
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,753 |
تعداد دریافت فایل اصل مقاله | 7,656,167 |
The arrow domination in graphs | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 36، دوره 12، شماره 1، مرداد 2021، صفحه 473-480 اصل مقاله (359.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4826 | ||
نویسندگان | ||
Suha Jaber Radhi1؛ Mohammed A. Abdlhusein* 2؛ Ayed Elayose Hashoosh1 | ||
1Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
2Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
تاریخ دریافت: 20 آذر 1399، تاریخ بازنگری: 24 دی 1399، تاریخ پذیرش: 16 بهمن 1399 | ||
چکیده | ||
The arrow domination is introduced in this paper with its inverse as a new type of domination. Let $G$ be a finite graph, undirected, simple and has no isolated vertex, a set $D$ of $V(G)$ is said an arrow dominating set if $|N(w)\cap (V-D)|=i$ and $|N(w)\cap D|\geq j$ for every $w \in D$ such that $i$ and $j$ are two non-equal positive integers. The arrow domination number $\gamma_{ar}(G)$ is the minimum cardinality over all arrow dominating sets in $G$. Essential properties and bounds of arrow domination and its inverse when $i=1$ and $j=2$ are proved. Then, arrow domination number is discussed for several standard graphs and other graphs that formed by join and corona operations. | ||
کلیدواژهها | ||
Dominating set؛ Arrow dominating set؛ Arrow domination number | ||
مراجع | ||
[1] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algort. Appl. 2020 (2020) 2150009. [2] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algort. Appl. 2020 (2020) 2150038. [3] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. (accepted to appear)(2021). [4] M.A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math. (accepted to appear) (2021). [5] M.N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algort. Appl. 12(2) (2020) 2050025. [6] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. M. Rae, [1,2]-Set in graphs, Discrete Appl. Math. 161(18) (2013) 2885–2893. [7] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969. [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs -Advanced Topics, Marcel Dekker Inc., 1998. [9] R.M. Jeya Jothi and A. Amutha, An investigation on some classes of super strongly perfect graphs, Appl. Math. Sci. 7(65) (2013) 3239–3246. [10] A. Khodkar, B. Samadi and H. R. Golmohammadi, (k, ´k, ´´k)−Domination in graphs, J. Combinatorial Math. Combinatorial Comput. 98 (2016) 343–349. [11] C. Natarajan, S.K. Ayyaswamy and G. Sathiamoorthy, A note on hop domination number of some special families of graphs, Int. J. Pure Appl. Math. 119(12) (2018) 14165–14171. [12] O. Ore, Theory of Graphs, American Mathematical Society, Providence, R.I., 1962. [13] M. S. Rahman, Basic Graph Theory, Springer, India, 2017. [14] R.J. Wilson, Introduction to Graph Theory, Longman Group Ltd, fourth edition, 1998. [15] H.J. Yousif and A. A. Omran, The split anti fuzzy domination in anti fuzzy graphs, J. Phys.: Conf. Ser. 2020 (2020) 1591012054. | ||
آمار تعداد مشاهده مقاله: 15,874 تعداد دریافت فایل اصل مقاله: 968 |