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Abstract
We propose to investigate the solutions of system of functional-integral equations in the setting
of measure of noncompactness on real-valued bounded and continuous Banach space. To achieve
this, we first establish some new Darbo type fixed and coupled fixed point results for µ-set (ω, ϑ)-
contraction operator using arbitrary measure of noncompactness in Banach spaces. An example is
given in support for the solutions of a pair of system of functional-integral equations.
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1. Introduction and preliminaries

The measure of noncompactness (MNC, in short) is coined by Kuratowski [11] and combined
with some algebraic arguments are useful for studying the mathematical formulations, particularly
for solving the existence of solutions of some nonlinear problems under certain conditions.
Denote by R the set of real numbers and put R+ = [0,+∞). Let (E, ∥ · ∥) be a real Banach space
with zero element 0. Let B(x, r) denote the closed ball centered at x with radius r. The symbol
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Br stands for the ball B(0, r). For X, a nonempty subset of E, we denote by X and ConvX the
closure and the closed convex hull of X, respectively. Moreover, let us denote by ME the family of
nonempty bounded subsets of E and by NE its subfamily consisting of all relatively compact subsets
of E.
Definition 1.1. [7] A mapping µ : ME −→ R+ is said to be a MNC in E if it satisfies the following
conditions:
(1◦) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE;

(2◦) X ⊂ Y =⇒ µ(X) ≤ µ(Y );

(3◦) µ(X) = µ(X);

(4◦) µ(ConvX) = µ(X);

(5◦) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];

(6◦) If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, · · · , and if
lim
n→∞

µ(Xn) = 0, then the intersection set X∞ =
∩∞

n=1Xn is nonempty.

The subfamily kerµ defined (1◦) represents the kernel of the measure µ of noncompactness and since

µ(X∞) = µ(
∞∩
n=1

Xn) ≤ µ(Xn),

we see that
µ(

∞∩
n=1

Xn) = 0.

Therefore, X∞ ∈ kerµ.

For a bounded subset A of a metric space (X, d) the Kuratowski MNC is defined as

α (A) = inf

{
δ > 0 : A =

n∪
i=1

Ai, diam (Ai) ≤ δ for 1 ≤ i ≤ n ≤ ∞

}
,

where diam (Ai) = sup {d(x, y) : x, y ∈ Ai} .
The Hausdorff MNC for a bounded set A is defined by

χ (A) = inf {ϵ > 0 : A has finite ϵ− net in X} .
From now onwards unless otherwise specified, we take µ(·) as an arbitrary MNC in Banach space X .

In [8], the notion of MNC is very well utilized by Darbo to generalized Schauder’s and Banach’s
fixed point theorems.
We denote Γ = {C : ∅ ̸= C, closed, bounded and convex subset of a Banach space E}.
Theorem 1.2. (Schauder’s fixed point theorem)[6] Let C ∈ Γ without boundedness. Then every
compact, continuous map T : C → C has at least one fixed point.
Theorem 1.3. (Darbo’s fixed point theorem) [5]. Let C ∈ Γ and let T : C −→ C be a continuous
mapping such that ∃ a constant k ∈ [0, 1) with the property

µ(TX) ≤ kµ(X),

for any ∅ ̸= X ⊂ C. Then T has a fixed point in the set C.
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2. Fixed point theorems for µ-set (ω, ϑ)-contraction condition

In this section, we propose some new fixed point results for new notion of µ-set (ω, ϑ)-contraction
condition in the frame of Banach space. Before introducing µ-set (ω, ϑ)-contraction, we recall fol-
lowing definitions:

Definition 2.1. (Altun and Turkoglu [1]) Let F ([0,∞)) be class of all function f : [0,∞) → [0,∞]
and let Θ be class of all operators

O(◦; ·) : F ([0,∞)) → F ([0,∞)), f → O(f ; ·)

satisfying the following conditions:

(i) O(f ; t) > 0 for t > 0 and O(f ; 0) = 0,
(ii) O(f ; t) ≤ O(f, s) for t ≤ s,

(iii) limn→∞O(f ; tn) = O(f ; limn→∞ tn),
(iv) O(f ; max{t, s}) = max{O(f ; t),O(f ; s)} for some f ∈ F ([0,∞)).

Definition 2.2. [12] A function φ : [0,∞) → [0, 1) is said to be an MT-function if

lim sup
s→t+

φ(s) < 1 for all t ∈ [0,∞).

Definition 2.3. [10] A function ϑ : R×R → R is called a GMT function if the following conditions
hold:

(ϑ1) 0 < ϑ(t, s) < 1 for all t, s > 0;

(ϑ2) for any bounded sequence {tn} ⊂ (0,+∞) and any non-increasing sequence {sn} ⊂ (0,+∞),
we have

lim sup
n→∞

ϑ(tn, sn) < 1.

We denote the set of all GMT functions by ̂GMT (R).

Definition 2.4. Let Ω denote the set of all functions ω : [0; +∞) → [0,+∞) satisfying:

(I) ω is non-decreasing,
(II) ω(t) = 0 ⇔ t = 0.

Now we are in position to establish generalized form of Darbo fixed point theorem.

Theorem 2.5. Let C ∈ Γ and T : C → C is continuous function and satisfying

ω(O(f ;µ(TX))) ≤ ϑ(O(f ;µ(TX)), ω(O(f ;µ(X))))ω(O(f ;µ(X))), (2.1)

for any ∅ ̸= X ⊂ C, where O(◦; ·) ∈ Θ, ϑ ∈ ̂GMT (R) and ω ∈ Ω. Then T has at least one fixed
point in C.
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Proof . We start with constructing a sequence {Cn} such that C0 = C, Cn+1 = Conv(TCn), for
n ≥ 0. If µ(CN) = 0 for some natural number n0 ∈ N, then µ(Cn0) = 0, then Cn0 is compact and
since T (Cn0) ⊆ Conv(TCn0) = Cn0+1 ⊆ Cn0 . Thus we conclude the result from Theorem 1.2, hence
we assume that

0 < µ(Cn),∀n ≥ 1.

From (2.1), we have

ω(O(f ;µ(Cn+1))) = ω(O(f ;µ(Conv(TCn)))) = ω(O(f ;µ(TCn)))

≤ ϑ(O(f ;µ(TCn)), ω(O(f ;µ(Cn))))ω(O(f ;µ(Cn))),
(2.2)

which, by the fact that ϑ < 1 implies

ω(O(f ;µ(Cn+1))) ≤ ω(O(f ;µ(Cn))).

Therefore the sequence {ω(O(f ;µ(Cn)))} is nonincreasing and nonnegative, we suppose that

δ1 = lim
n→∞

ω(O(f ;µ(Cn))), δ2 = lim
n→∞

O(f ;µ(Cn)), (2.3)

where δ1, δ2 ≥ 0 are nonnegative real numbers.
We show that δ1 = δ2 = 0. Suppose, to the contrary, that δ1, δ2 > 0.
Since {O(f ;µ(Cn))} is a non-increasing sequence and {O(f ;µ(TCn)))} is a bounded sequence. By
(ϑ2), we have

lim sup
n→∞

ϑ(O(f ;µ(TCn)), ω(O(f ;µ(Cn)))) < 1.

Passing to the limit as n→ ∞ in (2.2) and using (2.3) with (iii) property of O(◦; ·), we obtain that

δ1 ≤ lim sup
n→∞

ϑ(O(f ;µ(TCn)), ω(O(f ;µ(Cn))))δ1 < δ1.

Therefore δ1 = 0, that is,
lim
n→∞

ω(O(f ;µ(Cn))) = 0. (2.4)

Since {µ(Cn)} is a non-increasing sequence of positive numbers. This implies that there exists δ ≥ 0
such that

lim
n→∞

µ(Cn) = δ. (2.5)

Since ω is non-decreasing and by the (ii)-(iii) properties of O(◦; ·), we have

ω(O(f ;µ(Cn))) ≥ ω(O(f ; δ)). (2.6)

Passing to the limit as n→ ∞ in (2.6) and using (2.4) with (i) and (iii) properties of O(◦; ·), we get
0 ≥ ω(δ) which, by (II) implies that δ = 0. Therefore

lim
n→∞

µ(Cn) = 0.

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, . . ., then from (60), X∞ =
∩∞

n=1Xn is nonempty
convex closed set, invariant under T and belongs to Kerµ. Therefore, by Theorem 1.2, we conclude
the result. □
Following are the some special cases of Theorem 2.5.
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Corollary 2.6. Let C ∈ Γ and T : C → C is continuous function and satisfying

ω(O(f ;µ(TX))) ≤ λω(O(f ;µ(X))),

for any ∅ ̸= X ⊂ C, where 0 ≤ λ < 1, O(◦; ·) ∈ Θ and ω ∈ Ω. Then T has at least one fixed point
in C.

Proof . It suffices to take ϑ(t, s) = λ and apply Theorem 2.5. □

Corollary 2.7. Let C ∈ Γ and T : C → C is continuous function and satisfying

ω(O(f ;µ(TX))) ≤ φ(ω(O(f ;µ(X))))ω(O(f ;µ(X))),

for any ∅ ̸= X ⊂ C, where φ : [0,∞) → [0, 1) be an MT-function, O(◦; ·) ∈ Θ and ω ∈ Ω. Then T
has at least one fixed point in C.

Proof . It suffices to take ϑ(t, s) = φ(s) and apply Theorem 2.5. □

Corollary 2.8. Let C ∈ Γ and T : C → C is continuous function and satisfying

ω(O(f ;µ(TX))) ≤ φ(ω(O(f ;µ(X)))),

for any ∅ ̸= X ⊂ C, where O(◦; ·) ∈ Θ, ω ∈ Ω and φ : [0,∞) → [0, 1) be a function such that
φ(s) < s and lim sups→t+

φ(s)

s
< 1. Then T has at least one fixed point in C.

Proof . It suffices to take ϑ(t, s) = φ(s)

s
and apply Theorem 2.5. □

3. Darbo type coupled fixed point

Definition 3.1. [9] An element (u∗, v∗) ∈ E2 is called a coupled fixed point of a mapping G : E2 → E
if G(u∗, v∗) = u∗ and G(v∗, u∗) = v∗.

Theorem 3.2. [3] Suppose µi (i = 1, 2, 3, . . . , n) are MNCs in Banach spaces Ei respectively. More-
over assume that the function F : [0,∞)n → [0,∞) is convex and F (x1, x2, . . . , xn) = 0 if and only
if xi = 0 (i = 1, 2, 3, . . . , n). Then

µ(C) = F (µ1(C1), µ2(C2), . . . , µn(Cn)),

defines a MNC in
∏n

i=1E1 where Ci denotes the natural projection of C into Ei, for i = 1, 2, 3, . . . , n.

Theorem 3.3. Let C ∈ Γ and F : C2 → C be a continuous function such that

ω(O(f ;µ(F (X1 ×X2)))) ≤
1

2
ϑ(O(f ;µ(F (X1))

+ µ(F (X2))), ω(O(f ;µ(X1) + µ(X2))))ω(O(f ;µ(X1) + µ(X2))),

for any ∅ ̸= X1, X2 ⊂ C, where ϑ ∈ ̂GMT (R) and ω is sub-additive and ω ∈ Ω. Also O(◦; .) ∈ Θ
and O(f ; t+ s) ≤ O(f ; t) +O(f ; s) for all t, s ≥ 0. Then F has at least a coupled fixed point.
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Proof . Consider the map F̂ : C2 → C2 defined by the formula

F̂ (u, v) = (F (u, v), F (v, u)).

Since F is continuous, F̂ is also continuous. We define a new MNC in the space C2 as

µ̂(X) = µ(X1) + µ(X2)

where Xi, i = 1, 2 denote the natural projections of C. Now let X ⊂ C2 be a nonempty subset.
Hence, due to (3.1) and the condition (20) of Definition 1.1 we conclude that

ω(O(f ; µ̂(F̂ (X))))

≤ ω(O(f ; µ̂(F (X1 ×X2)× F (X2 ×X1))))

≤ ω(O(f ;µ(F (X1 ×X2)))) + ω(O(f ;µ(F (X2 ×X1))))

≤ 1

2
ϑ(O(f ;µ(F (X1)) + µ(F (X2))), ω(O(f ;µ(X1) + µ(X2))))ω(O(f ;µ(X1) + µ(X2)))

+
1

2
ϑ(O(f ;µ(F (X2)) + µ(F (X1))), ω(O(f ;µ(X2) + µ(X1))))ω(O(f ;µ(X2) + µ(X1)))

= ϑ(O(f ;µ(F (X1)) + µ(F (X2))), ω(O(f ;µ(X1) + µ(X2))))ω(O(f ;µ(X1) + µ(X2)))

= ϑ(O(f ; µ̂(F̂ (X))), ω(O(f ; µ̂(X)))ω(O(f ; µ̂(X))),

that is,

ω(O(f ; µ̂(F̂ (X)))) ≤ ϑ(O(f ; µ̂(F̂ (X)))), ω(O(f ; µ̂(X)))ω(O(f ; µ̂(X))).

Theorem 2.5 suggest that F̂ has a fixed point, and hence F has a coupled fixed point. □
Corollary 3.4. Let C ∈ Γ and F : C2 → C be a continuous function such that

ω(O(f ;µ(F (X1 ×X2))))) ≤
λ

2
ω(O(f ;µ(X1) + µ(X2))), 0 ≤ λ < 1

for any ∅ ̸= X1, X2 ⊂ C, where ω is sub-additive and ω ∈ Ω. Also O(◦; .) ∈ Θ and O(f ; t + s) ≤
O(f ; t) +O(f ; s) for all t, s ≥ 0. Then F has at least a coupled fixed point.

Corollary 3.5. Let C ∈ Γ and F : C2 → C be a continuous function such that

O(f ;µ(F (X1 ×X2)))

≤ 1

2
ϑ(O(f ;µ(F (X1)) + µ(F (X2))), ω(O(f ;µ(X1) + µ(X2))))O(f ;µ(X1) + µ(X2)),

for any ∅ ̸= X1, X2 ⊂ C, where ϑ ∈ ̂GMT (R), O(◦; .) ∈ Θ and O(f ; t + s) ≤ O(f ; t) + O(f ; s) for
all t, s ≥ 0. Then F has at least a coupled fixed point.

Corollary 3.6. Let C ∈ Γ and F : C2 → C be a continuous function such that

ω(O(f ;µ(F (X1 ×X2)))) ≤
1

2
φ(ω(O(f ;µ(X1) + µ(X2))),

for any ∅ ̸= X1, X2 ⊂ C, where O(◦; ·) ∈ Θ, ω ∈ Ω and φ : [0,∞) → [0, 1) be a function such that
φ(s) < s and lim sups→t+

φ(s)

s
< 1. Then T has at least one fixed point in C.

Proof . It suffices to take ϑ(t, s) = φ(s)

s
and apply Theorem 3.3. □
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4. Applications

Writing classical Banach space E = BC(R+) consisting of all real functions defined, bounded
and continuous on R+ equipped with the standard norm

||x|| = sup{|x(t)| : t ≥ 0}.

Following [5], the MNC in BC(R+) is defined in the below.
Let us fix X as a nonempty and bounded subset of BC(R+) and T as a positive number. For x ∈ X
and ϵ > 0, denote by ωT (x, ϵ) the modulus of the continuity of function x on the interval [0, T ], i.e.,

ωT (x, ϵ) = sup{|x(t)− x(u)| : t, u ∈ [0, T ], |t− u| ≤ ϵ}.

Further, let us put
ωT (X, ϵ) = sup{ωT (x, ϵ) : x ∈ X},

ωT
0 (X) = lim

ϵ→0
ωT (X, ϵ)

and
ω0(X) = lim

T→∞
ωT
0 (X).

Moreover, for two fixed numbers t ∈ R+ let us the define the function µ on the family MBC(R+) by
the following formula

µ(X) = ω0(X) + α(X),

where α(X) = lim sup
t→∞

diamX(t), X(t) = {x(t) : x ∈ X} and diamX(t) = sup{|x(t) − y(t)| : x, y ∈

X}. Following [5] (cf. also [4]), it easy to see the function µ is the MNC in the space E = BC(R+).
Now we consider the system of integral equations

x(t) = h

(
t, x(t), y(t),

t∫
0

g (t, s, x(s), y(s)) ds

)
y(t) = h

(
t, y(t), x(t),

t∫
0

g (t, s, y(s), x(s)) ds

)
.

(4.1)

Our aim here is to find the existence of solutions of (4.1).

Consider the following assumptions:

(a1) The function h : R+×R×R×R → R is continuous and there exists an upper semicontinuous,
nondecreasing and concave function φ : R+ −→ [0, 1) such that φ(t) < t for all t > 0,

lim sups→t+
φ(s)

s
< 1 and a non-decreasing continuous function ψ : R+ → R with ψ(0) = 0, for

any t ≥ 0 and for all x, y, u, v ∈ R

O(f ; |h(t, x, y, z)− h(t, u, v, w)|) ≤ 1

4
φ(O(f ; |x− u|+ |y − v|) + ψ(|z − w|),

where O(◦; .) ∈ Θ and O(f ; t+ s) ≤ O(f ; t) +O(f ; s) for all t, s ≥ 0.

(a2) The function defined by t→ |h(t, 0, 0, 0)| is bounded on R+, i.e.

M1 = sup{O(f ; |h(t, 0, 0, 0)|) : t ∈ R+} <∞,

and O(f ; ϵ) < ϵ.
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(a3) g : R+ × R+ × R× R → R is continuous and there exists a positive constant M2 such that

M2 = sup{O(f ;

∫ t

0

|g(t, s, x(s), y(s))|ds) : t ∈ R+, x, y ∈ E)}.

Morever,

lim
t→∞

|
∫ t

0

[g(t, s, x(s), y(s))− g(t, s, u(s), v(s))]ds| = 0

uniformly respect to x, y ∈ E.

(a4) There exists a positive solution r0 of the inequality 1

4
φ(O(f ; 2r0)) +M1 + ψ(M2) ≤ r0.

Theorem 4.1. If the assumptions (a1)− (a4) are satisfied, then the equation (4.1) has at least one
solution x ∈ E.

Proof . Let F : E × E → E be defined by,

F (x, y)(t) = h

t, x(t), y(t), t∫
0

g (t, s, x(s), y(s)) ds

 .

We know that E × E is a Banach space equipped with the norm,

∥ (x, y) ∥=∥ x ∥BC(R+) + ∥ y ∥BC(R+)

where ∥ u ∥BC(R+)= sup {|u(t)| : t ≥ 0} and u ∈ BC(R+). It is obvious that F (x, y)(t) is continuous
for any x, y ∈ BC(R+).

Let B̄r =
{
x ∈ BC(R+) :∥ x ∥BC(R+)≤ r

}
. By considering conditions of theorem we infer that

F (x, y) is continuous on R+. Now we prove that F (x, y) ∈ E for any x, y ∈ E. For arbitrarily fixed
t ∈ R+ and f ∈ F ([0,∞)) we have

O(f ; |F (x, y)(t)|)

≤ O

f ;
∣∣∣∣∣∣h(t, x(t), y(t),

α(t)∫
0

g (t, s, x(s), y(s)) ds)− h(t, 0, 0, 0)

∣∣∣∣∣∣


+O(f ; |h(t, 0, 0, 0)|)

≤ 1

4
φ(O(f ; |x(t)|+ |y(t)|)) + ψ

∣∣∣∣∣∣
t∫

0

g (t, s, x(s), y(s)) ds

∣∣∣∣∣∣
+M1

≤ 1

4
φ(O(f ; ||x||+ ||y||)) + ψ(M2) +M1.

Thus F is well defined and condition (a4) implies that F
(
B̄r × B̄r

)
⊆ B̄r.

Now, we have to prove that F is continuous on B̄r × B̄r. For this, take (x, y) ∈ B̄r0 × B̄r0 and ε > 0
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arbitrarily. Moreover consider (p, q) ∈ B̄r0 × B̄r0 with ∥(x, y) − (p, q)∥BC(R+)×BC(R+) <
ϵ

2
. Then we

have

O(f ; |F (x, y)(t)− F (p, q)(t)|)

= O

 f ;

∣∣∣∣∣∣∣∣
h

(
t, x(t), y(t),

t∫
0

g (t, s, x(s), y(s)) ds

)
−h

(
t, p(t), q(t),

t∫
0

g (t, s, p(s), q(s)) ds

)
∣∣∣∣∣∣∣∣


≤ 1

4
φ (O(f ; |x− p|+ |y − q|))

+ ψ

∣∣∣∣∣∣
t∫

0

{g (t, s, x(s), y(s))− g (t, s, p(s), q(s))} ds

∣∣∣∣∣∣


≤ 1

4
φ (O(f ; ∥ x− p ∥ + ∥ y − q ∥))

+ ψ

 t∫
0

|g (t, s, x(s), y(s))− g (t, s, p(s), q(s))| ds

 .

By applying assumption (a1) and (a3) we get for ϵ > 0 there exists T > 0 such that if t > T then

ψ

(
t∫
0

|g (t, s, x(s), y(s))− g (t, s, p(s), q(s))| ds
)

≤ ϵ

2
, for any x, y, p, q ∈ BC(R+).

Case 1:
If t > T, then we get

O(f ; |F (x, y)(t)− F (p, q)(t)|) ≤ 1

4
φ(O(f ;

ϵ

2
+
ϵ

2
)) +

ϵ

2
<
ϵ

2
+
ϵ

2
= ϵ.

Case 2:
If t ∈ [0, T ] then

O(f ; |F (x, y)(t)− F (p, q)(t)|) ≤ 1

4
φ(O(f ;

ϵ

2
+
ϵ

2
)) + ψ(T ω̂) <

ϵ

4
+ ψ(T ω̂)

where
ω̂ = sup

{
|g (t, s, x, y)− g (t, s, p, q)| : t, s ∈ [0, T ], x, y, p, q ∈ [−r, r],

∥ (x, y)− (p, q) ∥< ϵ
2

}
.

Since g is continuous on [0, T ] × [0, T ] × [−r, r] × [−r, r] therefore ω̂ → 0 as ϵ → 0 i.e. since ϵ → 0
gives T ω̂ → 0 therefore ψ2(T ω̂) → 0.

Thus F is a continuous function from B̄r × B̄r into B̄r.
We have, T, ϵ ∈ R+ and X1, X2 are arbitrary non-empty subset of B̄r and let t, s ∈ [0, T ] such

that |t− s| ≤ ϵ.
Without loss of generality we can assume that t < s . Also let x ∈ X1, y ∈ X2 and
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K̂ = T sup {|g(t, s, x(s), y(s)| : t, s ∈ [0, T ], x, y ∈ [−r, r]} ,
ωT (x, ϵ) = sup {|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ϵ, } ,
ωT (y, ϵ) = sup {|y(t)− y(s)| : t, s ∈ [0, T ], |t− s| ≤ ϵ, } ,

ωT
r (h, ϵ) = sup

{
|h (t, x, y, z)− h (s, x, y, z)| : t, s ∈ [0, T ],

|t− s| ≤ ϵ, x, y ∈ [−r, r], z ∈ [−K̂, K̂]

}
,

ωT
r (g, ϵ) = sup

{
|g (t, u, x(u), y(u))− g (s, u, x(u), y(u))| : t, s, u ∈ [0, T ],

|t2 − t1| ≤ ϵ, x, y ∈ [−r, r], z ∈ [−K̂, K̂],

}
.

Then we get

O(f ; |F (x, y)(t)− F (x, y)(s)|)

= O

 f ;

∣∣∣∣∣∣∣∣
h

(
t, x(t), y(t),

t∫
0

g (t, u, x(u), y(u)) du

)
−h

(
s, x(s), y(s),

s∫
0

g (s, u, x(u), y(u)) du

)
∣∣∣∣∣∣∣∣


≤ O

 f ;

∣∣∣∣∣∣∣∣
h

(
t, x(t), y(t),

t∫
0

g (t, u, x(u), y(u)) du

)
−h

(
t, x(s), y(s),

t∫
0

g (t, u, x(u), y(u)) du

)
∣∣∣∣∣∣∣∣


+O

 f ;

∣∣∣∣∣∣∣∣
h

(
t, x(s), y(s),

t∫
0

g (t, u, x(u), y(u)) du

)
−h

(
s, x(s), y(s),

t∫
0

g (t, u, x(u), y(u)) du

)
∣∣∣∣∣∣∣∣


+O

 f ;

∣∣∣∣∣∣∣∣
h

(
s, x(s), y(s),

t∫
0

g (t, u, x(u), y(u)) du

)
−h

(
s, x(s), y(s),

t∫
0

g (s, u, x(u), y(u)) du

)
∣∣∣∣∣∣∣∣


+O

 f ;

∣∣∣∣∣∣∣∣
h

(
s, x(s), y(s),

t∫
0

g (s, u, x(u), y(u)) du

)
−h

(
s, x(s), y(s),

s∫
0

g (s, u, x(u), y(u)) du

)
∣∣∣∣∣∣∣∣


≤ 1

4
φ(O(f ; |x(t)− x(s)|+ |y(t)− y(s)|)) +O(f ;ωT

r (h, ϵ))

+ ψ

∣∣∣∣∣∣
t∫

0

(g (t, u, x(u), y(u))− g (s, u, x(u), y(u))) du

∣∣∣∣∣∣


+ ψ

∣∣∣∣∣∣
t∫

0

g (s, u, x(u), y(u)) du−
s∫

0

g (s, u, x(u), y(u)) du

∣∣∣∣∣∣

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≤ 1

4
φ
(
O(f ;ωT (x, ϵ) + ωT (y, ϵ))

)
+O(f ;ωT

r (h, ϵ)) + ψ
(
α̂ωT

r (g, ϵ)
)

+ ψ

∣∣∣∣∣∣
t∫

0

g (s, u, x(u), y(u)) du−
s∫

0

g (s, u, x(u), y(u)) du

∣∣∣∣∣∣
 .

By the uniform continuity of h on [0, T ]× [−r, r]× [−r, r]× [−K̂, K̂] and g on [0, T ]× [0, T ]× [−r, r]×
[−r, r] we have as ϵ→ 0, gives ωT

r (g, ϵ) → 0, ωT
r (h, ϵ) → 0. Thus as ϵ→ 0 we have∣∣∣∣∣∣

t∫
0

g (s, u, x(u), y(u)) du−
s∫

0

g (s, u, x(u), y(u)) du

∣∣∣∣∣∣ → 0

which gives

ψ

∣∣∣∣∣∣
t∫

0

g (s, u, x(u), y(u)) du−
s∫

0

g (s, u, x(u), y(u)) du

∣∣∣∣∣∣
 → 0.

Now taking the limit as ϵ→ 0 we have

O(f ;ωT
0 (F (X1 ×X2))) ≤

1

4
φ(O(f ;ωT

0 (X1) + ωT
0 (X2))).

As T → ∞ we get
O(f ;ω0(F (X1 ×X2))) ≤

1

4
φ(O(f ;ω0(X1) + ω0(X2))). (4.2)

For arbitrary (x, y), (p, q) ∈ X1 ×X2 and t ∈ R+ we have,

O(f ; |F (x, y)(t)− F (p, q)(t)|)

≤ 1

4
φ(O(f ; |x(t)− p(t)|+ |y(t)− q(t)|)

+ ψ

∣∣∣∣∣∣
t∫

0

{g(t, u, x, y)− g(t, u, p.q)} du

∣∣∣∣∣∣


≤ 1

4
φ(O(f ; diam (X1(t)) + diam (X2(t))))

+ ψ

∣∣∣∣∣∣
t∫

0

{g(t, u, x, y)− g(t, u, p.q)} du

∣∣∣∣∣∣
 .

Since (x, y), (p, q) and t are arbitrary, therefore we have,

O(f ; diamF (X1 ×X2)(t)) ≤
1

4
φ(O(f ; diam(X1(t)) + diam(X2(t))))

+ ψ

∣∣∣∣∣∣
t∫

0

{g(t, u, x, y)− g(t, u, p.q)} du

∣∣∣∣∣∣
 .
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As t→ ∞, by applying (a3) we get

O(f ; lim sup
t→∞

diamF (X1 ×X2)(t)) (4.3)

≤ 1

4
φ(O(f ; lim sup

t→∞
diam (X1(t)) + lim sup

t→∞
diam(X2(t)))).

From (4.2)and (4.3) we have

O(f ;µ(F (X1 ×X2)

= O(f ;ω0 (F (X1 ×X2)) + lim sup
t→∞

diamF (X1 ×X2)(t))

≤ O(f ;ω0 (F (X1 ×X2)) +O(f ; lim sup
t→∞

diamF (X1 ×X2)(t)))

≤ 1

4
φ(O(f ;ω0(X1) + ω0(X2)))

+
1

2
ϕ(O(f ; lim sup

t→∞
diam (X1(t)) + lim sup

t→∞
diam(X2(t)))

≤ 1

4
φ(O(f ;ω0(X1) + ω0(X2) + lim sup

t→∞
diam (X1(t)) + lim sup

t→∞
diam(X2(t))))

+
1

4
φ(O(f ; lim sup

t→∞
diam (X1(t)) + lim sup

t→∞
diam(X2(t))) + ω0(X1) + ω0(X2)))

=
1

2
φ(O(f ;µ(X1) + µ(X2)).

Therefore
O(f ;µ(F (X1 ×X2) ≤

1

2
φ(O(f ;µ(X1) + µ(X2))

Therefore by Corollary 3.6, F has at least a coupled fixed point in the space E×E. Thus, the system
of equation (4.1) has at least a solution in E × E. □
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