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Abstract

We propose to investigate the solutions of system of functional-integral equations in the setting
of measure of noncompactness on real-valued bounded and continuous Banach space. To achieve
this, we first establish some new Darbo type fixed and coupled fixed point results for p-set (w,)-
contraction operator using arbitrary measure of noncompactness in Banach spaces. An example is
given in support for the solutions of a pair of system of functional-integral equations.
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1. Introduction and preliminaries

The measure of noncompactness (MNC, in short) is coined by Kuratowski [11] and combined
with some algebraic arguments are useful for studying the mathematical formulations, particularly
for solving the existence of solutions of some nonlinear problems under certain conditions.

Denote by R the set of real numbers and put Ry = [0, 4+00). Let (E, || - ||) be a real Banach space
with zero element 0. Let B(x,7) denote the closed ball centered at x with radius 7. The symbol
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B, stands for the ball B(0,r). For X, a nonempty subset of E, we denote by X and ConvX the
closure and the closed convex hull of X, respectively. Moreover, let us denote by 9y the family of
nonempty bounded subsets of E' and by Iy its subfamily consisting of all relatively compact subsets

of E.

Definition 1.1. [7/ A mapping u : Mp — R, is said to be a MNC in E if it satisfies the following
conditions:

(1°) The family kerp = {X € Mg : n(X) = 0} is nonempty and kerp C Ng;
(2°) X CY = u(X) < u(Y);

(3°) u(X) = u(X);

(4°) u(ConvX) = pu(X);

(5°) p(AX + (1 =A)Y) < Au(X) + (1 = Mu(Y) for A € [0,1];

(6°) If {X,} is a sequence of closed sets from Mg such that X, .1 C X, forn =1,2,---, and if
nh—>Holo w(X,) = 0, then the intersection set Xoo =(\,—, X, is nonempty.

The subfamily kerp defined (1°) represents the kernel of the measure p of noncompactness and since

w(Xoo) = p(() Xn) < u(Xa),
n=1
we see that .
() Xn) =0.
Therefore, X, € kerp. -

For a bounded subset A of a metric space (X, d) the Kuratowski MNC is defined as

a(A):inf{5>0:A:UAi, diam (A;) < dforl Signgoo},
i=1
where diam (A;) = sup{d(z,y) : z,y € A;}.
The Hausdorff MNC for a bounded set A is defined by
X (A) = inf {e > 0 : A has finite € —net in X}.

From now onwards unless otherwise specified, we take () as an arbitrary MNC in Banach space X

In [8], the notion of MNC is very well utilized by Darbo to generalized Schauder’s and Banach’s
fixed point theorems.
We denote I' = {C : ) # C, closed, bounded and convex subset of a Banach space E}.

Theorem 1.2. (Schauder’s fived point theorem)[6] Let C' € T' without boundedness. Then every
compact, continuous map T : C'— C' has at least one fized point.

Theorem 1.3. (Darbo’s fized point theorem) [i]. Let C € I and let T : C — C' be a continuous
mapping such that 3 a constant k € [0, 1) with the property

u(TX) < kp(X),
for any O # X Cc C. Then T has a fixed point in the set C.
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2. Fixed point theorems for p-set (w,¥)-contraction condition

In this section, we propose some new fixed point results for new notion of p-set (w, ¥)-contraction
condition in the frame of Banach space. Before introducing p-set (w,1)-contraction, we recall fol-
lowing definitions:

Definition 2.1. (Altun and Turkoglu [1]) Let F(]0,00)) be class of all function f : [0, 00) — [0, 0]
and let © be class of all operators

O(0;-) : F([0,00)) = F([0,00)), f = O(f;")

satisfying the following conditions:
(i) O(f;t) >0 fort >0 and O(f;0) =0,
(ii) O(f;t) < O(f,s) fort <s,

(777) lim, 0o O(f;t,) = O(f;lim, oo ty),
(iv) O(f;max{t,s}) = max{O(f;t),O(f;s)} for some f € F([0,00)).

Definition 2.2. [14] A function ¢ : [0,00) — [0,1) is said to be an MT-function if

limsup ¢(s) <1 for allt € [0, 00).

s—tt

Definition 2.3. [10] A function ¥ : RxR — R is called a GMT function if the following conditions
hold:

(V1) 0 <I(t,s) <1 forallt,s>0;

(V) for any bounded sequence {t,} C (0,400) and any non-increasing sequence {s,} C (0,+00),
we have
lim sup ¥(ty, $) < 1.

n—o0

—

We denote the set of all GMT functions by GMT(R).

Definition 2.4. Let Q) denote the set of all functions w : [0; +00) — [0, 4+00) satisfying:

(1) w is non-decreasing,
(II) w(t) =0 &t =0.

Now we are in position to establish generalized form of Darbo fixed point theorem.

Theorem 2.5. Let C €' and T : C' — C is continuous function and satisfying

w(O(f; (T X))) < HO(f; (T X)), w(O(f; 1(X))))w(O(f; 1(X))), (2.1)

o —

for any 0 # X C C, where O(o;-) € ©, 9 € GMT(R) and w € Q. Then T has at least one fized
point in C'.
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Proof . We start with constructing a sequence {C,} such that Cy = C, C,11 = Conv(TC,,), for
n > 0. If u(Cy) = 0 for some natural number ny € N, then u(C,,) = 0, then C,,, is compact and
since T'(C,,,) C Conv(TCy,) = Cpyr1 C Cp,y. Thus we conclude the result from Theorem [1.2, hence
we assume that

0 < u(Cy),Vn>1.

From (@), we have
w(O(f; p(Cnpa))) = w(O(f; p(Conv(TC,)))) =

< KO HTC O COU M, 22
which, by the fact that 9 < 1 implies
W(O(f; 1(Cry1))) < w(O(f;5 1(Ch)))-
Therefore the sequence {w(O(f; ()} s nonincreasing and nonnegative, we suppose that
o1 = lim w(O(f; p(Cn))), 02 = lim O(f; p(Ch)), (2.3)

where 01,0, > 0 are nonnegative real numbers.

We show that §; = 5 = 0. Suppose, to the contrary, that d;,d, > 0.

Since {O(f; 1(Cy,))} is a non-increasing sequence and {O(f; u(7TC,)))} is a bounded sequence. By
(2), we have

limsup J(O(f; w(TCy)), w(O(f; 1(Cn)))) < 1.

n—oo

Passing to the limit as n — oo in (@) and using (@) with (iii) property of O(o;-), we obtain that

01 < limsup (O(f; w(T'Cn)), w(O(F; 1(Cn))))01 < 1.

Therefore 6; = 0, that is,
lim w(O(f; p(C,))) = 0. (2.4)

n—oo

Since {u(Cy)} is a non-increasing sequence of positive numbers. This implies that there exists § > 0
such that
lim p(C,) = 9. (2.5)

n—oo

Since w is non-decreasing and by the (ii)-(iii) properties of O(o;-), we have

w(O(f; 1(Ch))) =2 w(O(f;9)). (2.6)

Passing to the limit as n — oo in (@) and using (@) with (i) and (iii) properties of O(o;-), we get
0 > w(d) which, by (II) implies that 6 = 0. Therefore

2, G) =0
Since C,, O Cp4q and TC,, C C,, for all n = 1,2,..., then from (6°), Xo = (), X, is nonempty
convex closed set, invariant under 7" and belongs to Kerpu. Therefore, by Theorem @, we conclude

the result. J
Following are the some special cases of Theorem @
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Corollary 2.6. Let C €' and T : C' — C is continuous function and satisfying

w(O(f; p(TX))) < Aw(O(f; (X)),

forany ) # X C C, where 0 < A <1, Oo;+) € © and w € Q. Then T has at least one fized point
in C.

Proof . It suffices to take ¥(¢,s) = A and apply Theorem @ O

Corollary 2.7. Let C €' and T : C — C 1is continuous function and satisfying

w(O(f; (T X)) < p(w(O(f; u(X)))w(O(f; (X)),

for any 0 # X C C, where ¢ : [0,00) — [0,1) be an MT-function, O(o;-) € © and w € Q. Then T
has at least one fixed point in C.

Proof . It suffices to take (¢, s) = (s) and apply Theorem @ O

Corollary 2.8. Let C €' and T : C' — C' is continuous function and satisfying

w(O(f; (TX))) < e(w(O(f; u(X)))),
for any 0 # X C C, where O(o;-) € O, w € Q and ¢ : [0,00) — [0,1) be a function such that
p(s)

©(s) < s and limsup,_,,+ —— < 1. Then T has at least one fized point in C.
s

Proof . It suffices to take 9(t, s) = @ and apply Theorem @ O
s

3. Darbo type coupled fixed point
Definition 3.1. [9] An element (u*,v*) € E? is called a coupled fized point of a mapping G : E*> — E
if G(u*,v*) = u* and G(v*,u*) = v*.

Theorem 3.2. /3] Suppose p; (i =1,2,3,...,n) are MNCs in Banach spaces E; respectively. More-
over assume that the function F' : [0,00)" — [0,00) is convex and F(xy,2,...,x,) = 0 if and only
ifx; =0 (1=1,2,3,...,n). Then

M(C) = F(/’Ll(cl)NMQ(CZ)a oo 7”%(011))7
defines a MNC in [, E1 where C; denotes the natural projection of C into E;, fori=1,2,3,...,n.

Theorem 3.3. Let C € T and F : C? — C be a continuous function such that

WO pF(X1 x X)) < 50O iu(F (X))
+ W(F(X2))), w(O(f; n(X1) + u(X2))))w(O(f; p(X1) + (X)),

—

for any O # X1, Xy C C, where ¥ € GMT(R) and w is sub-additive and w € Q. Also O(o;.) € ©
and O(f;t+3s) < O(f;t)+ O(f;s) for allt,s > 0. Then F has at least a coupled fized point.
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Proof . Consider the map F : C% — C? defined by the formula
F(u,v) = (F(u,v), F(v,u)).
Since F is continuous, £ is also continuous. We define a new MNC in the space C? as
(X) = p(Xq1) + p(Xo)

where X;, i = 1.2 denote the natural projections of C._Now let X C C? be a nonempty subset.
Hence, due to (8.1)) and the condition (2°) of Definition [L.1f we conclude that

,/CL(F(X))))
F(X; x X5) x F(X3 x X7))))
(

F(Xy x X32)))) + w(O(f; p(F(Xz x X1))))
s (F(X1)) + p(F(X2))), w(O(f; i(X1) 4+ 1(X2))))w(O(f; 1(X1) + p(X2)))
(F(X2)) + p(F(X1))), w(O(f; n(X2) + p(X1))))w(O(f; n(Xz) + p(X1)))

F(X1)) + u(F(X2))), w(O(f; 1(X1) + p(X2))))w(O(f; p(X1) + p(X2)))
(X)), w(O(f; U X))w(O(f; (X)),
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that is,
w(O(f; (F(X)))) < I O(f; (F (X)), w(O(f3 il X)) (O(f; 1 X))).
Theorem @ suggest that F has a fixed point, and hence F' has a coupled fixed point. [
Corollary 3.4. Let C €T and F : C?> — C be a continuous function such that
A
W(O(f; u(F(X1 % X3))))) = Sw(O(f; n(X1) + u(X2))), 0=A <]

for any O # X1, Xy C C, where w is sub-additive and w € Q. Also O(o;.) € © and O(f;t +s) <
O(f;t) + O(f;s) forallt,s > 0. Then F has at least a coupled fized point.

Corollary 3.5. Let C €T and F : C?> — C be a continuous function such that
O(f; u(F(X1 x X3)))
< SO HF(X0)) + p(F (X)), wlO(f; n(X0) + p(Xo)))OS: (X0) + (X)),

for any 0 # X1, Xs C C, where 9 € GWR), O(o;.) € © and O(f;t +s) < O(f;t) + O(f;s) for
allt,s > 0. Then F has at least a coupled fized point.

Corollary 3.6. Let C €T and F : C?> — C be a continuous function such that

WO p(F(X % X)) < So(lO(f; u(X1) + (X)),

for any 0 # X1,Xs C C, where O(o;-) € ©, w € Q and ¢ : [0,00) — [0,1) be a function such that
sO( o(s)

©o(s) < s and limsup,_,,+ —— < 1. Then T has at least one fized point in C.

Proof . It suffices to take (¢, s) = #(s) and apply Theorem @ O
s
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4. Applications

Writing classical Banach space E = BC(R™) consisting of all real functions defined, bounded
and continuous on R, equipped with the standard norm

||z]] = sup{|x(t)] : t = 0}.

Following [5], the MNC in BC(R™) is defined in the below.
Let us fix X as a nonempty and bounded subset of BC(R™) and T as a positive number. For x € X
and € > 0, denote by w’(z, €) the modulus of the continuity of function x on the interval [0, 77, i.e.,

wh(z,€) = sup{|z(t) — z(u)| : t,u € [0,T], |t —u| < €}
Further, let us put
wl(X,€) = sup{w’ (z,¢) : v € X},
wl(X) =limw’ (X, ¢)
e—0
and
wo(X) = lim wi (X).
T—o00

Moreover, for two fixed numbers ¢ € R* let us the define the function p on the family 9 pe@+) by

the following formula
p(X) = wo(X) + a(X),
where a(X) = limsup diamX (t), X(t) = {z(t) : v € X} and diamX (t) = sup{|z(t) — y(t)| : z,y €

t—00

X}. Following [5] (cf. also [4]), it easy to see the function u is the MNC in the space E = BC(RY).
Now we consider the system of integral equations

Our aim here is to find the existence of solutions of (@)

Consider the following assumptions:

(a1) The function h: RT x R x R x R — R is continuous and there exists an upper semicontinuous,
nondecreasing and concave function ¢ : RT — [0,1) such that ¢(t) < t for all t > 0,

©(s)

limsup, ,,+ —— < 1 and a non-decreasing continuous function ¢ : R™ — R with ¢ (0) = 0, for
s

any t > 0 and for all z,y,u,v € R
1
O(f: [h(t, 2.y, 2) = h(t, u, v, w)|) < 70(O(f3 |z —ul + |y = v]) + P(|z — wl),

where O(o;.) € © and O(f;t +s) < O(f;t) + O(f;s) for all ¢, s > 0.
(az) The function defined by t — |h(t,0,0,0)| is bounded on R¥, i.e.
My = sup{O(f;|h(t,0,0,0)]) : t € RT} < o0,
and O(f;¢€) <e.



590 Nashine, Arab, Agarwal

(a3) g:RT x Rt x R x R — R is continuous and there exists a positive constant My such that

A@:mm&%ﬂ4Wmuaa®w@M%rteRtayeE».

Morever,

lim |/0 9(t, 5, 2(5),y(s)) — g(t, 5, u(s),v(s))]ds| = 0

t—ro0
uniformly respect to x,y € E.

1
(as) There exists a positive solution rq of the inequality ng((’)(f; 2rg)) + My + (Ms) < ro.

Theorem 4.1. If the assumptions (a1) — (ay) are satisfied, then the equation @) has at least one
solution x € E.
Proof . Let F': E x E — E be defined by,

t

Flz,y)(t) = h uawwap/gwaﬂ@w@»w

0

We know that E x E is a Banach space equipped with the norm,

| (z,9) 1=l = [ Be@s) + | ¥ |Bo@,)

where || u || o, )= sup {|u(t)| : t > 0} and v € BC(R,). It is obvious that F(z,y)(t) is continuous
for any =,y € BC(R,).

Let B, = {z € BC(Ry) :|| = ||sc®,)< r} . By considering conditions of theorem we infer that
F(z,y) is continuous on R*. Now we prove that F(z,y) € E for any x,y € E. For arbitrarily fixed
t € Rt and f € F(]0,00)) we have

O(f; |F (2, 9)(1)])

a(t)

<o ﬁh@Mmmm/ﬁ@&M@w®ﬁM—h@QQ®

+ O(f;]h(t,0,0,0)])

< PO L0+ 1O + 0 || [g(ts.2(0)uo)ds| | + M
< 30O Nl +11gID) + (M) + M.

Thus F' is well defined and condition (a4) implies that F’ (Br X BT) C B,. ) )
Now, we have to prove that F' is continuous on B, x B,. For this, take (z,y) € B,, X B,, and € > 0
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arbitrarily. Moreover consider (p,q) € By, x B, with ||(z,y) — (p, ¢)|| Bo®,)xBo®R,) < % Then we
have
(f; [F (@, 9)(8) = Fp, )(1)])
b (0,000 f 9. 5.006) 0050 s
- O f7 0 t
(10000, 05,005, a(9) )
sﬁ¢<<1x—r+m—m»
0 || [ Hot5,2().0(5) = g (.5.9(5).a(5)) s
< 30Oz —pl+1y—a])

Ly /M@&ﬂ%ﬂ@%ﬂ@@ﬂ@ﬂ@”“

By applying assumption (a;) and (az) we get for € > 0 there exists T" > 0 such that if ¢ > T then

Y (Oft lg (t,s,2(s),y(s)) — g (t,s,p(s),q(s))] ds) < %, for any z,y,p,q € BC(R,).

Case 1:
If t > T, then we get

O |F(w)(t) ~ Fp, ) (D)) < 10O 5 + ) + 5 < 5+ 5 =
Case 2:
If t € [0,7] then
Of; [F(2,)(t) ~ F(p, (D)) < 70O 5 + 5)) +(T) < &+ 9(T0)

where
~ { ’g (tasax)y) _g(t787p7Q)| : t7S € [O)T]7I7yup)q € [_T7T]7 }
W = sup € :
| (z.y) = (p,a) [[< 3

Since ¢ is continuous on [0, 7] x [0,T] x [—r,r] X [—r,r] therefore & — 0 as € — 0 i.e. since € — 0
gives Tw — 0 therefore o (Tw) — 0.

Thus F is a continuous function from B, x B, into B,.

We have, T, e € R, and X;, X, are arbitrary non-empty subset of B, and let ¢,s € [0,7] such
that |t — s| <e.

Without loss of generality we can assume that t < s . Alsolet z € X1,y € X5 and
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~

K =Tsup{|g(t,s,xz(s),y(s)| : t,s € [0,T],z,y € [-r,r]},

wT(x,e) = sup{|x(t) - J](S>| t,s € [07T]’ |t - S| < 67}7
w'(y,€) = sup{ly(t) —y(s)| : £, s € [0, T], |t —s| < €. },

T B |h(t,x,y,2) — h(s,z,y,2)|: t,s € [0,T],
“ (h,E)—Sup{ |t—3|§€,fl,’,ye[—T,T],ZE[—K,K]

T o ‘g (t7u7x(u)7y(u)) - g(s,u,x(u),y(u))\ : t?‘g?u € [O,T],
r (g,e)—sup{ |t2—t1|§6,x,y€[—r,r],z€[—f(,f(], }

Then we get

of | e y<t>,bfg<t,u x<u>,y<u>>du)
h ( o(s) y<s>,jg<s,u,x<u>,y<u>>du)
b (10,900, 9 o), y(w)) )
<ol s 0,
h (t . 0(6). [ 9 0,00 y<u>>du)
b (190005, o o). ) )
+0 f§ 0 t
i (52290009, [ 9 o). () )
h (s x(s) y(s),ftg(t,u,x(u) y(u))du>
+0 f§ Ot
h ( (.0(6). [ g (5,500 y(u))du)
h ( o(),9(5), [ g (s, 2(u) y(u))du)
+0| f 0,
i (5209005 f o (5.0, )
< 30O lat) = 2(s)| + o(0) — u(s)D) + OFs (1, )
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0 (O(fsw" (x,6) + W' (y,))) + O(frwy (hy€)) + ¥ (Gwy (g, ¢))

1
4
+w( )'

<

/ g (5w, (), y(u)) du — / 9 (5,1, 2(u), y(w)) du

0

0

993

By the uniform continuity of h on [0, T] x [—r, 7] x [=r, 7] x [-K, K] and g on [0, T] x [0, T] X [—r, r] X

[—r, 7] we have as € — 0, gives w! (g,¢) — 0,w! (h,€) — 0. Thus as € — 0 we have

t s

/g(s,u,aj(u),y(u)) du—/g(s,u,x(u),y(u))du

0

—0

0

which gives
t s

" ( / g (s,u, 2(u), y(u)) du — / g (5,1, 2(u), y(u)) du

0
Now taking the limit as € — 0 we have

O] (F(X, x X)) < |

As T — oo we get
0(O(f; wo(X1) + wo(X2))).

ISy

O(f;wo(F (X1 x X3))) <
For arbitrary (z,y), (p,q) € X; x X5 and t € R, we have,
O(f; |F(z,y)(t) — F(p,q)(t)])
e(O(f; |x(t) — p(&)] + [y(t) — a(t)])

o |

p(O(f; diam (Xy(t)) + diam (X5(t))))

g

Since (z,y), (p,q) and t are arbitrary, therefore we have,

p(O(f; diam(X:(t)) + diam(X(t))))

g

IS,

<

/{g(t,u,x,y) - g(tvuvp-Q)} du

|

<

/{g(tau’x7y> - g(t,u,p.q)} du

A

O(f; diamF (X, x X3)(1)) <

/{g(t7u7$7y) - g(t7u7p~Q)}du

) |
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As t — oo, by applying (a3) we get

O(f;limsup diamF(X; x X5)(t)) (4.3)
< igp((’)(f; lim sup diam (X1 (t)) + lim sup diam(X5(t)))).

From (@)and (@) we have

O(f; u(F (X1 x Xo)
= O(f;wo (F(X; x X3)) + limsup diamF(X; x X3)(t))

t—o00

< O(fswo (F (X1 x X)) + O(f;limsup diamF (X1 x X5)(t)))

t—o0

o(O(f;limsup diam (X1(t)) + lim sup diam(Xs(t)))

1
2 t—o00 t—o00

1
4
_.I_
}Lgo(O(f;wo(Xl) + wo(X2) + hﬁigp diam (X;(t)) + lirtriigp diam(Xs(t))))
igp((’)(f; lim sup diam (X;(t)) + lim sup diam(Xz(t))) + wo(X1) + wo(X2)))
1
2

t—o00 t—o00

O(O(f; w(Xy) + pu(X2)).

Therefore

Of m(F(Xy x Xa) < So(Of; p(X2) + p(Xz)

Therefore by Corollary @, F has at least a coupled fixed point in the space E x E. Thus, the system
of equation ({.1) has at least a solution in £ x F. [
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