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Abstract

In this paper, we consider the class of generalized ®-strongly monotone mappings and the methods
of approximating a solution of equations of Hammerstein type. Auxiliary mapping is defined for
nonlinear integral equations of Hammerstein type. The auxiliary mapping is the composition of
bounded generalized ®-strongly monotone mappings which satisfy the range condition. Suitable
conditions are imposed to obtain the boundedness and to show that the auxiliary mapping is a
generalized ®-strongly which satisfies the range condition. A sequence is constructed and it is shown
that it converges strongly to a solution of equations of Hammerstein type. The results in this paper
improve and extend some recent corresponding results on the approximation of a solution of equations
of Hammerstein type.
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1. Introduction

Let E be a real normed linear space and E* denotes its corresponding dual space. We denote the
value of the functional z* € E* at © € E by (z*,z), domain of A by D(A), range of A by R(A)
and N(A) denotes the set of zeros of A (i.e., N(A) = {x € D(A) :0 € Az} = A~'0). A multivalued
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mapping A : E — 2" from E into 2F" is said to be monotone if for each x,y € E, the following
inequality holds:
(W—v,x—y)y >0V peAzx, ve Ay.

A single-valued mapping A : D(A) C E — E* is monotone if (Az — Ay, x —y) >0, V x,y € D(A).
For a linear mapping A, the above definition reduces to (Au,u) > 0V u € D(A). Multivalued
mapping A is said to be generalized ®-strongly monotone if there exists a strictly increasing function
® : [0,00) = [0,00) with ®(0) = 0 such that for each x,y € D(A),

(p—vix—y)>Q(lz—yl) V pe Az, veAy.

Given that H is a real Hilbert space, a mapping A : H — 2% is said to be monotone if for each
x,y € H,
(u—v,x—y) >0V pe Az, ve Ay.

Let A be a monotone mapping defined on H. It is well known (see e.g., Zeidler [32]) that many
physically significant problems can be modelled by initial-value problems of the form

u'(t) + Au(t) = 0,u(0) = up. (1.1)

Heat, wave and Schrodinger equations are typical examples where such evolution equations occur.
At an equilibrium state (that is, if u(t) is independent of ¢), then ([1.1]) reduces to

Au = 0. (1.2)

Therefore, considerable research efforts have been devoted, especially within the past 40 years or so,
to methods of finding approximate solutions (when they exist) of . One important generalization
of is the so-called equation of Hammerstein type (see, e.g., Hammerstein [18]), where a nonlinear
integral equation of Hammerstein type is one of the form

u(z) + / Kz, ) f(y,uly))dy = h(z), (1.3)

where dy stands for a o-finite measure on the measure space €2, the kernel & is defined on Q x €,
f is a real-valued function defined on 2 x R and is in general nonlinear, h is a given function on €2
and v is the unknown function defined on €2. Let g be a function from 2 x R" into R. We denote by
F(X,Y), the set of all maps from X to Y. The Nemystkii operator associated to g is the operator
N, : F(Q,R") — F(,R) defined by

u — Ny(u)

where (Nyu)(z) = g(z,u(z)) Yu € F(Q, R"), V x € Q. For simplicity, we shall write N u(z)
instead of (Nyu)(x).

Example 1.1. Given a map g : R x R — R defined by
g(@,5) = |s| ¥ (z,5) € R X R,

the Nemystkii operator associated to g is the expression Nyu(z) = |u(x)| for any map u: R — R and
for any x € R.
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Example 1.2. Given a map g : R x R — R defined by
g(x,s) =xe’ V (z,5) € R xR,

the Nemystkii operator associated to g is the expression Nyu(x) = ze"™ for any map u: R — R and
for any x € R.

Observe that by the continuity of g, N, maps the set of real-valued continuous function on €2;
C(€) into itself. Moreover, it maps the set of real-valued measurable function into itself. Define the
operator K : F(,R) — F(Q,R) by

Kou(z) = / k(z,y)v(y)dy for almost all x € €,
Q

and the Nemystkii operator F': F(2,R) — F(Q,R) associated with f by
Fu(z) = f(z,u(zx)) for almost all x € ),
then the integral can be put in functional equation form as follows:
u+ KFu=0, (1.4)

where without loss of generality, we have taken h = 0. Also, Hammerstein equations play crucial
roles in solving several problems that arise in differential equations (see, e.g., Pascali and Sburlan
[24], Chapter IV, p. 164) and applicable in theory of optimal control systems and in automation
and network theory (see, e.g., Dolezale [I7]). Several authors have proved existence and uniqueness
theorems for equations of the Hammerstein type (see, e.g., Brézis and F. E. Browder ([6l [7, §]);
Browder and Gupta [9]; Chepanovich [10]; De Figueiredo and Gupta [15]).

Let C' be a nonempty closed convex subset of a real Banach space E. A self-mapping T : C' — C
is said to be nonexpansive if ||Tx — Ty|| < ||z —y|| V z,y € C. If E is smooth, T : C' — F is said
to be firmly nonexpansive type (see e.g., [22]), if

(Te — Ty, JTx — JTy) < (Tx — Ty, Jx — Jy) for all x,y € C,

where J : E — 2F" is the normalized duality mapping defined in Section 2.

For the iterative approximation of solutions of , the monotonicity of A is crucial. A mapping
A E — 2% is said to be maximal monotone if it is monotone and R(J + tA) is all of E* for some
t > 0. Given that A is monotone and R(J+tA) = E* for all ¢ > 0, then A is said to satisfy the range
condition. Let E be a uniformly smooth and uniformly convex Banach space and A, a maximal
monotone or (a monotone mapping which satisfies the range condition). Then, one can define for all
t > 0, the resolvent J;, : C' — D(A) by

Jix={z€ E:Jx e Jz+tAz}

for all z € C, where C is a closed convex subset of E. The fact that F(J;) = A7'0 is well known
where F(J;) is the set of fixed points of J; (see e.g., [23, 25, 26]). There exists some interesting
reports on the class of monotone mappings (See e.g, [1I, 3, 13}, 16, 30]).

In this present work, it is shown that if A is a multivalued generalized ®-strongly monotone
mapping and such that R(J,+tyA) = E* for some t, > 0, then R(J, +tA) = E* for all t > 0, where
Jp, p > 1 is the generalized duality mapping. That is, a maximal monotone mapping satisfies the
range condition. Also, a strong convergence theorem for approximating a solution of equations of
Hammerstein type is established. We consider the generalized ®-strongly monotone mapping which
is the largest such that if a solution of the equation 0 € Ax exists, it is necessarily unique. Our
results generalize and improve some important and recent results of Chidume and Idu [12].
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2. Preliminaries

Let S := {x € £ : ||z|| = 1} denotes a unit sphere of a Banach space E with dimension greater
than or equal to two. The space E is said to be Gateaux differentiable (or is smooth) if the limit

ety ]
t—0 t

exists for each x,y € S. If E is smooth and the limit is attained uniformly for each z,y € S, then it
is said to be uniformly smooth. A Banach space E is said to be strictly convex if

el = gl = 1w £y = 28y

The space E is said to be uniformly convex if, for each € € (0, 2], there exists a § := d(e) > 0 such
that for each z,y € S, || —y|| > ¢ implies that @ < 1—0. E is reflexive if and only if the natural
embedding of E into E** is onto. It is known that a uniformly convex Banach space is reflexive
and strictly convex. Also, if E is a reflexive Banach space, then, it is strictly convex (respectively
smooth) if and only if E* is smooth (respectively strictly convex).

Let ¢ : [0,00) — [0,00) be a strictly increasing continuous function such that ¢(0) = 0 and
o(t) — oo as t — 00, @ is called a gauge function. We associate to ¢, the duality mapping
J, : E — 2F" which is defined as

Jo(w) = {f € E": ) = |l=llllF1l, 1A= e}

where E* denotes the dual space of E' and (.,.) denotes the generalized duality pairing. If p(t) =
tP~1 p > 1, the duality mapping J, = J, is called generalized duality mapping. The duality mapping
with guage p(t) =t (i.e. p=2) is denoted by J and is referred to as the normalized duality mapping.
It follows from the definition that J,(x) = %J(l’) for each = # 0 and J,(z) = ||z||">J(z), p > 1.
J, is single-valued if £ is smooth and if E 1s a reflexive strictly convex Banach space with strictly
convex dual space E*, J, : E — E* and J, : E* — E being the duality mappings with gauge
functions p(t) = ! and ¢(s) = s771, % + % = 1, respectively, then J* = J,. For a Banach space
E and E* as its dual space, the following properties of the generalized duality mapping have also
been established (see e.g., Alber and Ryazantseva [5], Cioranescu [14], p. 25-77, Xu and Roach [29],
Zalinescu [31]):

(i) If E is smooth, then J, is single-valued and norm-to-weak* continuous;

(i) If £ is strictly convex, then J, is strictly monotone (injective, in particular, i.e, if x # y, then
Jyx N Jpyy = 0);

(iii) If £ is reflexive, then J, is onto;
(iv) The expression (J,z,z) is naturally regarded as having power p as (Jyz,z) = ||z||";

(v) If E is uniformly smooth, then J, : E* — FE is a generalized duality mapping on E*, J~ b=
Jg, JpJy = Ip= and J,J, = Ig, where Ip and Ig- are the identity mappings on £ and E*
respectively.

Definition 2.1. Let E be a smooth real Banach space with dual space E*, the followings were
introduced by Aibinu and Mewomo [2].
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(i) The function ¢, : E x E — R is defined by
p
Pp(T,y) = 5||56Hq —p (@, Joy) + lyl", forallz,y € E,

where J, is the generalized duality map from E to E*, p and q are real numbers such that
qg>p>1and Il? + % = 1. Notice that taking p = 2 in , it reduces to

o(x,y) = llal* =2z, Jy) + lyl*, for all z,y € B,
which was introduced by Alber [4)].

(i) The mapping V, : E x E* — R is defined by

Vy(x,x*) = §||x||q —plx, ") + ||=*||’ V x € E,x" € E* such that ¢ > p > 1, % + é =1
Remark 2.2. These remarks follow from Definition |2.1):
(i) It is obvious from the definition of the function ¢, that
Uzl = llyll)” < ¢pz,y) < (lll + lyl))? for all z,y € E. (2.1)
(ii) Clearly, we also have that
Vo(x,2*) = ¢p(x,J '2*) V 2 € E, 2" € E* (2.2)

In the sequel, we shall need the following lemmas.

Lemma 2.3. Aibinu and Mewomo [2]. Let E be a smooth uniformly convex real Banach space with
E* as its dual. Then

Vo(z, %)+ p(J 2" — 2, y*) < Vp(z, 2" + ) (2.3)
forall x € E and x*,y* € E*.

Lemma 2.4. Aibinu and Mewomo [2]. Let E be a smooth uniformly convex real Banach space. For
d >0, let B4(0) :={x € E:||z|]| <d}. Then for arbitrary x,y € Bq(0),

D 1
|z —ylI” > ¢p(z,y) = =[lz[|*, ¢=p>1, —+-=1
q P q

Lemma 2.5. Aibinu and Mewomo [2]. Let E be a reflexive strictly convex and smooth real Banach
space with the dual E*. Then

Op(y, ) — dp(y, 2) > p(z—y,Jo — Jz) forall x,y,z € E. (2.4)

Lemma 2.6. Xu [28]. Let {a,} be a sequence of nonnegative real numbers satisfying the following
relations:

an+1 S (1 - an)an + an0p + Tn, M S N,

where
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(i) {a}, € (0,1), Y o, = o0;

(1) limsup {c}, <O0;

(iii) Y >0, Y 7n < 00.
n=1

Then, a, — 0 as n — o0.

Lemma 2.7. Chidume and Idu [I2]. For a real number p > 1, let X, Y be real uniformly convex

and uniformly smooth Banach spaces. Let W := X X Y with the norm |Jw||y, = (||ul% + HvHi’,)%
for arbitrary w = (u,v) € W. Let W* := X* x Y* denotes the dual space of Z. For arbitrary
z = (u,v) € Z, define the map j7 : Z — Z* by

gy (2) =3y (w,0) = (G (u), j, (v))
such that for arbitrary wy = (u1,v1), wy = (ug,ve) in Z, the duality pairing {.,.) is given by
(wi, 3y (w2)) = (ur, iy (u2)) + (v, 4y (v2)) .
Then,
(i) W is uniformly smooth and uniformly convez,
(i) j,' is single-valued duality mapping on W.

Lemma 2.8. Chidume and Idu [I2]. Let E be a uniformly convex and uniformly smooth real Banach
space. Let F': E — E* and K : E* — E be monotone mappings with D(F) = R(K) = E. Let
T:Ex E*— E* x E be defined by T'(u,v) = (Ju— Fu+v,J v — Kv—u) for all (u,v) € E x E*,
then T is J-pseudocontractive. Moreover, if the Hammerstein equation u+ K Fu = 0 has a solution
in E, then u* is a solution of u+ KFu =0 if and only if (u*,v*) € FZ(T), where v* = Fu*.
Lemma 2.9. Zalinescu [71]. Let ¢ : Rt — RT be increasing with tlim ¥(t) = oo. Then JJI
—00
single-valued and uniformly continuous on bounded sets of E* if and only if E is a uniformly convex
Banach space.

Theorem 2.10. Xu [27]. Let E be a real uniformly convexr Banach space. For arbitrary r > 0, let
B, (0) :=={xz € E : ||z|| <r}. Then, there exists a continuous strictly increasing convez function

g :10,00) = [0,00), ¢(0) =0,
such, that for every z,y € B,(0), j,(z) € J,(x), jo(y) € Jo(y), the following inequalities hold:
(1) lz+yl” = 2" + p(y, jo(2)) + g(llyl));
(11) (x =y, jp(z) = Jp(y)) = g(llz —yl).

Lemma 2.11. B. T. Kien [21]. The dual space E* of a Banach space E is uniformly convex if and

only if the duality mapping J, is a single-valued map which is uniformly continuous on each bounded
subset of E.
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Lemma 2.12. Kamimura and Takahashi [19]. Let E be a smooth uniformly convex real Banach
space and let {x,} and {y,} be two sequences from E. If either {x,} or {y,} is bounded and
O(Tn, Yn) — 0 as n — oo, then ||z, — yu| — 0 as n — oo.

Theorem 2.13. Kido [20)]. Let E* be a real strictly conver dual Banach space with a Fréchet dif-
ferentiable norm and A a mazimal monotone operator from E into E* such that A70 # (). Let
Jix := (J + tA)" 'z be the resolvent of A and P be the nearest point retraction of E onto A710.
Then, for every x € E, Jyx converges strongly to Pz as t — oo.

3. Main Results

We give and prove the following lemmas which are useful in establishing our main result.

Lemma 3.1. Suppose E is a Banach space with the dual E*. Let F : E — E* and K : E* — E be
mappings such that D(K) = R(F) and the following conditions hold:

(i) For each uj,uy € E, there exists a strictly increasing function ®1 : [0,00) — [0,00) with
®,(0) = 0 such that
<FU1 — FUQ,’LLl — U2> Z q)l(HUl — UQH),

(i) For each vi,vy € E*, there exists a strictly increasing function ®y : [0,00) — [0,00) with
®5(0) = 0 such that
(Kuy — Kug, vy — v2) > $a([|lur — val]);
(iii) ®;(t) > rit fort € [0,00) andr; >0, i=1,2.

Let W := E x E* with norm |w|w = ||ullg + ||v]
AW — W* by Aw := (Fu —v,u+ Kv).

g+ for w = (u,v) € W. Define a mapping

(i) Then for each wy,wy € W, there exists a strictly increasing function ® : [0, 00) — [0, 00) with

®(0) =0 such that
(Awy — Awy, wy — wa) = O([Jwr — wel]);

(ii) Suppose that F' and K are bounded mappings, then A is a bounded map.
Proof .
(i) Define @ : [0,00) — [0,00) by ®(t) := min{r,r}t for each t € [0,00). Clearly, ® is a

strictly increasing function with ®(0) = 0. For wy; = (u1,v1), we = (uz,vy) € W, we have
Awy = (Fuy — v, Kvy + uq) and Awy = (Fug — vg, Kvg 4 ug) such that

Aw1 — Aw2 = (Fu1 — FUQ — (’01 —’UQ),K'Ul — KU2 + ('Uq _U/2))

Therefore, the following estimate follows from the properties of F' and K.

(Awy — Awg,wy —wy) = (Fup — Fug — (v1 — vg),u1 — ug)

+ (Kvy — Kvg + (ug — ug),v1 — vg)

= (Fuy — Fug,u; — ug) — (01 — V9, up — Us)

+ (Kvy — Kvg, 01 — v2) + (ug — ug, v1 — v2)
D1 (lur — wal]) + Pa([lvr — val])
riflur — o[ + raflor — s
min {ry, ra} (|lur — uz| + [Jvr = v2l])
= O([Jwr — wa)).

(\VARAVAR VS
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(ii) By the definition of A, it is a bounded map since F' and K are bounded mappings.
O

Remark 3.2. Recall that a mapping A : E — E* is said to be strongly monotone if there exists a
constant k € (0,1) such that

(Az — Ay,x —y) > kllz —y||* V z,y € D(A).
Therefore for a strongly monotone mapping, it is required that the norm on W be defined as
2 2
lwlify = llulls + o]l

An analogue of Lemma 2.5, Chidume and Djitte, [I1], which was proved in a Hilbert space is
given below in a uniformly smooth and uniformly convex Banach space.

Lemma 3.3. Let E be a uniformly smooth and uniformly convex Banach space with dual E*. Suppose
D(A) = E and A : E — 2F" is a multivalued generalized ®-strongly monotone mapping such that
R(J, +toA) = E* for some ty > 0. Then A satisfies the range condition, that is, R(J, +tA) = E*
for all t > 0.

Proof . By the strict convexity of £, we obtain for every x € E, there exist unique z;, € £ and
such that
Jpﬂf < Jp$t0 + toASL’tO.

Taking .Jp, () = my,, one can define a single-valued mapping Jp,, B = D(F) by

Jy = (J,+ tgA) N,

to

Ip,, 18 called the resolvent of A. It is known that (J, + tpA) is a bijection since it is monotone and

R(J, + toA) = E*. Since E is a smooth and strictly convex Banach space and A : E — 2 is such
that R(J, + tpA) = E*, for each ty > 0, one can verify that the resolvent tho of A, defined by

Ip,, () ={2 € E: Jyx € Jpz+toAz} = {(J, + toA)! Jpx}

for all x € F is a firmly nonexpansive type map. Infact, for x;,2o € E and t, > 0, and for

Jpz1=Jp(Jp, (= Jpz2—Jp(Jp, (z
every Jp, (1), Ip,, (z5) € D(F), we have that —— pUpig (1)) T2 Jp (U (72)

to ) to
®-strongly monotonicity property of A gives,

<Jpxl - Jp(thO (1)) B JpTa — Jp(thO (z2))

) € A, and generalized

to to

(|l Jp,, (1) = Jp, (22)]]) = 0.

to

Consequently,

(T @1)) = Ty (@2)), Ty (1) =y, (32)) <

<Jpx1 — Jpg, tho (r1) — tho ($2)> ) (3.1)
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Thus, the resolvent tho is a firmly nonexpansive type map. A simple computation from l) shows
that for x,y € FE,

1, (@) = Ty )] < llz = ]l (3.2)

We claim that
R(J,+tA)=FE"

for any ¢t > %0 Indeed, let t > %’, for every x € E, we solve the equation
Jyr + tAx = w*, x* € E*. (3.3)
Notice that = € F is a solution of provided that
Jpx + tyAzx = %Ow* + (1 — %O)Jpx,

which is equivalent to
B to to
r=Jp, (?w + (1 — ?)Jpx) :

By the contraction mapping principle, Eq. has a unique solution since |1 — %0| < 1 and this
justifies the claim. It is given that A is a monotone mapping and R(J, + topA) = E* for some ¢, > 0.
By the claim, it follows that R(J, +tA) = E* for any ¢t > %. By induction, we therefore have that
R(J,+tA) = E* for any t > & and any n € N. Thus, R(J, +tA) = E* for any t > 0. O

Lemma 3.4. Let E be a uniformly smooth and uniformly convexr real Banach space and denote the
dual space by E*. Suppose F' : E — E* is a generalized ®-strongly monotone mapping such that
R(J,+t,F) = E* for allt; > 0 and K : E* — E is a generalized ®o-strongly monotone mapping
such that R(J,+t2K) = E for allty > 0. Let W := E x E* with norm ||w||y, = ||ullg+|v| 5 ¥ w =
(u,v) € W and define a map A: W — W* by

Aw = (Fu—v,Kv+u),Y w=(u,v) €W, (3.4)
then R(J, +tA) = W* for allt > 0.

Proof . We show that R(J, +tA) = W* for all t > 0. Indeed, let ¢y, be such that 0 < t; < 1.
Denote the resolvents J, : E — D(F) of F by Ip, = (Jp + toF)~J, and Jg, BT = D(K) of K
by tho = (J, + toK)™1J,. tho and tho are firmly nonexpansive type maps and hence 1} holds.
Therefore, for h := (hy, hy) € X*, define G: W — W by

Gw = <th0 (hy — tou), Ja,, (hy + tw)) NVow = (u,v) € W.
From the fact that 1' holds for tho and tho, we have

HGw1 — GUJQH S tOle - ’lUQH W w1, We € w.

Therefore GG is a contraction and by Banach contraction mapping principle, G has a unique fixed
point w* := (u*,v*) € W, that is Gw* = w* or equivalently u* = Ip,, (he — tou®), v* = Ja,, (h1 +tov®).
These imply that (J, + tgA)w = h. Lemma gives that A is a generalized ®-strongly monotone
mapping and by Lemma 3.3 R(J, +tA) = W* for all ¢ > 0. O
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Theorem 3.5. Let E be a uniformly smooth and uniformly convex real Banach space and denote
the dual space by E*. Let F' : E — E* be a generalized ®1-strongly monotone mapping such that
R(J,+ t;F) = E* for allt;y > 0 and K : E* — E be a generalized ®,-strongly monotone mapping
such that R(J, + toK) = E for all ty > 0. Suppose F' and K are bounded mappings such that
D(K) = R(F) = E*. Define {u,} and {v,} iteratively for arbitrary vy, € E and v, € E* by

Up+1 = Jy (Jpun, — Ny (Fuy, — vy + 0 (Jpun, — Jpur))) ,n € N, (3.5)

Unt1 = Jp (Jyun — A (Kvp 4wy + 0, (Jgv, — Jgv1))) ,n € N, (3.6)

where J, is the generalized duality mapping from E to E* and J, is the generalized duality mapping
from E* to E. Let the real sequences {\,} and {6,} in (0,1) be such that,

(i) im6,, = 0 and {6,,} is decreasing;

(1) i)\nen = 00;
n=1

(iii) lim ((61/6n) = 1) /Anbn =0, ixn < .

n=1

Suppose that u+ KFu = 0 has a solution in E. There exists a real constant vo > 0 with (A, M) <
Y, n €N for some constant M > 0. Then, the sequence {u,} converges strongly to the solution of
0=u+ KFu.

Proof . Let W := E x E* with norm ||z, = [u| + [v|
Np: W x W — R by

eV w = (u,v) € W and define

Ap(wr, we) = @p(ur, uz) + ¢p(v1,v2),

where respectively w; = (ug,v;) and wy = (ug,v9). Let u* € E be a solution of u + KFu = 0.
Observe that setting v* := Fu* and w* := (u*,v*), we have that u* = —Kv*.
We divide the proof into two parts.
Part 1: We prove that {w,} is bounded, where w,, := (u,, v,,). Let r > 0 be sufficiently large such
that
0 p

@(5) > r > max {4/\p(w*,w1), oF + 5”:{:"‘“‘7} : (3.7)
where ¢ is a positive real number and ® := min {®;, $5} . The proof is by induction. By construction,
Np(w*,wy) < r. Suppose that A,(w*,w,) < r for some n € N. We show that A,(w*, w,+1) < 7.
Suppose this is not the case, then A,(w*, wy+1) > 7.
From inequality , we have |Jw,|| < rv+ |lw*]]. Let B :={w € E: A\p(w*,w) < r} and notice that
by Lemma and , J, and J, are uniformly continuous on bounded subsets. Consequently,

since F' and K are bounded, we define
M, = sup{||Fu+ 0,(Jpu — Jpuq)|| : 0, € (0,1),u € B} + 1, (3.8)

My = sup {||Kv + 0,(J,v — Jv1)|| : 0, € (0,1),v € B} + 1. (3.9)

Let 11 : [0,00) — [0, 00) be the modulus of continuity of J, and v : [0, 00) — [0, 00) be the modulus
of continuity of .J,. Recall that by the uniform continuity of J, and J, on bounded subsets of £* and
E respectively. Then we have

| o (Jptin) — Jog(Jptin — An (Fttg + On(Jpun — Jpu)))|| < i (A M), (3.10)
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1 Tp(Jqvn) = Jp(Jgvn — An (Kvp + On(Jgvn — Jgo1)))|| < tha(AnMa). (3.11)
Let My := M; + M, since ® := min {®;, P, }, one can define

P(e
Yo := min {1, 2](\;) } where (A, My) < 7o with ¥(\, My) >
0

9

N S

and ¥ := 11 + Y. Applying Lemma with y* := A\, (Fu, + 0,(Jyu, — Jyu1)) and by using the

definition of u,.;, we compute as follows,

G unsa) = &y (U, Jg (Jptn = A (Fun + On(Jyun — Jpur))))

Vy, (W, Ty, — Ny (Fuy, + 0n(Jpu, — Jyur)))

Vo(u®, Jpun)

—pAn (Jg(Jptn, — Ay (Fup, + 05 (Jpun — Jpur))) — u*, Fuy, + 6, (Jpun — Jpur))
Op(u*, un) — pAy (un, — u*, Fuy, + 0, (Jpun — Jpug))

—pAn (S (Jpttn, — Ay (Fug, + 0, (Jpun, — Jpur))) — wn, Fuy, + 0, (Jpun — Jpuq)) .

IN

By Schwartz inequality and uniform continuity property of J, on bounded sets of E* (Lemma ,
we obtain
Op(u s upy1) < p(u”,upn) — pAy (U — u*, Fuy, + 0, (Jpu, — Jpuy))
+pAnth1(AnMi) My (By applying inequality (3.10))
< ¢p(u”,upn) — pAy (U, —u*, Fx,, — Fu™) since u* € N(F))
_p)\nen <un - U*y qun - qu1> + p>\n¢1<)‘an>M1
By Lemma p(un, —u*, Jyuy — Jpun) < @p(u,ur) — ¢p(u*,u,) < @p(u,uq). Also, since F is
generalized ®-strongly monotone, we have,
Op(u” s unt1) < Gp(u’, un) — pAa®o([lu, — u)
+p)‘n‘9n <un - U/*7 qul - qun> +p>\n¢1(>‘nM1)M1
< ¢p(U*7 un) - p)\nq)l(Hun - U*H) + p)\nenghp(U*? ul) + p)\nwl()\an)Ml (312)

By the uniform continuity property of J, on bounded sets of £*, we have
[tnt1 — un |l = [[Jg(Jptni1) — Jo(Jpun)[| < 91 (AnMy),

such that
U1 — u*[] = [lun — u*]] < ¢ (NaMy),

which gives
[ — || = g1 — '] = 1 (A M). (3.13)
From Lemma [2.4]

p
R P

Py o«
> = P

q

P, « P, «
> QV+—MH)——MH

q q
> P
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So,
[t 1 — u™[| = 6.

Therefore, the inequality (3.13]) becomes,

|un —u*|] > 0 —1(\ M)

)
> =,
-2
Thus,
. 0
Ciflun =) = 2u(3)- (3.14)

Substituting (3.14]) into (3.12) gives
* * 5
(bp(u 7un+1) < ¢p(u 7un) pAP ( )+p>\ 6n¢p(u ul)

Similarly,

Gq(V*,Uny1) = & (V7 Ty (Jp Un — A (Kvp + 0, (Jqvn — Jgv1))))
V, (v J oUn — An (K, + 0, (Jgv, — Jyv1)))
(v*,

< V(s Jyen)
—pAn (Jp(Jy vn — A (K, + 0, (Jgvn, — Jy1))) — 0%, Kvy + 0, (Jgv, — Jyv1))
= ¢p(v", ) — DA (U, — V", Kvy, + 0, (Jyv,, — Jy01))

—pAn (Jp(qun — A (K, + 05 (Jgon — Jg1))) — Uy Koy + 0p(Jyv, — Jyu1))

By Schwartz inequality and uniform continuity property of J on bounded subsets of F' (Lemma[2.11]),
we obtain

¢p(v*7 Un+1) S gbp(U*a Un) - p)‘n <Un - U*; Fl‘n + Qn(qun - qul)>
+pAnth1 (AnM1) My (By applying inequality (3.11]))
< pp(u”, uy) — pAy (un — u*, Kv,, — Kv*) since v* € N(K))

_p/\ngn <Un - U*a qun - qul> + p/\nqvb2(/\nM2)M2-

By Lemma , p (v, — v, Jur — Jyun) < ¢p(v*,01) — ¢p(v*F,v,) < @p(v*,v1). Also, since K is gener-
alized ®-strongly monotone, we have,

oV, 0ns1) < 6y(0"00) = PADa(lon — v*])
+p>\n9n <Un - U*7 qul - qun> +p/\nw2(>\nM2)M2
< gbp(v*, U'rz) — p)\nq)Q(HUn — U*H) —|—p/\n0n¢p(v*, U1> +p)\nw2(/\nM2)M2 (316)

By the uniform continuity property of J, on bounded sets of E*, we have

|Vns1 — vnl| = ij(qunH) - Jp(JqUn)H < by (AnMa),

such that
[vng1 — V¥ || = [Jon — 0" || < ¥a(A,Ma),
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which gives

lon ="l = [longa — 0" = ¢2(AnMo).

From Lemma [2.4]

p
[ons =717 = @07, vngn) = 1]

v

v

v

So,

p
r ==l

Py o« Dy o«
(w+—mu)——mu
q q

oP.

[on 41 — 07| = 6.

Therefore, the inequality (3.17) becomes,
[on = 0¥l = 0 = Y2(AnMs)

Y
> —.
-2

Thus,

J

Do(flon = ™)) = ®a(5)

2

Substituting (3.18)) into (3.16]) gives

* * 5 *
¢p<v JUny1) < ¢p(v ,Un) _p)\n(I)Z(§> +p>\n9n¢p<v aUl)
+p)\n¢2()‘nM2)M2

Add (3.15)) and (3.19) gives

r < /\p(w*awn—i-l) S

IN

IN

IN

IN

IN

)
Np(W™, wy,) — p)\n(I)(§) + pAO A (W w1) 4+ pALY (A, Mo) My

)
/\p(w*> W) — p)‘nq)(§) + p)‘nen/\p(w*a w1) + pAnyo Mo
PAn . O

/\p(w*,wn) — 7@(5) —i—p)\n@n/\p(w*, 'LUl)
An .0
AW, wy) — %@(5) + PO (W, 1)
Np(w*, wy,) — T(I)(i) + pAnAp(w*, wy) (Since 6, € (0,1))
pPra,  pri,
T
A
r— pr4 <,
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(3.17)

(3.18)

(3.19)

a contradiction. Hence, A,(w*, w,41) < r. By induction, A,(w*,w,) < r V n € N. Thus, from
inequality (2.1)), {w,} is bounded.
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Part 2: Define A: W — W* by Aw = (Fu—v,Kv+u), ¥V w= (u,v) € W. We show that
{w,} strongly converges to a solution of Aw = 0. Since A satisfies the range condition (Lemma
and by the strict convexity of X (Lemma , we obtain for every ¢t > 0, and w € W, there exists a
unique w; € D(A), where D(A) is the domain of A such that

Jyw e J) wy + tAw,.
Taking Jyw = wy, then we define a single-valued mapping J; : £ — D(A) by J, = (J}V +tA)~'J)V.

Such a J; is called the resolvent of A. Therefore, by Theorem for each n € N, there exists a
unique z,, € D(A) such that,

1
Ty = (J;/V—F a )71JII;VU)1.
Then, setting x,, := (yn, 2,) € E x E* and wy := (u1,v1) € E X E*, we have
1.
(Yn 20) = (I + 0 )7L (g, o),
which is equivalent to
1
(J;;V + % )(yn,zn) = Jy(ul,vl).

Since A(Yn, 2n) = (Fyn — zn, Kz, + yn), then,

1
prn + _(Fyn - Zn) = quh

O
1
Jgzn + Q—(Kzn +yn) = Jyui,
and these lead to
On(Jpyn — Jpur) + Fy, — 2, = 0, (3.20)
0, (Jy2n — Jyv1) + Kz + yn = 0. (3.21)

Notice that the sequences {y,} and {z,} are bounded because they are convergent sequences by
Theorem 2.13] Moreover, by Theorem 2.13] limz,, € A710. Let y, — u* and 2, — v*, then u* in
E solves the equation v + K Fu = 0 if and only if z* = (u*,v*) is a solution of Az = 0 in W for
v* = Fu* € E*. The implication is that

Fu*—v* =0,
Kv*+u* =0.

Following the same arguments as in part 1, we get,
¢p(yn7 un—f—l) S gbp(yna un) - p)‘n <un — Yn, Fun — Up + 6)n(Jun - JU1)> + p)‘ndjl(/\an)Ml (322)

and

¢p(zn> Un+1) S gbp(zm 'Un) - p)‘n <'Un — Zn, K'Un + Unp, + 6)n(JqUn - qul» +p/\n¢2()‘nM2)M2 (323)
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By Theorem Lemma [2.4) and Eq. (3.20]), the generalized ®-strongly monotonicity of F is used
to obtain for some p > 1,
< — Yn, F Up — Up "’ 9

(S, — Jpur))
= (Tn — Yn, Fup, — v, + 0, (Jpu

Yn) +

)+

n pyn + prn qu1)>

0n< n_ynvjpun_ n < ynaFun Un+9n(prn_ qu1)>
en <un — Yn, qun - pyn < — Yn, Fun — Up — (Fyn - Zn)>
0n9([[un — ynll) + 2([Jttn — Yull) + (un — Yn, 20 — )

v

v

1
56n¢p<yn; un) + <un - yna Zn — Un>

This makes the inequality (3.22) to become

¢p(yn7 unJrl) S (1 - /\n9n>¢p(yn7 un) - p)\n <un - yn7 Zn — Un> +p)\n1/}1()\an)Ml (324)
From Lemma [2.5, we obtain that
qbp(ymun) < ¢p(yn—1’un> -Pp <yn — Un,y JpYn—1 — prn>
(ﬁp(ynfl) un) + p <un — Yn, prnfl - prn>
< Gp(Un—1:un) + 1 Sp¥Yn—1 — Jpynllllun — yall- (3.25)

Let R > 0 such that [|z1]] < R, ||y,|| < R for all n € N. Then the estimates below follows from
(3.20)),

1 0,.1—0,
+ 0. (FYyn-1— 2n1— (Fyn — 2,) = 16’— (Jpur = Jpyn—1) -
Taking the duality pairing of each side of this equation with respect to y,_1 — ¥, and using the
generalized ®-strongly monotonicity property of F', then

enfl - en
<prn—1 - prm Yn—1 — yn> § e—Hl]pul - prn—lH“yn—l - yn”a

prnfl - prn

which gives,

0,
s =yl < (%= = 1) Wyncs = ) (3.26)

n

Using ((3.25)) and (| - the inequality - ) becomes

0,—
Gp(Uns unt1) < (1= M) p(Yn—1,un) + Cy ( y 1 1)

_p>‘n <un — Yn, Zn — Un> +p/\n¢1()‘nM1)M17 (327)

for some constant C; > 0. Similar analysis gives that

0,
¢p(zn7vn+1> S (1 - >\n0n>¢p(2n717vn> + CQ < 8 ! - 1)
_p/\n <Un — Zn, Up — yn> + pAn¢2(AnM2)M27 (328)
for some constant Cy > 0. Since ¢ := 1y + 9, My := M; + My and (N, My) < 79, adding ((3.26))

and ((3.28) generates

/\(l’n, wn—H) S (1 - )\n‘gn) A (xn—la wn) + C (eg—l

n

- 1) + p/\n’YOMOa
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where C' := C7 +Cy > 0. By Lemma , &(xp_1,w,) = 0 as n — oo and using Lemma , we have
that w,, — x,_1 — 0 as n — oo. Since by Theorem x, — w* € N(A), we obtain that w,, — w*
as n — oo. But w, = (up,v,) and w* = (u*,v*), this implies that w, — u* with u* the solution of
the Hammerstein equation. [

Corollary 3.6. Let E be a uniformly smooth and uniformly convex real Banach space with the dual
space E*. Suppose F' : E — E* and K : E* — E are bounded and strongly monotone mappings.
Define {u,} and {v,} iteratively for arbitrary u; € E and v; € E* by

Ups1 = Jg (Jpun, — Ny (Fuy, — vy + 0, (Jpun, — Jpur))) ,n € N, (3.29)

Uni1 = Jp (S0 — Ay (Kvp + un + 0,(J} 0, — JJv1))) ,n €N, (3.30)
where J, : E — E* is the generalized duality mapping with the inverse, J, : E* — E and the real
sequences {\,} and {6,} in (0,1) are such that,

(i) im0,, = 0 and {0,,} is decreasing;

(1) i)\nen = 00;
n=1

(iii) T ((Ba1/62) = 1) /Xab =0, ixn < o0.

n=1

Suppose that u+ K Fu =0 has a solution in E. There exists a real constant vo > 0 with (A, M) <

Y, n €N for some constant M > 0. Then, the sequence {u,} converges strongly to the solution of
0=u+ KFu.

Proof . Define @y (|juy — us|)) := k1 |luy — us||* and ®o(||vy — va)) := ka|lvy — va) for some constants
ki, ks € (0,1) and let W := F x E* with norm ||w||}, := [[ul|% + [|v]|% ¥ w = (u,v) € W. The result
follows from Theorem B.5l O

Corollary 3.7. Chidume and Idu [12]. Let E be a uniformly conver and uniformly smooth real
Banach space and F : E — E*, K : E* — E be maximal monotone and bounded maps, respectively.
For (z1,11), (u1,v1) € E X E*, define the sequences {u,} and {v,} in E and E* respectively, by

Uppr = J ! (Jup — Ap(Fup — vy) — Mip(Ju,, — Jz1)), n €N, (3.31)
Upy1 = J (J_lvn — M (EKvy + up) — M (T 0, — J_lyl)) , neN, (3.32)

where {\,} and {0,} are real sequences in (0,1) satisfying the following conditions:

(i) i)\nﬁn = 00,
n=1

(ii) AnMg < 007 05" (AnMg) < Yobn,

s5=L(fn=1=0n ;- 51 On—1=6n [
(iii) = ( ,\ngen >‘ —0; =~ G
n

0,
(iv) 322K € (0,1),

>—>0 as n — oo,
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for some constants Mg > 0 and vy > 0, where g : (0,00) — (0,00) is the modulus of convezity of
E and K := 4RLsup{||Jz — Jy| : ||z|| < R, ||yl < R} +1, z,y € E, R > 0. Assume that the
equation u+ K Fu = 0 has a solution. Then the sequences {u,}, ., and {v,} -, converge strongly to
u* and v*, respectively, where u* is the solution of u+ K Fu = 0 with v* = Fu*.

Proof . From Lemma 2.8 we see that T : E x E* — E* x E defined by T(u,v) = (Ju — Fu +
v,J v — Kv — u) for all (u,v) € E x E* is J-pseudocontractive and A := (J — T') is maximal
monotone. Therefore, the iterative sequences ([3.31]) and (3.32)) are respectively equivalent to

Upi1 = J 7 (Jup — A (Fuy + 0, (Ju, — J21))),n € N and (3.33)

Un1 = J (J 7 0 = A (Kvy + 0,(J v, — T '1))) ,n €N, (3.34)

where J : E — E* is the normalized duality mapping with the inverse, J=! : E* — E. Hence, the
result follows from Theorem B.5l [

Remark 3.8. Prototype for our iteration parameters in Theorem are, \, = m and 0, =
1

Grnyps where 0 <b <a and a <1.
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