
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,769 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
An Exact Analytical Solution for Gaseous Flow and Heat Transfer in Microtubes with Constant Wall Temperature | ||
Journal of Heat and Mass Transfer Research | ||
دوره 8، شماره 1 - شماره پیاپی 15، مرداد 2021، صفحه 13-22 اصل مقاله (1.12 M) | ||
نوع مقاله: Full Length Research Article | ||
شناسه دیجیتال (DOI): 10.22075/jhmtr.2021.20317.1284 | ||
نویسندگان | ||
Mahmood Norouzi1؛ Mahdi Davoodi2؛ Behrooz Zare Vamerzani3؛ Nazanin Biglari4؛ Seyyed Amirreza Vaziri* 1 | ||
1Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran | ||
2School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK. | ||
3Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
4Technical and Engineering Campus of Shahid Beheshti University, Tehran, Iran. | ||
تاریخ دریافت: 12 اردیبهشت 1399، تاریخ بازنگری: 23 بهمن 1399، تاریخ پذیرش: 25 بهمن 1399 | ||
چکیده | ||
It is known that slip flow and temperature jump phenomena play a significant role in micro-scale investigations. In this paper, exact analytical solutions for the flow and the convective heat transfer of gaseous flow passing through microtubes are derived for the first time in form of the Whittaker function. Here, it is assumed that both flow and heat transfer is fully developed in a microtube with constant wall temperature. The solution is obtained by considering the Navier-slip conditions for flow and heat transfer at walls. Here, a modal analysis technique is employed to achieve possible solutions for this scenario. Due to the eigenvalue form of governing equations, obtaining the closed-form exact solution for this problem is too difficult from the mathematical point of view and previous studies have been restricted to numerical and approximate series expansion solutions. In this study, an additional constraint is introduced using the definition of the mean temperature and employed to obtain possible eigenvalues related to this problem. Finally, by implementing a scaling law of the Nusselt number of laminar flow in closed conduits, an exact analytical solution for temperature distribution and the heat transfer are derived. It was found that increasing the Prandtl number increases the Nusselt number and increasing the Knudson number decreases the Nusselt number. Based on the obtained solution, the effect of Prandtl number and Knudsen number on heat convection of microtubes are studied in detail. | ||
کلیدواژهها | ||
Exact solution؛ Microtube؛ Heat Convection؛ Constant wall temperature؛ Eigenvalue differential equation | ||
عنوان مقاله [English] | ||
حل تحلیلی انتقال حرارت جریان گازی در داخل یک میکرولوله با درنظر گرفتن دمای ثابت در دیوارهها | ||
چکیده [English] | ||
پدیده جهش دمایی و لغزش نقش به سزایی در حل مسایل در مقیاسهای میکرو دارند. در این مقاله، راه حل تحلیلی دقیقی برای حل جریان و انتقال حرارت یک جریان گازی عبوری از یک میکرولوله برای اولین بار به فرم تابع Whittaker ارائه شده است. در این مقاله فرض شده است که جریان و انتقال حرارت به صورت کاملا توسعه یافته بوده و دمای دیوارههای این میکروکانال نیز ثابت در نظر گرفته شده است. این حل با درنظرگرفتن شرط لغزش بر روی دیواره ها بدست امده است. در این مطالعه، به دلیل محدودیت های فراوان در حل معادلات مقدارویژه، محققان قبلی تنها به حل این مسئله به صورت عددی بسنده کرده اند. در این مطالعه ، یک قید اضافی با استفاده از تعریف میانگین دما معرفی شده و برای بدست آوردن مقادیر ویژه احتمالی مربوط به این مسئله استفاده می شود. سرانجام ، با اجرای قانون مقیاس گذاری عدد نوسلت جریان آرام در مجاری بسته ، یک راه حل تحلیلی دقیق برای توزیع دما و انتقال حرارت بدست آمده است. بر طبق نتایج مشخص شد که افزایش عدد پراندل باعث افزایش عدد نوسلت و افزایش عدد نادسون باعث کاهش عدد نوسلت می شود. بر اساس تحقیق ارائه شده ، اثر عدد پراندل و عدد نادسون بر روی انتقال حرارت جابهجایی در میکرولوله ها مورد بررسی جزئی قرار میگیرد. | ||
کلیدواژهها [English] | ||
حل تحلیلی, میکرولوله, انتقال حرارت جابهجایی, دمای ثابت دیواره ها, معادلات دیفرانسیل مقدارویژه | ||
مراجع | ||
[1] Shah, R. K., 1975. Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. International Journal of Heat and Mass Transfer, 18(7), pp. 849-862. [2] Churchill, S.W. and chu, H.H.S., 1975. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18(9), pp. 1049-1053. [3] Ou, J.W. and Cheng, K.C., 1977. Natural convection effects on the Graetz problem in horizontal isothermal tubes. International journal of Heat Mass Transfer, 20(9), pp. 953-960. [4] Hieber, C.A., 1981. Mixed convection in an isothermal horizontal tube: some recent r 0r W / m2K / W mK 0 Nu 2hr / k p T u 3 Kg / m M. Norouzi / JHMTR 8 (2021) First page- Last page 21 theories. International Journal of Heat and Mass Transfer, 24(2), pp.315-322 [5] Hettiarachchi, H.M., Golubovic, M., Worek, W.M. and Minkowycz, W.J., 2008. Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. International Journal of Heat and Mass Transfer, 51(21-22), pp.5088-5096. [6] Lee, P.S. and Garimella, S.V., 2006. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International journal of heat and mass transfer, 49(17-18), pp.3060-3067. [7] Renksizbulut, M., Niazmand, H. and Tercan, G., 2006. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. International Journal of Thermal Sciences, 45(9), pp.870-881. [8] Mahmoudi, M., Tavakoli, M.R., Mirsoleimani, M.A., Gholami, A. and Salimpour, M.R., 2017. Experimental and numerical investigation on forced convection heat transfer and pressure drop in helically coiled pipes using TiO2/water nanofluid. International Journal of Refrigeration, 74, pp.627-643. [9] Sieder, E.N. and Tate, G.E., 1936. Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 28(12), pp.1429-1435. [10] Morgan, V.T., 1975, “The overall convective heat transfer from a smooth cylinder”, Advances in Heat Transfer, 11, pp. 199 - 264. [11] Churchill, S.W. and Chu, H.H., 1975. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International journal of heat and mass transfer, 18(9), pp.1049-1053. [12] Whitaker, S., 1972. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE Journal, 18(2), pp.361-371. [13] Mori, Y. and Futagami, K., 1967. Forced convective heat transfer in uniformly heated horizontal tubes (2nd report, theoretical study). International Journal of Heat and Mass Transfer, 10(12), pp.1801-1813. [14] Colin, S., Lalonde, P. and Caen, R., 2004. Validation of a second-order slip flow model in rectangular microchannels. Heat transfer engineering, 25(3), pp.23-30. [15] Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L.P., 2005. Fluid flow in micro-channels. International Journal of Heat and Mass Transfer, 48(10), pp.1982-1998. [16] Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P., 2005 “Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results,” International Journal of Heat and Mass Transfer, (48)25, pp. 5580–5601. [17] Chen, Y.T., Kang, S.W., Tuh, W.C. and Hsiao, T.H., 2004. Experimental investigation of fluid flow and heat transfer in microchannels. Journal of Applied Science and Engineering, 7(1), pp.11-16. [18] Shahmardan, M.M., Norouzi, M., Kayhani, M.H. and Delouei, A.A., 2012. An exact analytical solution for convective heat transfer in rectangular ducts. Journal of Zhejiang University SCIENCE A, 13(10), pp.768-781. [19] Norouzi, M. and Davoodi, M., 2015. Exact analytical solution on convective heat transfer of isothermal pipes. Journal of Thermophysics and Heat Transfer, 29(3), pp.632-636. [20] Morton, B.R., 1959. Laminar convection in uniformly heated horizontal pipes at low Rayleigh numbers. The Quarterly Journal of Mechanics and Applied Mathematics, 12(4), pp.410-420. [21] Hanratty, T.J., 1957. Effect of heat transfer upon flow field at low Reynolds numbers in horizontal tubes, appendix in N. Apostolakis. (M.Sc. dissertation, University of Illinois). [22] Iqbal, M. and Stachiewicz, J.W., 1966. Influence of tube orientation on combined free and forced laminar convection heat transfer. Journal of Heat Transfer, 88, pp. 109-116. [23] Iqbal, M. and Stachiewicz, J.W., 1967. Variable density effects in combined free and forced convection in inclined tubes. International Journal of Heat and Mass Transfer, 10(11), pp.1625-1629. [24] Faris, G.N. and Viskanta, R., 1969. An analysis of laminar combined forced and free convection heat transfer in a horizontal tube. International Journal of Heat and Mass Transfer, 12(10), pp.1295-1309. [25] Bahrami, M., Yovanovich, M.M. and Culham, J.R., 2005. Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. In International Conference on Nanochannels, Microchannels, and Minichannels (pp. 269-280). [26] Khan, W.A. and Yovanovich, M.M., 2008. Analytical modeling of fluid flow and heat transfer in microchannel/nanochannel heat sinks. Journal of Thermophysics and Heat Transfer, 22(3), pp.352-359. [27] Hooman, K., Hooman, F. and Famouri, M., 2009. Scaling effects for flow in micro-channels: variable property, viscous heating, velocity slip, and temperature jump. 22 M. Norouzi / JHMTR 8 (2021) 13- 22 International communications in heat and mass transfer, 36(2), pp.192-196. [28] Duan, Z. and Muzychka, Y.S., 2008. Slip flow heat transfer in annular microchannels with constant heat flux. Journal of heat transfer, 130(9). [29] Yu, S. and Ameel, T.A., 2001. Slip-flow heat transfer in rectangular microchannels. International Journal of Heat and Mass Transfer, 44(22), pp.4225-4234. [30] Yu, S. and Ameel, T.A., 2002. Slip flow convection in isoflux rectangular microchannels. Journal of Heat Transfer, 124(2), pp.346-355. [31] amayol, A. and Bahrami, M., 2010. Laminar flow in microchannels with noncircular cross section. Journal of Fluids Engineering, 132(11). [32] Kays, W.M., 2011. Convective heat and mass transfer. Tata McGraw-Hill Education. [33] Bejan, A., 2013. Convection heat transfer. John wiley & sons. [34] Abramowitz, M. and Stegun, I.A., 1972. Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Vol. 55, p. 319). Washington, DC: National bureau of standards. [35] Bateman, H., 1953. Higher transcendental functions [volumes i-iii] (Vol. 1). McGraw-Hill Book Company. [36] Hooman, K., 2007. Entropy generation for microscale forced convection: effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry. International Communications in Heat and Mass Transfer, 34(8), pp.945-957. [37] Shomali, M. and Rahmati, A., 2020. Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter. Journal of Heat and Mass Transfer Research, 7(1), pp.25-38. [38] Rahmati, A. and Najati, F., 2018. Analytical solution of pressure driven gas flow and heat transfer in micro-Couette using the Burnett equations. Journal of Heat and Mass Transfer Research, 5(2), pp.87-94. [39] Barik, A.K. and Nayak, B., 2017. Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid. Journal of Heat and Mass Transfer Research, 4(2), pp.103-115. [40] Tajik, M., Dehghan, M. and Zamzamian, A., 2015. Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes. Journal of Heat and Mass Transfer Research, 2(2), pp.45-50. | ||
آمار تعداد مشاهده مقاله: 648 تعداد دریافت فایل اصل مقاله: 464 |