
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,367 |
Solution of a generalized two dimensional fractional integral equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 37، دوره 12، شماره 1، مرداد 2021، صفحه 481-492 اصل مقاله (420.42 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4827 | ||
نویسندگان | ||
Dipankar Saha* ؛ Mausumi Sen | ||
Department of Mathematics, National Institute of Technology Silchar, India | ||
تاریخ دریافت: 02 خرداد 1398، تاریخ بازنگری: 18 دی 1398، تاریخ پذیرش: 23 بهمن 1398 | ||
چکیده | ||
This paper deals with existence and local attractivity of solution of a quadratic fractional integral equation in two independent variables. The solution space has been considered to be the Banach space of all bounded continuous functions defined on an unbounded interval. The fundamental tool used for the purpose is the notion of noncompactness and the celebrated Schauder fixed point principle. Finally an example has been provided at the end in support of the result. | ||
کلیدواژهها | ||
Fractional integral equation؛ Measure of noncompactness؛ Solution | ||
مراجع | ||
[1] R.P. Agarwal and P. Agarwal, Extended Caputo fractional derivative operator, Adv. Stud. Contemp. Math. 25 (2015) 301–316. [2] R.P. Agarwal, M. Benchohra, and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (2010) 973–1033. [3] R.P. Agarwal, D. Baleanu, V. Hedayati and S. Rezapour: Two fractional derivative inclusion problems via integral boundary condition, Appl. Math. Comput. 257 (2015) 205–212. [4] A. Aghajani, J. Bana´s and Y. Jalilian, Existence of solutions for a class of nonlinear Volterra singular integral equations, Comput. Math. Appl. 62 (2011) 1215–1227. [5] R.P. Agarwal, M. Benchohra and B.A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differ. Equ. Math. Phys. 44 (2008) 1–21. [6] R.P. Agarwal and D. Lupulescu, D. O′ Regan and G.U. Rahman, Fractional calculus and fractional differential equations in nonreflexive Banach spaces, Commun. Nonlinear Sci. Numer. Simulat. 20 (2015) 59–73. [7] B. Ahmad and J.J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Meth. Nonlinear Anal. 35 (2010) 295–304. [8] J. Bana´s and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (7) (2008) 1945–1952. [9] J. Bana´s and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York, 1980. [10] M. Benchohra, J. Henderson, S.E. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2009) 1340–1350. [11] J. Bana´s and D. O′ Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equationof fractional order, J. Math. Anal. Appl. 345 (2008) 573–582. [12] J. Bana´s and E. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007) 1371–1379. [13] J. Bana´s and E. Rzepka, The technique of Volterra-Stieltjes integral equations in the application to infinite systems of nonlinear integral equations of fractional orders, Comput. Math. Appl. 64 (2012) 3108–3116. [14] J. Bana´s and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New York, 2014. [15] M.A. Darwish, On the quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005) 112–119. [16] M.A. Darwish and K. Sadarangani, On Erde´lyi-Kober type quadratic integral equation with linear modification of the argument, Appl. Math. Comput. 238 (2014) 30–42. [17] L.N. Mishra, R.P. Agarwal and M. Sen, Solvability and Asymptotic Behaviour for Some Nonlinear Quadratic Integral Equation Involving Erde´lyi-Kober Fractional Integrals on the Unbounded Interval, Progr. Frac. Differ. Appl. 2(3) (2016) 153–168. [18] L.N. Mishra and M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Applied Mathematics and Computation. 285 (2016) 174–183. [19] J. Wang, Z. Dong and Y. Zhou, Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 545–554. [20] J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal. RWA 12 (2011) 262–272. [21] S. Zhang, Existence of positive solution for some class of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003) 136–148. | ||
آمار تعداد مشاهده مقاله: 15,608 تعداد دریافت فایل اصل مقاله: 449 |