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Abstract

The inverse problem considered in this paper is devoted to reconstruction of the unknown source
term in parabolic equation from additional information which is given by measurements at final time.
The cost functional is introduced and existence of the minimizer for this functional is established.
The numerical algorithm to solve the inverse problem is based on the Ritz-Galerkin method with
shifted Legendre polynomials as basis functions. Finally, some numerical results are presented to
demonstrate the accuracy and efficiency of the proposed method for test example.
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1. Introduction

Inverse problems of identification coefficients in parabolic partial differential equations have been
become increasingly popular in recent years due to its important role in various fields of applications
such as, Mathematics, heat transfer process, chemistry, biology and engineering; etc [1, 3, 4, 5, 11, 12].
The problems receive considerable attention from a lot of authors by using different stable numerical
and analytical approaches. Some considerations in this area can be found in [10, 11, 13, 14, 17, 18].
The inverse problems are very sensitive to random errors in input data due to measurements, thus
requiring the special methods to overcome this difficultly is necessary. So, the inverse problem involves
its reformulation as a well-posed problem and make use of regularization strategy. The selection of the
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efficient numerical method for these kind of problem is one of the challenge for numerical simulation.
Different numerical approaches have been employed for solving inverse problems of identifying source
term, such as the meshless method [16], mollification method [18], homotopy analysis method [13]
and etc. The design of the stable numerical methods for these kind of inverse problems is important
because it is crucial to recover the unknown coefficients. The algorithm in this paper is based on the
Ritz-Galerkin method.
The Ritz-Galerkin is a numerical approach for solving prabolic problems but there is a constraint for
selecting the satisfier function in the method [17]. In Ritz-Galerkin method, a set of base functions
is choosen such that this set is dense in function space and each base function satisfies the given
homogenous boundary conditions, then the numerical approximation is defined by linear combination
of base functions. Employing the approximate solution in the Ritz-Galerkin method usually results a
linear system for finding the unknown coefficients. The main goal of this work is devoted to determine
heat source function in parabolic equation which is depends on space variable with overspecified
condition which is given by observations at final time.
The outline of this article is arranged as follows:
The mathematical formulation of the problem with appropriate conditions is given in Section 2.
The cost functional is defined in Section 3 and we prove that a minimizer for this functional exists.
The Ritz-Galerkin method is introduced in Section 4. In Section 5, the Ritz-Galerkin approach is
implemented for the inverse problem via appropriate general base functions. Since the resultant
linear system by proposed method is ill-conditioned, regularization technique should be employed to
acquire stable solution and a threshold given by the L-curve criterion. In Section 6, some properties
of Legendre and shifted Legendre polynomials are introduced to use as a basis set in the Ritz method.
In Section 7, the obtained results for test example are reported and discussed to illustrate the ability
and efficiency of the proposed approach. Conclusions are drawn in Section 8.

2. Mathematical Formulation

In this section, we consider the following inverse problem of recovering the temperature u(x, t)
and the source term f(x) in the parabolic equation

ρ(x, t)ut(x, t) = a(x)uxx(x, t) + b(x)ux(x, t) + c(x)u(x, t) + f(x), 0 < x < l, 0 < t ≤ T, (1)

with the initial and boundary conditions

u(x, 0) = u0(x), 0 ≤ x ≤ l, (2)

u(0, t) = p(t), 0 ≤ t ≤ T, (3)

u(l, t) = q(t), 0 ≤ t ≤ T, (4)

and an overdetermination condition which is given by measurments at final time as follows:

u(x, T ) = uT (x), 0 ≤ x ≤ l, (5)

where ρ(x, t), a(x), b(x), c(x), p(t), q(t), uT (x) and u0(x) are considered as known smooth functions,
l and T are positive constants and f(x) is an unknown source function to be estimated.
The unique solvability of this problem under suitable assumptions is investigated in [6]. The unknown
source function in this model arise in various applications such as in hydrology, heat transfer problems
and ... [1, 3, 4].
For a give function f(x), the problem (1)-(4) is called forward problem which is well-posed problem,
so that for f(x) ∈ Cα(0, l), α > 0 there exists a unique solution u(x, t). However, the inverse problem
of determination u(x, t) and f(x) from overspecifiesd condition (5) is ill-posed according to Hadamard
definition [10, 15].
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3. The Cost Functional and its Minimizer

The unique solution for the forward problem (1)-(4) under suitable conditions was proved by
Schauder’s theory for parabolic differential equations. If for a given f(x) the solution of forward
problem is denoted by u(x, t, f), then we consider the following minimization problem.
Find f(x) ∈ A = {h(x)|∥h∥ ≤ M, h ∈ H1(0, l)} such that for functional J(f) which is defined as
follows,

J(f) =
1

2

∫ l

0

|u(x, T, f)− uT (x)|2dx+ λ

∫ l

0

|∇f |2dx,

the following relation is holded

J(f) = min
h(x)∈A

J(h(x)),

where u(x, t, f) is a solution of Eq. (1) for f(x) ∈ A and M is positive constant and λ is the regu-
larization parameter. Also, we assume that uT (x) ∈ L2(0, l). In the following theorem, the existence
of minimizer for J(f) is considered.

Theorem 1. There exists f̃(x) ∈ A such that J(f̃) = min
f(x)∈A

J(f(x)).

Proof . Proof. Since J(f) ≥ 0 for every f ∈ A, the quantity InfJ(f) axists, the infimum begin
over all admissible elements of A.
There exists a minimizing sequence {un} and {fn} ∈ A such that lim

n→∞
J(fn) = J(f). Obviously, we

may assume that for every n = 1, 2, · · ·

inf
f∈A

J(f) ≤ J(fn) ≤ inf
f∈A

J(f) +
1

n
,

Since J(fn) ≤ Q so we have
∥ ▽ fn∥L2 ≤ Q.

By sobolev embedding theorem, we have

∥fn∥C1/2(0,l) ≤ Q,

and so
∥un(x, t)∥C1/2,1/4([0,l]×[0,T ]) ≤ Q.

It can be easily see that A is a closed subset of H1(0, l) and so A is a compact set. The sequences
{fn} and {un} have subsequences {fnk

} and {unk
} such that converge with respect to the appropriate

metric spaces to the some elements f̃(x) and ũ(x, t). By the continuity of the J(f), we obtain

inf
f∈A

J(f) = lim
n→∞

J(fn) = lim
nk→∞

J(fnk
) = J(f̃).

Hence J(f̃) = min
f∈A

J(f).

This complete the proof of the theorem. □
In the following section a numerical approach for recovering the unknown source term f(x) based

on the Ritz method is introduced.
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4. A Review of the Ritz-Galerkin Approach

We consider the following differential equation

L[y(x)] + f(x) = 0, a < x < b. (6)

Multiplying both side of Eq. (6) by arbitrary weight function w(x), then:∫ a

b

w(x)(L[y(x)] + f(x))dx = 0. (7)

Since, w(x) is any arbitrary function then Eqs. (6) and (7) are equivalent. The approximate solution
u(x) for Eq.(6) is introduced as a linear combination of base functions as follows:

u(x) = φ0(x) +
n∑

j=1

cjφj(x), (8)

where φj(x) are basis functions. By replacing the exact solution y(x) with the approximate solution
u(x) in the Eq.(6), the residual term is defined as follows:

res(x) = L[u(x)] + f(x). (9)

Our goal is to choose u(x) so that the Eq.(7) holds for approximate solution u(x) instead of y(x)
and for some selection of weight functions. In the Galerkin method, the weight functions are choosen
from the basis functions φi(x). It is necessary that the following equations hold∫ b

a

φi(x)(L[u(x)] + f(x))dx = 0, i = 1, · · · , n. (10)

The above n equations leads the linear or nonlinear system of equations for the unknown coeffi-
cients cj. For solving a boundary value problem with this method, it is required that the functions
{φi(x)}ni=1 satisfy the homogeneous form of the defined boundary conditions and φ0(x) must satisfy
the defined essential boundary conditions.

5. Implementation of the Ritz-Galerkin Approach

Our strategy in this section is to convert the inverse problem (1)-(5) to the direct problem.

For convenience, we assume l = 1. By applying Eqs. (1) and (5) we have

ρ(x, t)ut(x, T ) = a(x)uxx(x, T ) + b(x)ux(x, T ) + c(x)u(x, T ) + f(x).

thus
f(x) = ρ(x, t)ut(x, T )− a(x)uxx(x, T )− b(x)ux(x, T )− c(x)u(x, T ). (11)

Substituting (11) into Eq. (1) yields

ρ(x, t)ut(x, t) = a(x)uxx(x, t) + b(x)ux(x, t) + c(x)u(x, t)

+ ρ(x, t)ut(x, T )− a(x)u′′
T (x)− b(x)u′

T (x)− c(x)uT (x) (12)
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By setting
w(x, t) = u(x, t)− [(1− x)p(t) + xq(t)].

It’s obvious that
w(0, t) = w(1, t) = 0,

and
w(x, 0) = u(x, 0)− [(1− x)p(0) + xq(0)].

Now Eqs. (1)-(4) are equivalent to

ρ(x, t)[wt + (1− x)p′(t) + xq′(t)] =a(x)wxx + b(x)[wx − p(t) + q(t)]

+ c(x)[w + (1− x)p′(t) + xq′(t)]

+ ρ(x, t)[wt(x, T ) + (1− x)p′(T ) + xq′(T )]

− a(x)u′′
T (x)− b(x)u′

T (x)− c(x)uT (x), (13)

with homogenous boundary conditions

w(0, t) = w(1, t) = 0, (14)

and initial condition
w(x, 0) = u(x, 0)− [(1− x)p(0) + xq(0)]. (15)

Let

F (w) =ρ(x, t)[wt + (1− x)p′(t) + xq′(t)]− a(x)wxx

− b(x)[wx − p(t) + q(t)]− c(x)[w + (1− x)p′(t) + xq′(t)]

− ρ(x, t)[wt(x, T ) + (1− x)p′(T ) + xq′(T )]

+ a(x)u′′
T (x) + b(x)u′

T (x) + c(x)uT (x). (16)

Now, we apply the Ritz-Galerkin method to construct an approximate solution for Eq.(16). The
numerical approximation ŵ(x, t) is defined in the form

ŵ(x, t) =
n∑

i=0

m∑
j=0

x(x− 1)t(t− T )cijϕij(x, t) + s(x, t), (17)

where ϕij(x, t) are known basis functions and s(x, t) is an interpolating function as follows:

s(x, t) = u0(x)− [(1− x)p(0) + xq(0)]

+
t

T
[uT (x)− ((1− x)p(T ) + xq(T ))− u0(x) + (1− x)p(0) + xq(0)]. (18)

The approximate solution ŵ(x, t) satisfies the Eqs.(14), (15). The unknown coefficients cij are deter-
mined by the following equations:

< F (ŵ), ϕij(x, t) >= 0, i = 0, · · · , n, j = 0, 1, · · · ,m, (19)

where the inner product < . > is defined by

< F (ŵ), ϕij(x, t) >=

∫ 1

0

∫ T

0

F (ŵ(x, t))ϕij(x, t)dtdx.

From Eq. (19) a linear system of equations is derived for the unknown elements cij, i = 0, · · · , n, j =
0, 1, · · · ,m which is represented by AC = b where A is coefficients matrix. Since the resulting
matrix is ill-conditioned so applying the regularization technique is necessary.
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5.1. The Regularization Method for linear system

Due to the ill-conditionary of the coefficients matrix A, our strategy is based on the regularization
techniques. The sensitivity of solution with respect to noise in measured data is investigated. The
numerical approaches for solving ill-conditioned linear system with some type of regularization have
been considered by many authors [7, 15]. In this work Tikhonov regularization method is applied to
solve ill-condition system to investigate the sensitivity of solution to random error in data.
Let λ be given constant. The regularized solution Xλ for linear system AX = b is the minimize of
the functional Tikhonov which is defined as follows:

Jλ(X) =∥ AX − b ∥2 +λ ∥ X ∥2, (20)

where λ is called regularization parameter and ∥ . ∥ denotes the usual Euchlidean norm by default.
The selection of optimum value for λ is crucial in this approach and still under research since it’s
defined the amount of regularization. The regularization parameter balance the data fidelity and the
regularity of the solution. In this paper, the choice of suitable λ is based on L-curve criterion.
L-curve: The L-curve criterion is a well-know technique for choosing the regularization parameter.
The criteria is based on the graph of the norm of residual term versus the norm of regularized solution
as log-log scale and is sketched in the following.

L = {
(
log(∥ Xλ ∥2), log(∥ AXλ − b ∥2)

)
, λ > 0},

The obtained curve is L-shape and so the method is called L-curve and the optimum value of λ
corresponds to its corner [8, 9].
In the next section a brief introduction for the Legendre polynomials are stated.

6. The Legendre and Shifted Legendre Polynomials

The Legendre polynomials are defined as regular solutions of the following differential equation
which is called Legendre’s equation [2],

(1− x2)u′′ − 2xu′ + n(n+ 1)u = 0, n = 0, 1, 2, · · · ,

The solution of the above equation is denoted by pn(x) as a polynomial of degree n for some special
value of n. Also, an analytical form of these polynomials can be defined as follows :

pn(x) =

[n/2]∑
k=0

(−1)k(2n− 2k)!xn−2k

2nk!(n− k)!(n− 2k)!
.

The Legendre’s polynomials can also constructed by using the Rodrigue’s formula:

pn(x) =
1

(2nn!)

dn

dxn
(x2 − 1)n.

The orthogonality of these polynomials with respect to weight function w(x) = 1 in the interval [-1,1]
is defined by

⟨pn(x), pm(x)⟩ =
∫ 1

−1

pn(x)pm(x)dx =

{
0, n ̸= m,
2

2n+1
, n = m.

In order to use these polynomials on the interval x ∈ [0, 1], we defined the shifted Legendre poly-
nomials by introducing the change of variable x → 2x − 1 . Let the shifted Legendre polynomial
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pn(2x− 1) is denoted by p̃n(x). Then the polynomials p̃n(x) are orthogonal on [0, 1] which means
that: ∫ 1

0

p̃n(x)p̃m(x)dx =
1

2n+ 1
δm,n.

An explicit expression for the shifted Legendre polynomials is given by:

p̃n(x) = (−1)n
n∑

k=0

(
n

k

)(
n+ k

k

)
(−x)k.

In our computation the basis functions ϕij(x, t) are chosen as follows:

ϕij(x, t) = p̃i(x)p̃j(t).

In the next section a test example is given in order to investigate the efficiency and validity of the
present method.

7. Numerical Results

A selected test example is presented in this section to study the ability of the proposed numerical
approach. The numerical method in this work is employed with different values of parameters n,m
to solve the inverse problem (1)-(5). By Eq. (17), the approximate solution based on the strategy of
the Ritz method is assumed in the form

ŵ(x, t) =
n∑

i=0

m∑
j=0

x(x− 1)t(t− T )cijϕij(x, t) + s(x, t).

By imposing the following conditions:

< F (ŵ), ϕij(x, t) >=

∫ 1

0

∫ T

0

F (ŵ)ϕij(x, t)dtdx, i = 0, · · · , n, j = 0, 1, · · · ,m.

The resultant linear algebraic equations can be represented by

AC = b, (21)

where the vectors C, b denote the vectors of unknown constant coefficients and known right hand
side respectively, and A is a known coefficients matrix.
The stability of the proposed method for test example is investigated when some perturbed approx-
imation of overdetermination data (5) is in hand. The perturbed data at point xi is produced by
adding a noise ϵi to exact data uT (x) as follows:

uϵ(xi, T ) = uT (xi) + ϵi, i = 0, 1, ..., N,

where ϵi are random variables which are generated from a Gaussian normal distribution with zero
mean and standard deviation σ given by

σ = δ ×Maxx∈[0,1] | uT (x) |,

where δ is represent the percentage of noise. The normrand command in MATLAB is used to gen-
erate the random variables (ϵi)i=0,1,...,N . We investigate the effect of this perturbed function on the
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solution of problem. By employing the Tikhonov regularization method, the ill-conditioned system
AC = b is replaced by system (ATA+ λI)C = ATb, where AT is the transpose of A and λ is found
by L-curve criteria [8, 9].
We presents the root mean square error (RMSE) defined by:

RMSE(f(x)) =

√√√√ 1

N

N∑
i=1

[fT (xi)− fapprox(xi)]2,

to measure the values of error in our computations.

We implement the proposed method with Matlab 2017b software in a personal computer.

7.1. Example
Consider the following inverse problem (1)-(5) with input data

ρ(x, t) = 1, a(x) = 2, b(x) = 0, c(x) = −π2

2
, u0(x) = sin(

π

2
x),

p(t) = 0, q(t) = 2− e−π2t, u(x, T ) = uT (x) = (2− e−π2

)sin(
π

2
x),

and T = 1. The exact solutions of the inverse problem (1)-(5) are as follows:

u(x, t) = (2− e−π2t)sin(
π

2
x), f(x) = 2π2sin(

π

2
x).

Fig. 1 shows the comparison between the exact and numerical solution of u(x, t) when the input
data (5) is exact. The optimal value of λ by the L-curve is represented in Fig. 1.
Fig. 2 displays the behaviour of exact and numerical solution of f(x) when the overdetermined data
(5) is contaminated by δ ∈ {1, 3, 5}% noise. These figures show that when the over determination
condition (5) is perturbated by noise then the numerical approximation becomes unstable due to the
noise. Fig. 3 shows the absolute errors of u(x, t) for different values of δ.
The results for comparison between the exact source term fexact(x) and the numerical solution fϵ(x)
for different values of noise level δ along with their RMSE is shown in Table 1. Table 2 lists the
computing results for exact source term fexact(x) and approximate solution fapprox(x) for different
values of m,n along with their RMSE.
From figures and tables for this example, it can be been seen that when the noise level decrease to
zero, the computed solution goes to the exact solution and the obtained numerical approximations
are stable in the presence of noise in input data.

8. Conclusion

In this work a numerical approach based upon the Ritz-Galerkin method combined with the
Tikhonov regularization technique for solving an inverse parabolic source problem is presented. The
key of the method is to employ the shifted Legender polynomials as basis functions in approximate
solution of the proposed method and so the original problem reduce to solve an ill-conditioned linear
system. The numerical approach is applied to solve a test example in one dimensional case and
the numerical results show that the method can be applied for parabolic inverse problem due to its
efficiency. The obtained numerical approximations are accurate for noisy data and so the numerical
method produces stable results.
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Figure 1: The comparison between the exact and numerical solution of u(x, t) with n=1, m=3 and λ = 7.15004×10−4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

2

4

6

8

10

12

14

16

18

20

f(
x
)

 f
exact

(x)

 f
approax

(x)  with  =0%

 f
approax

(x)  with  =1%

 f
approax

(x)  with  =3%

 f
approax

(x)  with  =5%

0.55 0.6 0.65 0.7 0.75

x

15

16

17

18

f(
x
)

Figure 2: The comparison between the exact and numerical solution of f(x) for different values of noise level with n=1,
m=3.



564 Damirchi, Janmohammadi, Hasanpour, Memarbashi

0

1

0.005

0.01

1

T
h

e
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

u
(x

,t
)

0.015

0.8

The absolute error of u(x,t),  with  :   n = 1 ,  m = 3 ,  =  0

t

0.5 0.6

0.02

x

0.4
0.2

0 0

0

1

0.005

1

0.01

T
h

e
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

u
(x

,t
)

0.8

The absolute error of u(x,t),  with  :   n = 1 ,  m = 3 ,  =  0.01

t

0.015

0.5 0.6

x

0.4
0.2

0 0

0

1

0.005

0.01

0.015

1

T
h

e
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

u
(x

,t
)

0.02

0.8

The absolute error of u(x,t),  with  :   n = 1 ,  m = 3 ,  =  0.03

t

0.025

0.5 0.6

x

0.03

0.4
0.2

0 0

0

1

0.01

0.02

1

0.03

T
h

e
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

u
(x

,t
)

0.8

0.04

The absolute error of u(x,t),  with  :   n = 1 ,  m = 3 ,  =  0.05

t

0.5 0.6

0.05

x

0.4
0.2

0 0

Figure 3: The absolute error of numerical solution of u(x, t) with n=1, m=3 and differet values of δ.

x Exact solution Numerical solution
δ=0%

Numerical solution
δ=1%

Numerical solution
δ=3%

Numerical solution
δ=5%

0.0 0.0000 0.0000 0.0526 0.1518 −0.0403
0.1 3.0879 3.0595 3.0501 3.1742 3.1829
0.2 6.0998 6.0443 6.0013 6.1577 6.3049
0.3 8.9614 8.8816 8.8279 9.0194 9.2492
0.4 11.6024 11.5026 11.4556 11.6798 11.9432
0.5 13.9577 13.8440 13.8157 14.0654 14.3200
0.6 15.9694 15.8499 15.8468 16.1100 16.3201
0.7 17.5878 17.4735 17.4965 17.7563 17.8927
0.8 18.7731 18.6780 18.7226 18.9572 18.9976
0.9 19.4962 19.4377 19.4941 19.6768 19.6054
1.0 19.7392 19.7392 19.7918 19.8910 19.6989

RMSE 0.0072 0.0097 0.0169 0.0653

Table 1: The comparison between the results of exact and numerical solution of f(x) for different values of noise level
with n = 1,m = 3, with its RMSE.
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x Exact solution Numerical solution
n=1,m=3

Numerical solution
n=2,m=5

Numerical solution
n=3,m=1

0.0 0.0000 0.0000 0.0000 0.0000
0.1 3.0879 3.0595 3.0849 3.0159
0.2 6.0998 6.0443 6.0944 5.9656
0.3 8.9614 8.8816 8.9540 8.7763
0.4 11.6024 11.5026 11.5930 11.3793
0.5 13.9577 13.8440 13.9464 13.7124
0.6 15.9694 15.8499 15.9563 15.7205
0.7 17.5878 17.4735 17.5737 17.3577
0.8 18.7731 18.6780 18.7599 18.5881
0.9 19.4962 19.4377 19.4870 19.3865
1.0 19.7392 19.7392 19.7392 19.7392

RMSE 0.0072 9.2714e− 05 0.0325

Table 2: The comparison between the results of exact and numerical solution of f(x) for different values of m,n with
its RMSE.
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