
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,815 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
An overview of Bayesian prediction of future record statistics using upper record ranked set sampling scheme | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 38، دوره 12، شماره 1، مرداد 2021، صفحه 493-507 اصل مقاله (654.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.4828 | ||
نویسندگان | ||
Ehsan Golzade Gervi1؛ Parviz Nasiri* 2؛ Mahdi Salehi3 | ||
1Department of Statistics, University of Payame Noor, 19395-4697 Tehran, Iran | ||
2Department of Statistics, University of Payame Noor, 19395-4697 Tehran, Iran | ||
3Department of Mathematics and Statistics, University of Neyshabur, Neyshabur, Iran | ||
تاریخ دریافت: 05 خرداد 1399، تاریخ بازنگری: 07 مهر 1399، تاریخ پذیرش: 24 دی 1399 | ||
چکیده | ||
Two sample prediction is considered for a one-parameter exponential distribution. In practical experiments using sampling methods based on different schemes is crucial. This paper addresses the problem of Bayesian prediction of record values from a future sequence, based on an upper record ranked set sampling scheme. First, under an upper record ranked set sample (RRSS) and different values of hyperparameters, point predictions have been studied with respect to both symmetric and asymmetric loss functions. These predictors are compared in the sense of their mean squared prediction errors. Next, we have derived two prediction intervals for future record values. Prediction intervals are compared in terms of coverage probability and expected length. Finally, a simulation study is performed to compare the performances of the predictors. The real data set is also analyzed for an illustration of the findings. | ||
کلیدواژهها | ||
Record values؛ Prediction؛ Mean squared prediction error؛ Loss function؛ Coverage probability؛ Record ranked set sampling scheme | ||
مراجع | ||
[1] S. Geisser, Predictive Inference: An Introduction, Chapman and Hall., 1993. [2] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records, John Wiley & Sons, New York, 1998. [3] J. Aitchison and I.R. Dunsmore, Statistical Prediction Analysis, Cambridge University Press, Cambridge, 1975. [4] M. Raqab and N. Balakrishnan, Prediction interval for future records, Stat. Probab. Lett. 78(13) (2008) 1955–1963. [5] J. Ahmadi and S.M.T.K. Mirmostafaee, Prediction intervals for future records and order statistics coming from a two-parameter exponential distribution, Stat. Probab. Lett. 79(7) (2009) 977–983. [6] J. Ahmadi and N. Balakrishnan, Prediction of order statistics and record values from two independent sequences, Stat. 44(4) (2010) 417–430. [7] S.M.T.K. Mirmostafaee and J. Ahmadi, Point prediction of future order statistics from an exponential distribution, Stat. Probab. Lett. 81(3) (2011) 360–370. [8] M. Salehi, J. Ahmadi and N. Balakrishnan, Prediction of order statistics and record values based on ordered ranked set sampling, Stat. Comput. Simul. 85(1) (2015) 77–88. [9] K.S. Kaminsky and P.I. Nelson, Prediction of order statistics, N. Balakrishnan, C.R. Rao, editors. Order statistics: Handbook of statistics. Amsterdam: North-Holland, 17 (1998) 431–450. [10] M. Vock and N. Balakrishnan, Nonparametric prediction intervals based on ranked set samples, Commun. Stat. Theory Meth. 41(12) (2012) 2256–2268. [11] A. Asgharzadeh, A. Fallah, M.Z. Raqab and R. Valiollahi, Statistical inference based on Lindley record data, Stat. Papers 59(2) (2018) 759–779. [12] M. Ahsanullah, Record Statistics, Nova Science Publishers Inc, Commack, New York, 1995. [13] V. Nevzorov, Records, Mathematical Theory, Translation of Mathematical Monographs, No. 194, American Mathematical Society, Providence, RI., 2011. [14] S. Gulati and W.J. Padgett, Parametric and Non-parametric Inference from Record-breaking Data, Lecture Notes In Statistics, 172 Springer, New York, 2003. [15] M. Salehi and J. Ahmadi, Record ranked set sampling scheme, METRON 72(3) (2014) 351–365. [16] M. Salehi and J. Ahmadi, Estimation of stress-strength reliability using record ranked set sampling scheme from the exponential distribution, Filomat 29(5) (2015) 1149–1162. [17] M. Salehi, J. Ahmadi and S. Dey, Comparison of two sampling schemes for generating record-breaking data from the proportional hazard rate models, Commun. Stat. Theory Meth. 45(13) (2016) 3721–3733. [18] M. Eskandarzadeh, S. Tahmasebi and M. Afshari, Information measures for record ranked set samples, Ciencia e Natura 38(2) (2016) 554. [19] J. Paul and PY. Thomas, Concomitant record ranked set sampling, Commun. Stat. Theory Meth. 46(19) (2017) 9518 9540. [20] A.S. Hassan, M. Abd-Allah and H.F. Nagy, Bayesian analysis of record statistics based on the generalized inverted exponential model, Int. J. Adv. Sci. Engin. Inf. Technol. 8(2) (2018) 323. [21] A. Safaryian, M. Arashi and R. Arabi, Improved estimators for stress-strength reliability using record ranked set sampling scheme, Commun. Stat. Simul. Comput. 48(9) (2019) 2708–2726. [22] A. Sadeghpour, M. Salehi and A. Nezakati, Estimations of the stress-strength reliability using lower record ranked set sampling scheme under the generalized exponential distribution, Stat. Comput. Simul. 90(1) (2020) 51–74. [23] GA.A. McIntyre, Method for unbiased selective sampling, using ranked sets, Austr. J. Agricul. Res. 3(4) (1952)385. [24] R. Calabria and G. Pulcini, Point estimation under asymmetric loss functions for left-truncated exponential samples, Commun. Stat. Theory Meth. 25(3) (1996) 585–600. [25] H.R. Varian, A Bayesian approach to real estate assessment, Stud. Bayesian Economet. Stat. Honor Leonard J. North Holland, Amsterdam, 2 (1975) 195–208. [26] A. Zellner, Bayesian estimation and prediction using asymmetric loss function, J. Amer. Stat. Assoc. 81(394) (1986) 446–451. | ||
آمار تعداد مشاهده مقاله: 15,742 تعداد دریافت فایل اصل مقاله: 575 |