζ

u(s)dρ(s), 0 < ξ < η < ζ < 1,

(4.10)

where f : [0, 1]×R −→ R is a given continuous function, and α, β, δ are real constants to be chosen
appropriately, µ(s) and ρ(s) are functions of bounded variation.
As before, associated with the problem (4.10), we define an operator H : C([0, 1],R) −→ C([0, 1],R)
as

(Hu)(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s))ds+ ν1(t)

∫ ξ

0

(

∫ s

0

(s− x)n−1

(n− 1)!
f(x, u(x))dx)dµ(s)

+ν2(t)
[ ∫ 1

ζ

(∫ s

0

(s− x)n−1

(n− 1)!
f(x, u(x))dx

)
dρ(s)

−α
∫ η

0

(η − s)n−1

(n− 1)!
f(s, u(s))ds− β

∫ η

0

(η − s)n−2

(n− 2)!
f(s, u(s))ds

]
,

(4.11)
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where

ν1(t) =
δ

γ

[
αηn−1 + β(n− 1)ηn−2 −

∫ 1

ζ

sn−1dρ(s)− tn−1
(
α−

∫ 1

ζ

d(ρ(s))
)]

ν2(t) =
1

γ

[
δ

∫ ξ

0

sn−1dµ(s) + tn−1
(
1− δ

∫ ξ

0

dµ(s)
)]
,

γ =
(
αηn−1 + β(n− 1)ηn−2 −

∫ 1

ζ

sn−1dρ(s)
)(

1− δ

∫ ξ

0

dµ(s)
)

+
(
α−

∫ 1

ζ

dρ(s)
)(
δ

∫ ξ

0

sn−1dµ(s)
)
̸= 0. (4.12)

Notice that the problem (4.10) has solutions only if the operator equation Hu = u has fixed points.
In the sequel, we use the notation:

QII =
{ 1

n!
+ n1

∫ ξ

0

sn

n!
dµ(s) + n2

[ ∫ 1

ζ

sn

n!
d(ρ(s)) +

αηn

n!
+

βηn−1

(n− 1)!

]}
. (4.13)

where maxt∈[0,1] |νi(t)| = ni, i = 1, 2.
Now we present the existence results for the problem (4.10). The method of proof for these results
is similar to the one employed in Section 3, so we omit the proofs.

Theorem 4.5. Assume that the function f : [0, 1]×R −→ R is continuous and satisfies the Lipschitz
condition: |f(t, u) − f(t, v)| ≤ ℓ2|u − v|, ℓ2 > 0, ∀ u, v ∈ R, ℓ2 > 0 t ∈ [0, 1]. Then the problem
(4.10) has a unique solution on [0, 1] provided that ℓ2QII < 1, where QII is given by (4.13).

Theorem 4.6. Assume that the following conditions hold:

(B1) the function f : [0, 1]× R −→ R is continuous;

(B2) there exists a positive constant N such that |f(t, u)| ≤ N for each t ∈ [0, 1] and for all u ∈ R.

Then there exists at least one solution for the problem (4.10) on [0, 1].

Example 4.7. Let us consider the problem (4.10) with n = 3, α = 1, β = 1, δ = 1/2, ξ = 1/4, ζ =

1/3, η = 3/4, and f(t, u) =
2et|u|

5(1 + |u|)
+ 3, µ(s) =

s2

2
and ρ(s) =

s3

3
.

Using the given data, we find that γ ≃ 1.834539, QII ≃ 0.370316 and ℓ2 = 2/5 as |f(t, u)−f(t, v)| ≤
(2/5)∥u− v∥. Clearly

ℓ2QII ≃ 0.148126 < 1.

Since all the conditions of Theorem 4.5 are satisfied, therefore, the conclusion of Theorem 4.5 applies
and the problem (4.10) with the chosen data has a unique solution on [0, 1].
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