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Abstract

Martindale proved that under some conditions every multiplicative isomorphism between two rings
is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that
every multiplicative (α, β)−derivation is additive.
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1. Introduction and preliminaries

The question that when a multiplicative isomorphism is additive has been considered by Rickart [8]
and Johnson [6]. In 1968 Martindale [7] proved an extension of Rickart’s theorem [8]. He proved that
under some conditions on a ring R, every multiplicative isomorphism from R into another ring S is
additive. In addition, the question that when a multiplicative derivation is additive has been inves-
tigated by Daif [2]. The authors of [5] extended Daif’s theorem to multiplicative (α, β)−derivations.
we give the definition of (α, β)-homomorphism for the first time to extened the concept of homomor-
phism to a larger class of mappings and then similar to the generalized Daif theorem by Hou, Zhang
and Meng [5], we extend Martindale’s theorem to (α, β)−isomorphism and then as a special case we
deduce Hou, Zhang and Meng theorem with similar conditions.

Throughout this paper, R and S are arbitrary associative rings (not necessarily with identity
element). A mapping σ : R → S is called multiplicative, if σ(xy) = σ(x)σ(y), for each x, y ∈ R.
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It is called as a multiplicative isomorphism if in addition it is one to one and onto. A mapping
d : R → R is a multiplicative derivation, if for each x, y ∈ R, we have d(xy) = d(x)y + xd(y). If
α and β are automorphisms of R, then a multiplicative (α, β) − derivation from R into itself is a
mapping d : R → R such that d(xy) = d(x)α(y) + β(x)d(y), for each x, y ∈ R. For further results
see ([3, 4]).
In the rest section, first of all note that since the definition of (α, β)−homomorphism for the first
time this section is new and without history so we not provided any reference in it.

Definition 1.1. Suppose that α : R → R and β : S → S are arbitrary mappings. Mapping
σ : R → S is called an (α, β)−multiplicative mapping, if σ(xy) = β(σ(α(x)))β(σ(α(y))), for each
x, y ∈ R. In addition, if it is one to one and onto, then is called an (α, β)−multiplicative isomorphism.
It will be called an (α, β)−additive mapping if β(σ(α(x + y))) = β(σ(α(x))) + β(σ(α(y))), for each
x, y ∈ R.

Remark 1.2. (i) If R and S are unital and α, β, σ are unitary (i.e, α(1R) = 1R and σ(1R) =
β(1S) = 1S), then every (α, β)−multiplicative mapping σ : R → S is a multiplicative mapping of
R into S. In fact, by putting y = 1 in the definition of (α, β)−multiplicative mapping, we have
σ(x) = β(σ(α(x))) for each x ∈ R. Hence σ(xy) = β(σ(α(x)))β(σ(α(y))) = σ(x)σ(y).

(ii) If R and S are unital and β(1S) = σ(1R) = 1S , and σ is onto, then α = IR, implies
that β = IS . In fact by putting y = 1 in the definition of (α, β)−multiplicative mapping we have
β(σ(x)) = σ(x) for each x ∈ R. So β(z) = z for each z ∈ S.

(iii) If R and S are unital and σ, α are unitary, σ is one to one and β = IS , then α = IR. Putting
y = 1 in the definition of (α, β)−multiplicative mapping. Then σ(α(x)) = σ(x), which implies that
α(x) = x for each x ∈ R.

(iv) If α and β are multiplicative and idempotents (α2 = α, β2 = β) and σ is an (α, β)−multiplicative,
then σ′ = βoσoα, is multiplicative. Since

σ′(xy) = β(σ(α(xy))) = β(σ(α(x)α(y)))

= β[β(σ(α(α(x))))β(σ(α(α(y))))]

= β(β(σ(α(α(x)))))β(β(σ(α(α(y)))))

= β(σ(α(x)))β(σ(α(y))) = σ′(x)σ′(y).

Note that in this case we have σ′(xy) = σ′(x)σ′(y) = β(σ(α(x)))β(σ(α(y))) = σ(xy).
If R is a Banach algebra with a bounded left approximate identity, in particular if R is a C∗−algebra,
then by Cohen’s factorization theorem R2 = R [1]. So we have σ′ = σ.

(v) If α : R → R and β : S → S and σ : R → S are multiplicative and in addition σ is an
(α, β)−multiplicative, then σ(xyz) = β(σ(α(x)))β(σ(α(y)))β(σ(α(z))). In fact

σ(xyz) = σ((xy)z) = β(σ(α(xy)))β(σ(α(z)))

= β(σ(α(x)α(y)))β(σ(α(z)))

= β(σ(α(x)σ(α(y))))β(σ(α(z)))

= β(σ(α(x)))β(σ(α(y)))β(σ(α(z))).

(vi) If R = S and σ = I, then obviously in each of the following cases, we have a (α, β) −
multiplicative mapping.

(a) α = β = I. (b) β = α−1 or β = −α−1.
(vii) If σ is a multiplicative mapping, then obviously in each of the following cases we have a

(α, β)−multiplicative mapping.
(a) α = σ−1, β = σ. (b) α = σ, β = σ−1 or β = −σ−1.
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Example 1.3. (i) If R is the set of real numbers and σ, α, β : R → R are mappings, then in each
of the following cases we have a (α, β)−multiplicative mapping.
(a) σ(x) = 4x, α(x) = 3x, β(x) = 1

6
x. In this case we have

σ(xy) = 4xy = (2x)(2y) = 4(3x)
6
.4(3y)

6
= β(σ(α(x)))β(σ(α(y)))

(b) σ(x) = x, α(x) = sinx, β(x) = sin−1x.
(c) σ(x) = x2, α(x) =

√
|x|, β(x) = x2.

(ii) Let Z5 = {0, 1, 2, 3, 4} be the ring of integer numbers module 5 and σ : Z5 −→ Z5, α : Z5 → Z5,
β : Z5 → Z5 defined by σ(x) = 4x, α(x) = 3x, β(x) = 4x, then σ is a (α, β) − multiplicative
mapping. In fact σ(xy) = 4xy = (3x)(3y) = β(σ(α(x)))β(σ(α(y))).

2. The main results

In this section, we generalized the Martindale’s theorem [7] to (α, β)-isomorphisms.

Theorem 2.1. Suppose that R is a ring containing a family {eα}α∈A of idempotents, such that for
each x ∈ R satisfies the following conditions:

(i) xR = 0 implies x = 0;

(ii) eαRx = 0 for each α ∈ A implies x = 0;

(iii) eαxeαR(1− eα) = 0 implies eαxeα = 0, for every α ∈ A.

Suppose that S is an arbitrary ring, α : R → R and β : S → S are bijective and α0 ∈ A.
If (α, β)−multiplicative isomorphism σ : R → S satisfies the following conditions, then it is
(α, β)−additive.

(iv) βoσoα(eα0xy) = βoσoα(eα0x)βoσoα(y);

(v) βoσoα(xyeα0) = βoσoα(x)βoσoα(yeα0);

(vi) σ(xz) + σ(yz) = σ((x+ y)z);

(vii) σ(zx) + σ(zy) = σ(z(x+ y));

for each x, y, z ∈ R.

Note that under condition 2.2.(iv) ,(iv) holds and (iv) implies that :

βoσoα(eα0x) = βoσoα(eα0eα0x) = βoσoα(eα0eα0)βoσoα(x) = βoσoα(eα0)βoσoα(x).

Similarly βoσoα(xeα0) = βoσoα(x)βoσoα(eα0).
The proof of the theorem will be organized in a series of lemmas. We assume that the hypothesis

of theorem as needed during the proof. First we begin with the trivial lemma.

Lemma 2.2. σ(0) = 0.
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Proof . Since βoσoα is onto, there is x ∈ R such that βoσoα(x) = 0. Hence
σ(0) = σ(0.x) = β(σ(α(0)))β(σ(α(x))) = β(σ(α(0))).0 = 0.
�

For the rest lemma, fix α0 ∈ A and set eα0 = e1, e2 = 1− e1.
We will use e2x, in place of x− e1x.
Take Rij = eiRej, (i, j = 1, 2), then we may write R in the following decomposition
R = R11

⊕
R12

⊕
R21

⊕
R22.

In fact, x = (e1 + (1− e1))x(e1 + (1− e1)) = e1xe1 + e1x(1− e1) + (1− e1)xe1 + (1− e1)x(1− e1)),
shows that R = R11 + R12 + R21 + R22, and the later sum is a direct sum. Because for instance
z ∈ R11 ∩R12, we have z = e1xe1 = e1y(1− e1), for some x, y ∈ R. Therefore

e1xe1 = e1y − e1ye1

e1(e1xe1)e1 = e1(e1y − e1ye1)e1
e1xe1 = e1ye1 − e1ye1 = 0

So z = e1xe1 = 0.
We denote an element of Rij by xij. Since e1e2 = e1(1 − e1) = e1 − e21 = 0, we have ejxkl = 0 and
xijxkl = 0, (i, j, k, l = 1, 2, j 6= k).

Lemma 2.3. β(σ(α(xii + xjk))) = β(σ(α(xii))) + β(σ(α(xjk))) for each j 6= k.

Proof . First assume that i = j = 1 and k = 2. Since α, β and σ are onto there exist an element z
of R such that β(σ(α(z))) = β(σ(α(x11))) + β(σ(α(x12))). For a1j ∈ R1j, by (vi) we have

σ(za1j) = β(σ(α(z)))β(σ(α(a1j)))

= (β(σ(α(x11))) + β(σ(α(x12))))β(σ(α(a1j)))

= β(σ(α(x11)))β(σ(α(a1j))) + β(σ(α(x12)))β(σ(α(a1j)))

= σ((x11 + x12)a1j).

Therefore za1j = (x11 + x12)a1j, since σ is one to one. Similarly for a2j ∈ R2j, we have

za2j = (x11 + x12)a2j.

Therefore
(z − (x11 + x12))a1j = 0

(z − (x11 + x12))a2j = 0

Hence [z − (x11 + x12)][R11 +R12 +R21 +R22] = 0, or [z − (x11 + x12)]R = 0.
By (i) we have z = x11 +x12. It means that β(σ(α(x11)))+β(σ(α(x12))) = β(σ(α(z))) = β(σ(α(x11 +
x12))).
Similarly for i = k = 1 and j = 2 and applying (ii) we have β(σ(α(x11))) + β(σ(α(x21))) =
β(σ(α(z))) = β(σ(α(x11 + x21))). �

Lemma 2.4. σ is (α, β)− additive on R12.
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Proof . Let x12, y12 ∈ R12, and choose z ∈ R such that
β(σ(α(z))) = β(σ(α(x12))) + β(σ(α(y12))).
For a1j ∈ R1j, we have

σ(za1j) = β(σ(α(z)))β(σ(α(a1j)))

= (β(σ(α(x12))) + β(σ(α(y12))))β(σ(α(a1j)))

= β(σ(α(x12)))β(σ(α(a1j))) + β(σ(α(y12)))β(σ(α(a1j)))

= σ(x12a1j) + σ(y12a1j)

= σ(0) + σ(0) = 0

whence za1j = 0. since σ is one to one.
Similarly for a2j ∈ R2j we have

σ(za2j) = (β(σ(α(x12))) + β(σ(α(y12))))β(σ(α(a2j))), (2.1)

β(σ(α(e1)))β(σ(α(a2j))) = σ(e1a2j) = σ(0) = 0, (2.2)

β(σ(α(x12)))β(σ(α(y12))) = σ(x12y12) = σ(0) = 0 (2.3)

and by (iv)

β(σ(α(e1)))β(σ(α(y12))) = β(σ(α(e1y12))) = β(σ(α(y12))), (2.4)

From the above relations,

σ(za2j) = [β(σ(α(e1))) + β(σ(α(x12)))][β(σ(α(a2j))) + β(σ(α(y12)))β(σ(α(a2j)))], (2.5)

Now by (iv) we have
β(σ(α(y12)))β(σ(α(a2j))) = β(σ(α(y12a2j))),
Since e1 = e1e1e1, by applying Lemma 2.3 we have

β(σ(α(e1))) + β(σ(α(x12))) = β(σ(α(e1 + x12))), (2.6)

Again in each of cases j = 1 or j = 2 in another term of right hand (3.5) we can apply Lemma 2.3
and obtain that

β(σ(α(a2j))) + β(σ(α(y12a2j))) = β(σ(α(a2j + y12a2j))), (2.7)

Now from (3.5), (3.6), (3.7) we see that

σ(za2j) = β(σ(α(e1 + x12)))β(σ(α(a2j + y12a2j)))

= σ((e1 + x12))(a2j + y12a2j))

= σ(e1a2j + e1y12a2j + x12a2j + x12y12a2j)

= σ(0 + y12a2j + x12a2j + 0a2j)

= σ((y12 + x12)a2j).

Whence za2j = (y12 + x12)a2j, since σ is one to one. Now [z − (x12 + y12)]a2j = 0.
Then [z − (x12 + y12)]R = [z − (x12 + y12)](R11 +R12 +R21 +R22)

= zR11 + zR12 − (x12 + y12)(R11 +R12) + [z − (x12 + y12)](R21 +R22)

= 0 + 0 + 0 + 0 = 0.

So by (i), z = x11 + y12. That is
β(σ(α(x12))) + β(σ(α(y12))) = β(σ(α(z))) = β(σ(α(x12 + y12))).
�
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Lemma 2.5. σ is (α, β)− additive on R11.

Proof . Let x11, y11 ∈ R11. There exist z ∈ R such that β(σ(α(z))) = β(σ(α(x11))) + β(σ(α(y11))).
Since βoσoα is onto. By using (v) and Lemma 2.4 we see that

βoσoα(za12) = (β(σ(α(x11))) + β(σ(α(y11))))(β(σ(α(a12))))

= (β(σ(α(x11a12)))) + β(σ(α(y11a12)))

= β(σ(α(x11a12 + y11a12))).

Therefore za12 = x11a12 + y11a12. Since σ is one to one and consequently
[z − (x11 + y11)]a12 = 0. So [z − (x11 + y11)]R12 = 0.
Now we write z in terms of its components z = z11 + z12 + z21 + z22, and by applying (iv) we have

β(σ(α(z))) = β(σ(α(x11))) + β(σ(α(y11)))

= β(σ(α(e1x11))) + β(σ(α(e1y11)))

= β(σ(α(e1))β(σ(α(x11))) + β(σ(α(e1)))(β(σ(α(y11))))

= β(σ(α(e1)))(β(σ(α(x11)))) + β(σ(α(y11)))

= β(σ(α(e1)))β(σ(α(z)))

= β(σ(α(e1)))β(σ(α(z11 + z12 + z21 + z22)))

= β(σ(α(e1(z11 + z12 + z21 + z22))))

= β(σ(α(z11 + z12))).

Therefore z = z11 + z12. Since βoσoα is one to one and hence z11 = z12 = 0, by uniqueness of direct
sum.
Next using (v) and repeating the above argument with e1 multiplied on the right, one finds that
z12 = 0, thus yielding z = z11 ∈ R11. Therefore z − (x11 + y11) ∈ R11 and consequently (z − (x11 +
y11))R12 = 0. For some x ∈ R, we have e1xe1e1Re2 = 0. Hence e1xe1R(1 − e1) = 0. This implies
that x = 0 by condition (iii). Then 0 = e1xe1 = z − (x11 + y11). So z = x11 + y11. Therefore
β(σ(α(x11))) + β(σ(α(y11))) = β(σ(α(z))) = β(σ(α(x11 + y11))).
�

Lemma 2.6. σ is (α, β)− additive on e1R = R11 +R12.

Proof . Let x11, y11 ∈ R11 and let x12, y12 ∈ R12. By Lemmas 2.3 and 2.4 and 2.5 to see that

β(σ(α((x11 + x12) + (y11 + y12)))) = β(σ(α((x11 + y11) + (x12 + y12))))

= β(σ(α(x11))) + β(σ(α(y11))) + β(σ(α(x12))) + β(σ(α(y12)))

= β(σ(α(x11))) + β(σ(α(x12))) + β(σ(α(y11))) + β(σ(α(y12)))

= β(σ(α(x11 + x12))) + β(σ(α(y11 + y12)))

�

Now we are ready to state the proof of Theorem 2.1.
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Proof . Let x, y ∈ R, there exists z ∈ R such that β(σ(α(z))) = β(σ(α(x))) + β(σ(α(y))). Choose
tα ∈ eαR. By Lemma 2.6, σ is (α, β)− additive on eαRand by (iv) we have,

β(σ(α(tαz))) = (β(σ(α(tα)))(β(σ(α(z)))

= β(σ(α(tα)))[β(σ(α(x)))) + β(σ(α(y)))]

= (β(σ(α(tαx))) + β(σ(α(tαy)))

= (β(σ(α(tαx+ tαy)))

So tαz = tαx + tαy, since βoσoα is one to one. Hence tα[z − (x + y)] = 0. So eαR[z − (x + y)] = 0.
By conditio(ii), z − (x+ y) = 0 or z = x+ y. Then
β(σ(α(x))) + β(σ(α(y))) = β(σ(α(z))) = β(σ(α(x+ y))).

�

Corollary 2.7. If α and β are multiplicative under the conditions of Theorem 2.1, then every mul-
tiplicative isomorphism σ : R → S is additive.

Proof . Under the condition of theorem σ is a (α, β)-additive mapping. In other words βoσoα is
an additive mapping, furthermore since α and β are onto multiplicative isomorphisms. We conclude
that also α−1 and β−1 are multiplicative isomorphisms. In fact,

α(xy) = α(x)α(y)

α−1(α(x)α(y)) = α−1(α(xy)) = xy = α−1(α(x))α−1(α(y)).

Surjectivity α implies the multiplication of α−1. By the main theorem of [7] α−1 and β−1 are additive
and consequently β−1o(βoσoα)oα−1 = σ is an additive mapping. �

Now we recall the following theorem and we state a similar to one.

Theorem 2.8. (see [5, Theorem 1]) Suppose that R is a ring (not necessarily with an identity) and
α and β are ring automorphisms on R. Also assume that there exists an idempotent e(e 6= 0, e 6= 1)
such that the following conditions hold:
(a) ẽRx = 0 implies x = 0;
(b) ẽxeR(1− e) = 0 implies ẽxe = 0;
(c) xR = 0 implies x = 0,
where ẽ = βα−1(e). Then every multiplicative (α, β)− derivation of R is additive.

As a special case of Theorem 2.1, we conclude the following theorem:

Theorem 2.9. Suppose that R is a ring containing a family {eα}α∈A of idempotents, such that for
each α ∈ A and x ∈ R satisfies the following conditions:
(i) xR = 0 implies x = 0;
(ii) eαRx = 0 implies x = 0;
(iii) If eαxeαR(1− eα) = 0 then eαxeα = 0.
If α and β are ring homomorphisms on R and at least one of α and β is one to one then every
multiplicative (α, β)− derivation of R is additive.

Proof . Let d : R → R be a multiplicative (α, β)− derivation, and let

S =
{( β(x) d(x)

0 α(x)

)
|x ∈ R

}
. Obviously S is a ring. Define σ : R → S by
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σ(x) =

(
β(x) d(x)

0 α(x)

)
, for each x ∈ R. Then σ is onto and one to one, since one of α and β is one

to one.
For every x, y ∈ R, we have

σ(xy) =

(
β(xy) d(xy)

0 α(xy)

)
=

(
β(x)β(y) d(x)α(y) + β(x)d(y)

0 α(x)α(y)

)
=

(
β(x) d(x)

0 α(x)

)
×

(
β(y) d(y)

0 α(y)

)
= σ(x)σ(y).

Then σ is multiplicative. Hence it is an isomorphism and by Theorem 2.1, it is additive.

σ(x+ y) =

(
β(x+ b) d(x+ y)

0 α(x+ y)

)
= σ(x) + σ(y)

=

(
β(x) + β(y) d(x) + d(y)

0 α(x) + α(y)

)
.

Hence d is additive. �

Note that by Theorem 2.9 every derivation on a prime ring R ( xRy = 0 implies that x = 0 or
y = 0), with a nontrivial idempotents e ( e 6= 0, 1) is additive.

Example 2.10. Suppose that Mn(C) denotes the algebra of all the n× n complex matrices.
Set ek = [aij]n×n, (k = 1, 2, ..., n), where

aij =

{
1 if i = j = k

0 otherwise.
(2.8)

In other words ek is the diagonal matrix in which the only nonzero element is the kth element on its
diagonal. Theorem 2.9 implies that every multiplicative (α, β)−derivation on Mn(C) in which one
of α and β is one to one is additive.

Example 2.11. Let X be a Banach space such that dim(X ) ≥ 2 and let F (X ) the algebra of all
finite rank operators on X . Using by Hahn Banach theorem, one can show that F (X ) is a prime
ring. Choose a nonzero idempotent P of F (X ). If T ∈ F (X ), then
(i) TF (X ) = 0 implies T = 0.
(ii) PF (X )T = 0 implies T = 0.
(iii) PTPF (X )(I − P ) = 0 implies PTP = 0.
Hence if one of the mapping α and β is one to one, every multiplicative derivation on F (X ) is additive.
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