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Abstract

The combination of generalization Type-I hybrid censoring and generalization Type-II hybrid cen-
soring schemes create a new censoring called a unified hybrid censoring scheme. Therefore, in this
study, the E-Bayesian estimation of parameters of the inverse Weibull distribution is obtained under
the unified hybrid censoring scheme, and the efficiency of the proposed method was compared with
the Bayesian estimator using Monte Carlo simulation and a real data set.
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1. Introduction

One of the most popular distribution in modeling and analyzing the life time data is Weibull dis-
tribution because of the flexibility of the probability density function (pdf) and failure rate function.
For see some applications of the Weibull distribution, readers may refer to [8, 9]. Depending on the
value of the shape parameter, its pdf can be decreasing or uni-modal and the failure rate function
can be either decreasing or increasing. Therefore, in real data analysis, when the data indicate a
monotone hazard function, the Weibull distribution has been extensively used. However, in some
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real data sets, the analyzing data indicate a non-monotone hazard function. In such situations,
use of Weibull distribution is inappropriate. The inverse Weibull distribution (denoted by IWD)
model has been derived as a suitable model for describing the degradation phenomena of mechanical
components, such as the dynamic components of diesel engines, see for example [18]. The physical
failure process given by [7] also leads to the IW model. They showed that the IW model provides a
good fit to survival data such as the times to breakdown of an insulating fluid subject to the action
of constant tension, see also [19]. Interpretation of IW distribution in the context of load strength
relationship for a component was provided by [2].

In reliability engineering research, IW distribution is often used in statistical analysis of life time
and response time data. [15] in their theoretical analysis of IW distribution mention that numerous
failure characteristics such aswear out periods and infant mortality can be modeled through IW
distribution. They mention about the wide range of areas in reliability analysis where IW distribution
model can be used successfully. [20] mention that IW distribution is an appropriate model for
situations where hazard function is unimodal. They further mention the distribution as one of the
popular distributions in complementary risk problems.

As the authors known, the Bayes estimators of parameters of inverse Weibull distribution firstly
was introduced by [16]. They proposed the Bayes estimator based on complete, type I and type II
censored samples under general entropy and squared error loss functions. The hierarchical Bayesian
prior distribution was primarily introduced by [17]. Then, it was examined by [10] and expected
Bayesian (denoted by E-Bayesian) and hierarchical Bayesian (denoted by H-Bayesian) approaches
were introduced. Recently, E-Bayesian and H-Bayesian methods have been used by [11, 12] to
estimate the parameter of exponential distribution and reliability of the binomial distribution. In
this context, [14] estimate the reliability of the Type 12 distribution based on Type II progressive
censoring samples. Estimation of parameters in Pascal distribution was studied by [24] and [25]. [26]
using these approaches in order to estimate the scale parameter of Gompertz distribution under type
II censoring schemes based on fuzzy data. Also, [13] gives the property of E-Bayesian estimation and
H-Bayesian estimation of the system reliability parameter.

In Bayesian estimation approach, the loss functions have a key role. Linear-Exponential loss func-
tion (known as the LINEX) is a useful asymmetric loss function was introduced by [22]. This function
rises approximately exponentially on one side of zero and approximately linearly on the other side.
Note that in especial case, the squared-error loss function can be obtained as a particular member
of the LINEX loss function for a specific choice of the loss function parameter. Since the estima-
tors under asymmetric loss function involve integral expressions, which are not analytically solvable,
the Bayesian estimation under this type of loss function is not frequently discussed. Therefore, one
has to use the numerical quadrature techniques or certain approximation methods for the solutions.
Lindley’s approximation technique is one of the methods suitable for solving such problems.

In the present work, the E-Bayesian estimation parameters of IW distribution is studies based
on the unified hybrid censored samples under square error and LINEX loss functions. This paper is
organized as follows: First, in Section 2, we recall the concept of IW distribution and then formulated
the problem. Then, in Section 3, we investigated the E-Bayesian estimation of parameters in IW
distribution. Simulation results and an numerical example are prsented in Section 4. Finally, a brief
conclusion presented in Section 5.

2. Mathematical formulation

Suppose that the random variable Y has a Weibull distribution with the pdf

f (y;α, λ) = αλyα−1e−λyα , y > 0.
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Then, the random variable X = 1
Y
has an Inverse Weibull distribution with the pdf

f (x;α, λ) = αλx−(α+1)e−λx−α

, x > 0. (2.1)

The quantities α > 0 and λ > 0 are the shape and scale parameters, respectively. From now on
it will be denoted by IW(α, λ). If X follow IW(α, λ), then the distribution function of X is given by

F (x;α, λ) = e−λx−α

, x > 0. (2.2)

Consider a lifetime test with n units. Suppose that the units have independent and identically life-
time with the probability density function f(x; θ) and the cumulative distribution function F (x; θ),
and Y1:n < · · · < Yn:n are the lifetime of the units until their failure. For the first time, [6] investigated
a scheme in a survival experiment in which the experiment ended at time T ∗ = min(Yr:n , T ) and
the values of T and r were pre-determined. [4] called this Type-I hybrid censoring. In this scheme,
there may be very few failures up to time T. They investigated a scheme in which the experiment
ended at time T ∗ = max(Yr:n , T ). This scheme was called the Type-II hybrid censoring scheme.
Obviously, this scheme does not have the problem of the previous scheme. Even before time T , all
units can failure, but the time to test is not predictable. [3] introduced two Types of generalization
hybrid censoring of Type I and II, so that the problem has somewhat improved the previous two
schemes (not having the minimum failure in the Type-I hybrid censoring scheme and prolonging the
test time in the Type-II hybrid censoring scheme).

In generalization Type-I hybrid censoring scheme, suppose T ∈ (0, ∞) and the values of k and
r such that k < r are predetermined. If the kth failure occurs before time T , the experiment at
min(Yr:n , T ) and if, after time T , the experiment ends at Yk:n. Therefore, this scheme guarantees at
least k failures. In general Type-II hybrid censoring scheme, assume that r and T1, T2 ∈ (0, ∞),
so that T1 < T2, are constant and predetermined values. If the rth failure occurs before time T1, the
experiment at time T1, if between T1 and T2, occurs at time Yr:n, and if after T2, the experiment ends
at T2. Therefore, this scheme guarantees that the experiment ends up at time T2.

The combination of the above scheme creates a new censoring called a unified hybrid censoring
scheme. This scheme was first introduced by [1]. In this scheme, the values T1, T2, r, and k, so
that T1 < T2 and k < r, are predetermined before the experiment begins. If the kth failure occurs
before time T1, the experiment at time min(max (Yr:n, T1) , T2), if between T1 and T2, occurs at time
min(Yr:n , T2), and if after T2, the experiment ends at Yk:n. In this censoring, one of the following six
occurrences occurs. Suppose that for j = 1,2, dj the number of failures is up to Tj. In this case, we
have six typs of observations.

1. If 0 < Yk:n < Yr:n < T1 < T2, the experiment ends at time T1 with D failures.

2. If 0 < Yk:n < T1 < Yr:n < T2, the experiment ends with the failure of rth.

3. If 0 < Yk:n < T1 < T2< Y r:n, the experiment ends at time T2 with d2 failures.

4. If 0 < T1 < Yk:n < Yr:n < T2, the experiment ends at time Yr:n.

5. If 0 < T1 < Yk:n < T2 < Yr:n, experiment ends at time T2 with d2 failures.

6. If 0 < T1 < T2 < Yk:n < Yr:n, The experiment ends with the failure of kth.

Note that in the first case, d1 = d2 = D, T1 < Y(D+1):n and r ≤ D, so that the experiment

(D + 1)th does not occur before T1, and in the third and fifth cases, T2 < Y(d2+1):n and k ≤ d2 are

such that the (d1 + 1)th experiment does not occur before T2. If c is the stopping point and d is the
number of failures until time c, the likelihood function of this hybrid censored observed sample is

L (θ | y) = n!

(n− d)!

d∏
i=1

f(yi:n; θ)[1− F (c)]n−d (2.3)
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where y = (y1:n, . . . , yd:n), dϵ{D, d1, d2, k, r}, and cϵ{T1, T2, Yr:n, Yk:n }.
In this paper, we aim to proposed the E-Bayesian estimation for parameters of IW distribution

based on these unified censoring schems.

3. The Bayes and E-Bayes Estimation of the Parameters α and λ

In this section, we have obtained the Bayes and E-Bayes estimators of the parameters α and λ
under the symmetric and asymmetric loss functions. Squared error loss (SEL) is the common used
loss function defined as

L(θ̂, θ) = (θ̂ − θ)2, (3.1)

where θ̂ is the estimator of the parameter θ. It is well known that the Bayes estimator under the
above symmetric loss function is the posterior mean.

The LINEX loss function with parameter a and k is defined by

L(θ̂, θ) = k{ea(θ̂−θ) − a(θ̂ − θ)− 1}, (3.2)

where θ̂ is the estimator of the parameter θ. The Bayes estimator under LINEX loss function is given
by

θ̂BL = −1

k
lnEθ(e

kθ), (3.3)

where Eθ stands for posterior expectation.
Suppose that Y1:n, ..., Yn:n be a random sample based on unified hybrid censored schems and are

identical to the probability density function 2.1. In order to using the Bayesian approach, we need
prior distribution for the parameters α and λ. It is assumed that the parameters α and λ have
independent prior distributions Gamma(a1, b1) and Gamma(a2, b2). Based on above assumptions,
we have that

π1 (α|a1, b1) =
ba11

Γ(a1)
αa1−1e−b1α, α > 0,

π2 (λ|a2, b2) =
ba22

Γ(a2)
λa2−1e−b2λ, λ > 0.

where a1, b1, a2 and b2 are positive and known values.

Remark 3.1. According to Han (1997), a1 and b1 should be chosen to guarantee that π (α | a1, b1)
is a decreasing function of α. The derivative of π (α | a1, b1) with respect to α is

dπ (α | a1, b1)
dα

=
ba11 αa1−2e

−b1α

Γ (a1)
((a1 − 1)− b1α) .

Thus, b1 > 0 and 0 < a1 < 1. Given a1 = 1, and the larger the value of b1, the thinner the
tail of the density function is. Berger (1985) showed that the thinner tailed prior distribution often
reduces the robustness of the Bayesian estimation. Consequently, the hyperparameter b1 should be
chosen under the restriction 0 < b1 < c1, where c1 is a given upper bound (c1 is a positive constant).
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In this study, we only consider the case when a1 = 1. In this case, the density function π (α | a1, b1)
becomes

π (α | b1) = b1e
−b1α , α > 0.

Also, we consider the perior distribution b1 as π (b1) =
1
c1

, 0 < b1 < c1.
As the same way, π (λ | a2, b2) becomes

π (λ | b2) = b2e
−b2λ , λ > 0,

and π (b2) =
1
c2

, 0 < b2 < c2.
Let h(α, λ) be a function of α and λ. Therefore, the Bayesian estimator under square error loss
function is given by

ĥ = E(h(α, λ)|y) =
∫∞
0

∫∞
0

h(α, λ)M(α,λ|y)dαdλ∫∞
0

∫∞
0

M(α,λ|y)dαdλ
, (3.4)

where

M (α, λ | y) ∝ αd

(
d∏

i=1

yi:n

)−(α+1)

e−b1α

n−d∑
j=0

(−1)j

j! (n− d− j)!
fλ|α (a

∗
1, b∗1(j)) ,

and fλ|α (a
∗
1, b∗1(j)) is the density of Gamma distribution with shape parameter a∗1 = d + 1 and

scale parameter

b∗1(j) = b2 +
d∑

i=1

y−α
i:n + jc−α.

Now, suppose that h (α, λ) = α in Equation 3.4. Thus, the Bayesian estimations for the α under
square loss function, denoted by α̂BS(b1, b2), is given by

α̂BS(b1, b2) = (3.5)∑n−d
j=0

(−1)j

j!(n−d−j)!

∫∞
0

(
α

b∗1(j)

)d+1(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

d!
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

,

Also, the Bayesian estimation of parameter λ under square loss function, λ̂BS(b1, b2), is given by
the following equation by replacing h (α, λ) = λ in Equation 3.4

λ̂BS(b1, b2) = (3.6)

(d+ 1)
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+2

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα∑n−d
j=0

(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

.

In similar way, the Bayesian estimations for the α and λ, under LINEX loss function, denoted by
α̂BL and λ̂BL, respectively, are as follows

α̂BL(b1, b2) = (3.7)

−1

k
log


∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

(
α

b∗1(j)

)d+1(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

d!
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

 ,
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λ̂BL(b1, b2) = (3.8)

−1

k
log

(d+ 1)
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+2

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα∑n−d
j=0

(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

 .

The following definition was originally proposed by [11] for E-Bayesian estimation.

Definition 3.2. With θ̂B (b1, b2) being continuous

θ̂EB =

∫ ∫
D

θ̂B (b1, b2) π (b1, b2)db1db2

is called the E-Bayesian estimation of θ which is assumed to be finite, where D is the domain of b1
and b2, θ̂B (b1, b2) is the Bayesian estimation of θ with hyperparameters b1 and b2, and π (b1, b2) is
the density function of b1 and b2 over D.

Definition 3.2 indicates that the E-Bayesian estimation of θ is just the expectation of the Bayesian
estimation of θ for all the hyperparameters.

Therefore, with respect to Equations 3.5 and 3.6 and Definition 3.2, the E-Bayesian estimation
of parameters α and λ under square loss function are obtained respectively as follows

(3.9)

α̂EBS =

1

c1c2

∫ c1

0

∫ c2

0


∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

(
α

b∗1(j)

)d+1(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

d!
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

 db1db2,

(3.10)

λ̂EBS =

1

c1c2

∫ c1

0

∫ c2

0

(d+ 1)
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+2

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα∑n−d
j=0

(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

 db1db2.

Also, with respect to 3.7 and 3.8 and Definition 3.2, the E-Bayesian estimation of parameters α and
λ under LINEX loss function are obtained respectively as follows

α̂EBL = (3.11)

− 1

kc1c2

∫ c1

0

∫ c2

0

log


∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

(
α

b∗1(j)

)d+1(∏d
i=1 yi:n

)−(α+1)

e−b1αdα

d!
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα


 db1db2,

λ̂EBL =

− 1

kc1c2

∫ c1

0

∫ c2

0

log

(d+ 1)
∑n−d

j=0
(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+2

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα∑n−d
j=0

(−1)j

j!(n−d−j)!

∫∞
0

αd

b∗1(j)
d+1

(∏d
i=1 yi:n

)−(α+1)

e−b1αdα


 db1db2.
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4. Numerical Experiments

In this section, a Monte Carlo simulation and a numerical example are presented to illustrate all
the estimation methods described in the section 3.

4.1. Simulation Study

In thissection, we present some results using Monte Carlo simulations to compare the performance
of the different methods based on unified hybrid censored schemes. To this end, the Bayesian and
E-Bayesian estimation of parameters are compute and compare based on the mean square error
(MSE) criterion. For this purpose, we generate 50 numbers from IW distribution with α = 2.5 and
λ = 0.05. Then, the Bayesian and E-Bayesian estimations of α and λ based on square and LINEX
loss functions were computed using Equations 3.5 to 3.12. The performance of all estimates have
been compared numerically of the MSE value. This process have been iterated 1000 times and the
average all estimates and their MSEs were computed and reported in Tables 1 to 4. The simulation
is conducted by R software.

Drawn upon the simulation results, we found out that

1. According to reported results in Tables 1 and 2, in both the cases (b1, b2) and for fixed values
of r, k and T2 , when T1 is increased, the performance of the E-Bayesian estimation of the
parameters α and λ is better than their Bayesian estimations. Also, the MSE of all estimators
decreases with increasing T1 and the numerical value of the estimators approaches the real
values of the parameters by increasing T1.

2. According to Tables 3 and 4, in both the cases (b1, b2), for fixed r, k and T1, when T2 is
increased, the performance of the Bayesian estimation of the parameters α and λ is better
than their E-Bayesian estimations. Also, the MSE of all estimators decreases with increasing
T2 and the numerical value of the estimators approaches the real values of the parameters by
increasing T2.

4.2. Application to real data set

In this subsection, a real data set is used to analyze the estimation methods proposed for pa-
rameters α and λ. The data set represent repair times (in hour) for an airborne communication
transceiver. They were first analyzed by [23]. The data set is presented in Table 5. Before analyzing
the data, we fit the IW model to this data set. We used the Kolmogorov-Smirnov (K-S) distance
between the fitted the empirical distribution functions, and corresponding p-values. It is observed
that for this data, the K-S test statistic and its p-value are 0.08069 and 0.9255, respectively. In
addition, the values of Anderson-Darling and the Cramer Von-Mises statistic were obtained 11.001
and 0.0509, respectively. Hence, we conclude that the IW model fit quite well to this data set.

Moreover, to compute the Bayesian and E-Bayesian estimations, we prefer to use the non-
informative prior, because we do not have any prior information. On the other hand, the non-
informative prior provides prior distributions which are not proper, we adopt the suggestion of
Congdon [5] by choosing b1 = b2 = 0.01. Therefore, for c1 = c2 = 1, for these data, six unified hybrid
censored schemes are considered under the following conditions

Scheme 1: K = 14, r = 30, T1 =3.5, T2 = 4.5.
Scheme 2: K = 19, r = 25, T1 = 1.5, T2 = 3.
Scheme 3: K = 19, r = 30, T1 = 1.5, T2 = 2.
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Table 1: Estimation the parameter α for with T2 = 100
SEL LINEX

(b1, b2) (k, r) T1 α̂B(MSE) α̂EB(MSE) α̂B(MSE) α̂EB(MSE)
(1.5, 2) (11, 20) 80 1.0084(0.9722) 1.3116(0.9582) 1.9123(0.8765) 2.1230(0.8012)

85 1.6295(0.9291) 1.8872(0.8110) 2.1561(0.7865) 2.3478(0.7231)
95 2.2896(0.8350) 2.5735(0.7265) 2.4561(0.7012) 2.5011(0.6987)

(15, 20) 80 0.9002(1.2943) 1.4889(1.0106) 2.1345(0.9878) 2.3421(0.9216)
85 2.0657(1.0263) 2.4462(0.9644) 2.2786(0.8906) 2.3565(0.8542)
95 2.3750(0.9364) 2.6011(0.9012) 2.4678(0.8123) 2.5102(0.7996)

(18, 20) 80 0.9603(0.7655) 1.2968(0.7446) 2.2998(0.7011) 2.4987(0.6977)
85 1.0417(0.6260) 2.1999(0.5859) 2.3224(0.6056) 2.4078(0.5786)
95 1.8491(0.5438) 2.5619(0.4673) 2.4776(0.5244) 2.5017(0.5009)

(12, 25) 80 3.9689(1.7479) 2.3963(1.0443) 2.1236(0.8789) 2.1787(0.8081)
85 2.8977(0.9601) 2.4516(0.8931) 2.1921(0.8177) 2.4980(0.7998)
95 2.7533(0.8093) 2.5567(0.7713) 2.4256(0.7665) 2.5111(0.7234)

(12, 35) 80 3.1183(1.0693) 2.2918(0.9778) 2.3702(0.7876) 2.4421(0.7543)
85 2.9658(1.0433) 2.3658(0.8797) 2.4098(0.7034) 2.4587(0.6971)
95 2.7705(0.8388) 2.5194(0.6179) 2.4642(0.6897) 2.5098(0.6542)

(2.5, 3) (11, 20) 80 1.2644(1.2980) 1.6612(1.2388) 2.1122(0.9876) 2.2341(0.8675)
85 1.5360(1.1631) 2.2058(1.1217) 2.1343(0.8765) 2.3564(0.8432)
95 2.2346(0.9901) 2.5497(0.9096) 2.3571(0.8431) 2.5139(0.8156)

(18, 20) 80 1.8603(1.6419) 2.1271(1.5753) 2.5812(1.1235) 2.5431(1.0971)
85 2.0782(0.9715) 2.2608(0.8473) 2.5165(0.9042) 2.4981(0.8234)
95 2.9904(0.7014) 2.5826(0.6473) 2.7654(0.7012) 2.5511(0.6879)

(12, 25) 80 1.7583(1.4209) 2.1329(1.0292) 2.6211(1.2341) 2.5987(0.9765)
85 2.0836(1.0031) 2.2943(0.9421) 2.6170(0.9564) 2.5632(0.8567)
95 2.9015(0.9064) 2.5290(0.8547) 2.5879(0.9011) 2.5231(0.8241)

(12, 35) 80 1.0192(1.1086) 2.0194(1.0041) 2.7167(0.9786) 2.6981(0.9775)
85 1.8166(0.9388) 2.2617(0.8259) 2.7090(0.9064) 2.6017(0.9012)
95 2.1086(0.8166) 2.5130(0.7741) 2.6098(0.8025) 2.5045(0.7981)

Table 2: Estimate, the SEL and LINEX loss functions for λ with T2 = 100
SEL LINEX

(b1, b2) (k, r) T1 λ̂B(MSE) λ̂EB(MSE) λ̂B(MSE) λ̂EB(MSE)
(1.5, 2) (11, 20) 80 0.01001(0.3658) 0.0202(0.1516) 0.0347(0.3076) 0.0567(0.1412)

85 0.0138(0.2454) 0.0208(0.1109) 0.0398(0.2211) 0.0528(0.1397)
95 0.0755(0.1328) 0.0569(0.0990) 0.0687(0.1308) 0.0505(0.1280)

(15, 20) 80 0.0854(0.1541) 0.0782(0.1192) 0.0776(0.1488) 0.0691(0.1117)
85 0.0832(0.0865) 0.0721(0.0745) 0.0655(0.0815) 0.0580(0.0711)
95 0.0728(0.0791) 0.0516(0.0665) 0.0702(0.0752) 0.0512(0.0625)

(18, 20) 80 0.0129(0.1819) 0.0215(0.1126) 0.0342(0.1751) 0.0497(0.1089)
85 0.0269(0.1121) 0.0387(0.0946) 0.0378(0.1076) 0.0510(0.1025)
95 0.0393(0.1011) 0.0509(0.0897) 0.0416(0.0981) 0.0502(0.0801)

(12, 25) 80 0.0902(0.0998) 0.0219(0.0813) 0.0765(0.0906) 0.0621(0.0761)
85 0.0825(0.0743) 0.0325(0.0663) 0.0692(0.0705) 0.0608(0.0612)
95 0.0363(0.0641) 0.0629(0.0547) 0.0582(0.0613) 0.0521(0.0517)

(12, 35) 80 0.0125(1.0147) 0.0282(0.9998) 0.0349(0.9128) 0.0652(0.8349)
85 0.0129(0.8813) 0.0392(0.7843) 0.0412(0.8012) 0.0492(0.7121)
95 0.0219(0.7663) 0.0563(0.6940) 0.0432(0.0715) 0.0511(0.6015)

(2.5, 3) (11, 20) 80 0.0121(0.7215) 0.0298(0.6643) 0.0299(0.6918) 0.0398(0.6137)
85 0.0204(0.5213) 0.0359(0.4037) 0.0312(0.4911) 0.0511(0.3998)
95 0.0396(0.3039) 0.0588(0.2820) 0.0423(0.2912) 0.0506(0.2180)

(18, 20) 80 0.0171(0.6818) 0.0224(0.5188) 0.0265(0.6231) 0.0409(0.4912)
85 0.0271(0.4224) 0.0394(0.3748) 0.0356(0.4019) 0.0521(0.3562)
95 0.0317(0.2715) 0.0495(0.1178) 0.4109(0.2137) 0.0511(0.1018)

(12, 25) 80 0.0115(0.6393) 0.0239(0.5137) 0.0285(0.6012) 0.0617(0.4981)
85 0.0284(0.4340) 0.0312(0.3915) 0.0350(0.4008) 0.0592(0.3128)
95 0.0317(0.2715) 0.0511(0.2705) 0.0391(0.2016) 0.0513(0.1919)

(12, 35) 80 0.0163(0.2107) 0.0317(0.1092) 0.0287(0.2085) 0.0712(0.0986)
85 0.0327(0.1629) 0.0414(0.0831) 0.0399(0.1521) 0.0655(0.0877)
95 0.0406(0.1204) 0.0517(0.0772) 0.0433(0.1194) 0.0510(0.0712)
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Table 3: Estimate, the SEL and LINEX loss functions for α with T1 = 45
SEL LINEX

(b1, b2) (k, r) T2 α̂B(MSE) α̂EB(MSE) α̂B(MSE) α̂EB(MSE)
(1.5, 2) (11, 20) 90 0.99575(1.0621) 0.63391(1.2444) 1.76211(0.9128) 1.56411(1.1121)

110 2.31118(0.8306) 1.15315(0.9192) 2.43125(0.8127) 2.12341(0.9071)
150 2.63391(0.7622) 1.79575(0.7944) 2.51010(0.7123) 2.34321(0.7876)

(15, 20) 90 1.70658(1.0376) 0.89371(1.9544) 2.11231(0.9765) 1.14564(1.7896)
110 2.01852(0.9089) 1.05520(1.4909) 2.32111(0.8675) 2.12897(1.3678)
150 2.46112(0.8360) 1.44802(0.9594) 2.47652(0.8095) 2.34765(0.9018)

(18, 20) 90 1.13082(0.8311) 0.81276(0.9279) 2.15234(0.7986) 1.91234(0.8867)
110 1.93099(0.7749) 1.00862(0.8242) 2.27865(0.7098) 2.18970(0.8623)
150 2.61224(0.6582) 1.88063(0.7499) 2.49876(0.6128) 2.37865(0.7021)

(12, 25) 90 1.18227(0.8584) 0.9285(0.9079) 2.34121(0.7789) 1.98765(0.8765)
110 1.98892(0.7596) 1.64098(0.8117) 2.41112(0.7214) 2.21112(0.8054)
150 2.43747(0.6094) 1.85008(0.7384) 2.51106(0.5987) 2.39876(0.7011)

(12, 35) 90 1.57187(1.3895) 1.10972(1.4073) 2.10456(1.2454) 1.67543(1.3786)
110 1.98079(1.2069) 1.64098(1.2506) 2.38976(1.1007) 2.21211(1.2070)
150 2.61495(0.8416) 2.05601(0.9255) 2.50107(0.8097) 2.42134(0.9011)

(2.5, 3) (11, 20) 90 1.82853(1.3840) 1.42421(1.5504) 2.29087(1.2211) 2.11098(1.4712)
110 2.18507(1.1109) 1.88956(1.4645) 2.24098(1.1024) 2.17099(1.3411)
150 2.70777(0.9614) 2.16277(1.0019) 2.60211(0.9211) 2.34211(0.9765)

(18, 20) 90 1.10786(0.7908) 0.83458(1.0080) 2.21345(0.7564) 1.98011(0.9542)
110 2.11391(0.7324) 1.10092(0.8379) 2.34256(0.7019) 2.27778(0.9459)
150 2.45542(0.6246) 2.08759(0.7161) 2.52134(0.6012) 2.35622(0.6985)

(12, 25) 90 0.99264(1.0783) 0.89101(1.8420) 1.87652(0.97678) 1.13123(1.5467)
110 1.12965(0.9910) 1.78883(1.6249) 2.32145(0.9437) 2.27123(1.1076)
150 2.42852(0.8991) 2.13112(1.1214) 2.51127(0.8113) 2.34212(0.9765)

(12, 35) 90 1.92323(1.7885) 1.25342(1.8667) 2.09876(1.6542) 1.98760(1.7655)
110 2.26944(1.6021) 1.79186(1.7326) 2.37421(1.6227) 2.08976(1.7065)
150 2.51287(0.9408) 2.16811(1.1667) 2.50611(1.4532) 2.32451(1.5432)

Table 4: Estimate, the SEL and LINEX loss functions for λ with T1 = 45
SEL LINEX

(b1, b2) (k, r) T2 λ̂B(MSE) λ̂EB(MSE) λ̂B(MSE) λ̂EB(MSE)
(1.5, 2) (11, 20) 90 0.03067(0.0899) 0.01754(0.3560) 0.03987(0.0754) 0.02876(0.3112)

110 0.04394(0.0708) 0.02913(0.2360) 0.49017(0.0697) 0.03456(0.2715)
150 0.05997(0.0515) 0.03434(0.1644) 0.05112(0.0508) 0.04567(0.1546)

(15, 20) 90 0.02808(0.1615) 0.02031(0.2092) 0.03145(0.1534) 0.02756(0.1497)
110 0.03180(0.1279) 0.02436(0.1784) 0.03912(0.1190) 0.03113(0.1220)
150 0.04985(0.1021) 0.03367(0.1548) 0.05011(0.0987) 0.04123(0.1154)

(18, 20) 90 0.02733(0.1154) 0.01501(0.1379) 0.03247(0.1081) 0.02256(0.1101)
110 0.04519(0.0828) 0.02207(0.1065) 0.04917(0.0798)) 0.03245(0.1013)
150 0.05386(0.0684) 0.03622(0.0856) 0.05117(0.0611) 0.04125(0.0988)

(12, 25) 90 0.03324(0.0871) 0.02761(0.1054) 0.03987(0.0765) 0.03011(0.0806)
110 0.04360(0.0802) 0.03335(0.0910) 0.04811(0.0709 0.03812(0.0756)
150 0.05222(0.0792) 0.04173(0.0810) 0.05012(0.0654) 0.04213((0.0719)

(12, 35) 90 0.02557(0.1393) 0.01339(0.1972) 0.03156(0.1280) 0.03098(0.1765)
110 0.03144(0.1076) 0.02542(0.1748) 0.04254(0.0987) 0.03879(0.1628)
150 0.04888(0.0813) 0.03173(0.1519) 0.05109(0.0745) 0.04099(0.1435)

(2.5, 3) (11, 20) 90 0.02766(0.1429) 0.01985(0.1841) 0.03011(0.1399) 0.02118(0.1705)
110 0.03932(0.1283) 0.02065(0.1522) 0.04102(0.1212) 0.02876(0.1254)
150 0.05599(0.0882) 0.04142(0.1248) 0.04454(0.0765) 0.03657(0.1175)

(15, 20) 90 0.01655(0.2212) 0.01043(0.2697) 0.02542(0.2016) 0.01968(0.2453)
110 0.03960(0.1367) 0.03177(0.1826) 0.04139(0.1210) 0.03890(0.1721)
150 0.04705(0.0917) 0.03644(0.1591) 0.05497(0.0887) 0.04338(0.1327)

(18, 20) 90 0.02150(0.0937) 0.01415(0.1245) 0.03566(0.0912) 0.01879(0.1119)
110 0.03133(0.0854) 0.02014(0.1218) 0.035(0.08127) 0.02211(0.1092)
150 0.04753(0.0625) 0.03622(0.1078) 0.05124(0.5809) 0.02978(0.0965)

(12, 25) 90 0.01674(0.0901) 0.01173(0.1533) 0.02563(0.0865) 0.02011(0.1434)
110 0.03900(0.0881) 0.02676(0.1346) 0.04098(0.0774) 0.03115(0.1228)
150 0.05142(0.0601) 0.03914(0.1155) 0.05102(0.0594) 0.04231(0.1093)

(12, 35) 90 0.01886(0.1118) 0.01283(0.2455) 0.02131(0.1010) 0.01789(0.2129)
110 0.03178(0.0758) 0.02982(0.1902) 0.03908(0.0712) 0.03654(0.1897)
150 0.04825(0.0616) 0.03501(0.1564) 0.05053(0.0598) 0.04565(0.1452)
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Table 5: Repair times (in h) for an airborne communication transceiver.
0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0
3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0
7.5 8.8 9.0 10.3 22 24.5

Scheme 4: K = 30, r = 32, T1 = 2, T2 = 4.
Scheme 5: K = 30, r = 32, T1 = 1, T2 = 3.
Scheme 6: K = 18, r = 20, T1 = 1, T2 = 3.

In all shemes, the Bayesian and E-Bayesian estimation of parameters α and λ have been computed
using Equations 3.5-3.12 and presented in Table 6. Moreover, the maximum likelihood estimation for
parameters α and λ were obtained based on complete uncensored data set as 1.011941 and 1.125229,
respectively. Based on reported results in Table 6, we can conclude that the E-Bayesian estimation of
the parameters are closer to their estimated value in the complete sample in all schemes. Therefore,
we can say that the E-Bayesian method for parameters estimation has a better than other methods.

Table 6: Bayesian and E-Bayesian estimations of parameters α and λ, under SEL and LINEX loss functions
SEL LINEX

Scheme α̂B α̂EB λ̂B λ̂EB α̂B α̂EB λ̂B λ̂EB

1 0.075438 0.094656 0.827177 1.144378 0.865123 0.998675 1.109780 1.132334
2 0.940139 1.009714 1.022434 1.108393 1.011342 1.012321 1.111332 1.129987
3 0.983522 1.013935 1.772656 1.031561 1.001987 1.010453 1.145987 1.134567
4 1.263046 1.030439 1.795299 1.176216 1.178921 1.012432 1.142564 1.121342
5 0.925065 1.013107 2.348933 1.025538 1.111232 1.010707 1.898765 1.191231
6 2.006398 1.094094 2.575507 1.500216 1.675432 1.098765 2.132453 1.232132

5. Conclusion

In this study, the Bayesian and E-Bayesian estimations of the inverse Weibull distribution param-
eters were obtained under the unified hybrid censored scheme with squared error and LINEX loss
functions. Six unified hybrid censored schemes were considered and using a real data set. Also, using
Monte Carlo simulation the conditions of superiority of the estimator were obtained with respect to
each other. The obtained results show that in all schemes the E-Bayesian estimation approach is
better than Bayesian and maximum likelihood estimations.
Imprecise Bayes and E-Bayes estimation under the unified censored scheme may be a suitable topic
for future research [27]. In addition, further research is required to investigate some important topics
in reliability analysis such as mean time to failure, failure rate, and mean residual life, under vague
environments especially based on imprecise Weibull lifetime data [21, 26].
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