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Abstract

In this paper, a predator−prey model with logistic growth rate in the prey population was proposed.
It included an SIS infection in the prey and predator population. The stability of the positive equi-
librium point, the existence of Hopf and transcortical bifurcation with parameter a were investigated,
where a was regarded as predation rate. It was found that when the parameter a passed through a
critical value, stability changed and Hopf bifurcation occurred. Biologically, the population is posi-
tive and bounded. In the present article, it was also shown that the model was bounded and that it
had the positive solution. Moreover, the current researchers came to the conclusion that although the
disease was present in the system, none of the species would be extinct. In other words, the system
was persistent. Important thresholds, R0, R1 and R2, were identified in the study. This theoretical
study indicated that under certain conditions of R0, R1 and R2, the disease remained in the system
or disappeared.
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1. Introduction

Mathematical modeling is an important tool in analyzing the spread and control of infectious
diseases. Recently, researchers have paid more attention to epidemiological models.
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In 1926, Lotka−Volterra introduced a model of interaction between species. This model is applied
not only in the ecology, but also in complex systems such as computer games [9], genetics [16],
marriage [8], biochemical reactors [3], war [2] and urban sewage purification systems.

Anderson and May [1] studied a model of Lotka−Volterra prey−predator in which the diseased
prey was hunted to a greater degree and infected prey didn’t have any reproduction. They inferred
that the disease destabilizes the interactions between the prey and predator. Hadeler and Freedman
[10] investigated a Rosenzweig prey−predator model with higher predation on diseased prey. In this
model, predators spread parasites into the environment. In this way, the prey contracted the disease.
Predators came down with disease only by eating the infected prey. Hadeler and Freedman got a
threshold at which an infected periodic solution or an infected equilibrium appeared. Venturino [19]
also examined the effect of SIS diseases on Lotka-Volterra systems.

A delay prey-predator model with Holling type II functional response was examined by Mukhopad-
hyaya and Bhattacharyya [13]. In their research, they considered the dynamics of the system with
the effect of delay and diffusion on the stability and persistence of the model.

Pielou [17] formulated the following Lotka−Volterra modelṄ1 =

[
r1

(
1− N1

K1

)
− aN2

]
N1,

Ṅ2 = [k aN1 − d2] N2,

(1.1)

where N1 and N2 are the density of prey and predator population respectively. Ghasemabadi [7]
examined a more general form of the system (1.1). In her research, she studied the stability and
Hopf bifurcation of the system.

In the current study, a model of prey and predator diseases was investigated based on the system
(1.1). Disease was considered in both prey and predator species. In comparison to the previous mod-
els, this model was based on a predator-prey model with an attractive equilibrium point. Moreover,
disease can persist in the predator’s species and it is possible for the predators to contract the disease
during the predation process.

In section 2, the SIS predator−prey with the standard incidence and the mass action incidence
has been introduced. Population is always positive. In the second section, the present researchers
have proved this point. Then, it has been shown that the population is bounded.

In section 3, the researchers have investigated the local and global stability of equilibrium points.
In Section 4, we prove that the system is persistent and show that all species survive, and none

of them will be extinct.
In the final section, the researchers obtain conditions for Hopf and Transcritical bifurcations.

2. Mathematical model

In this section, the present researchers consider a model in which prey and predator are suffering
from a disease and predators feed on both the susceptible and infectious prey. The total size of prey
and predator population is

N1 = S1 + I1, N2 = S2 + I2,

where S1 , S2, I1 and I2 are the numbers of susceptible prey, susceptible predator, infectious prey
and infectious predator respectively.

Susceptible individuals become infectious by their contact with infectious individuals. When an
individual is susceptible to disease again after recovery, this model is called a SIS disease. Bacterial
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infections are SIS diseases. When an individual has permanent immunity after recovery, this model
is called a SIR disease. Viral infections are SIR diseases. Based on the assumptions, model (1.1) is
formulated as the following SIS model:

S1 =

[
b1 −

a1 r1N1

K1

]
N1 −

[
d1 + (1− a1)

r1N1

K1

]
S1 − aN2 S1 − β1

S1I1

N1

+ γ1I1

İ1 = β1
S1I1

N1

− γ1I1 −
[
d1 + (1− a1)

r1N1

K1

]
I1 − aN2 I1

Ṅ1 = r1

(
1− N1

K1

)
N1 − aN1N2 =

[
r1

(
1− N1

K1

)
− aN2

]
N1,

Ṡ2 = k aN1N2 − α
S2I1

N2

− d2S2 − β2
S2I2

N2

+ γ2I2,

İ2 =

[
β2
S2

N2

− d2 − γ2

]
I2 + α

S2I1

N2

Ṅ2 = k aN1N2 − d2N2 = [k aN1 − d2] N2,

(2.1)

The six differential equations of system (2.1) can be reduced to the following four differential
equations: 

İ1 =

[
β1
N1 − I1

N1

− γ1 − d1 − (1− a1)
r1N1

K1

− aN2

]
I1

Ṅ1 =

[
r1

(
1− N1

K1

)
− aN2

]
N1,

İ2 =

[
β2
N2 − I2

N2

− d2 − γ2

]
I2 + α

(N2 − I2)I1

N2

Ṅ2 = [k aN1 − d2] N2,

(2.2)

All the parameters with their biological meanings are given in the following table.

a1 convex combination constant of prey
b1 natural birth rate constant of prey
d1 natural death rate constant of prey
d2 natural death rate constant of predator

r1 = b1 − d1 growth rate constant of prey
K1 carrying capacity of the environment of prey
β1 daily contact rate of prey
β2 daily contact rate of predator
γ1 recovery rate constant of prey
γ2 recovery rate constant of predator
k efficiency in turning predation into new predators
α average number of contacts
a predation rate

Table 1: Description of parameters for system (2.1)

We show that system (2.2) is well−defined. For the well-defined system of (2.2), we need to show
that the system has a positive solution and the system is bounded. Biologically, the population of
each species is always positive and bounded. By using [7], we can easily prove the following theorem:
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Theorem 2.1. [7] Let (I1, N1, I2, N2) be any solution of system (2.2) with the initial conditions
I1(0) > 0, N1(0) > 0, I2(0) > 0, N2(0) > 0 then

I1(t) > 0, N1(t) > 0, I2(t) > 0, N2(t) > 0 for all t > 0

Proposition 2.2. Total population of prey, N1, is bounded.

Proof . From the second equation of system (2.2), the following inequality holds:

dN1

dt
≤ r1N1

(
1− N1

K1

)
For equation

dN1

dt
= r1N1

(
1− N1

K1

)
,

the equilibrium point N1 = K1 is globally asymptotically stable. Hence, for any ε > 0, when t→ +∞
the following relation holds:

N1(t) ≤ K1 + ε

therefore, N1 is bounded. �
Prey population is always less than the capacity of the environment. The above proposition

confirms this matter.

Theorem 2.3. All the solutions of system (2.2) are uniformly bounded.

Proof . Let X = k N1 +N2. Time derivative of X is given as

dX

dt
= k

dN1

dt
+
dN2

dt

then

dX

dt
= k r1

(
1− N1

K1

)
N1 − k aN1N2 + k aN1N2 − d2N2

= k r1N1 − k r1
N2

1

K1

− d2N2

≤ k r1K1 − d2N2,

by using proposition (2.2) and the above inequality, we have

dX

dt
+ µX ≤ k r1K1 − d2N2 + k µN1 + µN2

≤ kK1(r1 + µ) + (µ− d2)N2,

choosing µ ≤ d2, then

dX

dt
+ µX ≤ kK1(r1 + µ) = M (2.3)
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A solution of inequality (2.3) is given as

X(t) ≤ Ce−µt +
M

µ

and

X(t) ≤ X(0)e−µt +
M

µ
(1− e−µt)

≤ max

(
X(0),

M

µ

)
.

Therefore, lim supX(t) ≤ M
µ

as t→ +∞ independent of the initial conditions. �

3. Equilibria

System (2.2) has the following equilibrium points:

E0 = (0, 0, 0, 0), E1 = (0, K1, 0, 0),

E2 =

(
K1

(
1− 1

R0

)
, K1, 0, 0

)
, E3 = (0, N∗1 , 0, N

∗
2 ),

E4 = (0, N∗1 , I
∗
2 , N

∗
2 ), E5 = (I∗∗1 , N

∗
1 , I

∗∗
2 , N

∗
2 ),

where

N∗1 =
d2

k a
, N∗2 =

r1

a

[
1− d2

k aK1

]
,

I∗∗1 = N∗1

(
1− 1

R1

)
, I∗2 = N∗2

(
1− 1

R2

)
and I∗∗2 is the positive root of

I2
2 + AI2 +B = 0 (3.1)

where

A =
(d2 + γ2)N∗2

β2

−N∗2 + α
I∗∗1

β2

, B = −α N
∗
2 I
∗∗
1

β2

, (3.2)

The positive solution of equation (3.1) is obtained as

I∗∗2 =
−A+

√
A2 − 4B

2

Three epidemiological thresholds are

R0 =
β1

γ1 + b1 − a1r1

,

R1 =
β1

γ1 + d1 + (1− a1)r1d2/k aK1 + aN∗2
,

R2 =
β2

d2 + γ2

.

The following definition and lemma are used later in this paper.
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Definition 3.1. Suppose that functions f and g are continuous and locally Lipschitz in x ∈ Rn, the
following equation

ẋ = f(t, x), (3.3)

is called asymptotically autonomous with the following limit equation

ẏ = g(y), (3.4)

if f(t, x)→ g(x) as t→∞ uniformly for x in Rn.

Lemma 3.2. Suppose the equilibrium point E of the limit system (3.4) is globally asymptotically
stable and solutions of system (3.3) are bounded. Then any solution x(t) of system (3.3) satisfies
x(t)→ E as t→∞.

The prey will survive when prey is not contracted with disease and no predator is available. The
following theorem confirms this matter.

Theorem 3.3. The equilibrium point E1 = (0, K1, 0, 0) is globally attractive provided

d2

k aK1

> 1, R0 ≤ 1, I0 > 0.

Proof . We consider the fourth equation of system (2.2). Since N1 < K1, we have:

Ṅ2 ≤ [k aK1 − d2]N2

The solution of the above inequality is

N2 = N0 exp

[
k aK1

(
1− d2

k aK1

)
t

]
Therefore N2 → 0 when t→ +∞ provided d2

k aK1
> 1. Since I2 ≤ N2, therefore I2 → 0 when t→ +∞

provided d2
k aK1

> 1. Hence for every ε > 0 there exists a T > 0 such that for every t > T we have
N2(t) < ε.
The second equation of system (2.2) is converted in the following way:

N1 > r1N1

(
1− N1

K1

)
− a εN1

For every ε > 0, the equilibrium K1

(
1− a ε

r1

)
is globally asymptotically stable for the following

equation:

Ṅ1 = r1N1

(
1− N1

K1

− a ε

r1

)
Thus, when t is large enough, the following inequality is obtained:

N1(t) ≥ K1 − ε,

On the other hand, N1 ≤ K1, therefore we have

lim
t→+∞

N1(t) = K1.
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The first equation of system (2.2) is asymptotically autonomous to

İ1 = β1 I1

[
1− 1

R0

]
− β1

K1

I2
1 .

The solution of the above equation is

I1(t) =

(
K1(1− 1

R0
)

1 + CK1(1− 1
R0

)exp(−β1(1− 1
R0

)t)

)
,

therefore I1 → 0 when t → +∞ provided R0 < 1. Hence the equilibrium point E1 = (0, K1, 0, 0) is
globally attractive. �

In the following theorem, we show that the equilibria E3, E4 and E5 are locally asymptotically
stable.

Theorem 3.4. The local behavior of equilibria is as follows:
(1) E3 = (0, N∗1 , 0, N

∗
2 ) is locally asymptotically stable provided R1 < 1 and R2 < 1.

(2) E4 = (0, N∗1 , I
∗
2 , N

∗
2 ) is locally asymptotically stable provided R1 > 1 and R2 > 1.

(3) The equilibrium point E5 = (I∗∗1 , N
∗
1 , I

∗∗
2 , N

∗
2 ) is locally asymptotically stable provided R2 < 1.

Proof . (1) The Jacobian matrix at equilibrium point E3 = (0, N∗1 , 0, N
∗
2 ) is

J3 =


β1

(
1− 1

R1

)
0 0 0

0
−r1N∗

1

K1
0 −aN∗1

α 0 β2

(
1− 1

R2

)
0

0 k aN∗2 0 0



The characteristic equation at equilibrium point E3 = (0, N∗1 , 0, N
∗
2 ) is

(λ− A11)(λ− A12)(λ2 − A13 λ− A14) = 0

where

A11 = β1

(
1− 1

R1

)
, A12 = β2

(
1− 1

R2

)
A13 =

−r1N
∗
1

K1

, A14 = −k a2N∗1 N
∗
2 .

According to Routh-Hurwitz criterion E3 is locally asymptotically stable providedR1 < 1 andR2 < 1.
The Jacobian matrix at equilibrium point E4 = (0, N∗1 , I

∗
2 , N

∗
2 ) is

J4 =


β1

(
1− 1

R1

)
0 0 0

0
−r1N∗

1

K1
0 −aN∗1

α 0 β2

(
1− 1

R1

)
0

0 k aN∗2 0 0


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The Jacobian matrix at equilibrium point E5 = (I∗∗1 , N
∗
1 , I

∗∗
2 , N

∗
2 ) is

J5 =


a11 a12 0 a14

0 a22 0 a24

a31 0 a33 a34

0 a42 0 0


where

a11 = −β1

(
1− 1

R1

)
,

a12 =

(
1− 1

R1

)[
β1

(
1− 1

R1

)
− (1− a1)

r1d2

k aK1

]
,

a14 =
−d2

k

(
1− 1

R1

)
,

a22 =
−r1 d2

k aK1

,

a24 =
−d2

k
,

a33 = β2

(
1− 1

R2

)
− α I∗∗1

N∗1
− 2β2I

∗∗
2 ,

a34 = β2
I∗∗2

N∗
2

2

+ α
I∗∗2 I∗∗2

N∗
2

2

,

a42 = k aN∗2 .

By using Routh-Hurwitz criterion, the units of (2) and (3) are proved. �
To prove the next theorem, we need the following lemma.

Lemma 3.5. Let be N1(0) > 0, N2(0) > 0 and d2/(k aK1) < 1, then

N1 → N∗1 N2 → N∗2 as t→∞

Proof . The characteristic equation at positive equilibrium point E13 = (N∗1 , N
∗
2 ) of system (1.1) is

λ2 −B1λ+D1 = 0

where

B1 =
−r d2

k aK1

, D1 = r d2 [1− d2

k aK1

],

hence B1 < 0, D1 > 0. According to Routh-Hurwitz criterion, E13 is locally asymptotically stable.
Now, Liapunov function V is considered:

V (N1, N2) = k(N1 −N∗1 −N∗1Ln(
N1

N∗1
)) + (N2 −N∗2 −N∗2Ln(

N2

N∗2
)),

the derivative of V with respect to time along the solution of system (1.1) is computed as

dV

dt
≤ −r k

K1

(N1 −N∗1 )2
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From the Liapunov-Lasalle invariance principal, it can be understood that E13 is globally attractive.
Since it has been shown that, if d2

kaK1
< 1 ,the equilibrium point E13 is locally asymptotically stable.

Hence E13 is globally asymptotically stable. �

Theorem 3.6. Assume R1 > 1 and R2 < 1. Then equilibrium point
E5 = (I∗∗1 , N

∗
1 , I

∗∗
2 , N

∗
2 ) is globally asymptotically stable.

Proof . Since N∗2 > 0, condition d2/(k aK1) < 1 holds. By using lemma (3.5) we have

N1 → N∗1 N2 → N∗2 as t→∞

The first and third equations of system (2.2) are asymptotically autonomous to

İ1 = β1

[
1− 1

R1

− I1

N∗1

]
I1, (3.5)

İ2 =

[
β2 −

β2I2

N∗2 − d2 − γ2

]
I2 +

α(N∗2 − I2)I1

N∗2
(3.6)

The solution of equation (3.5) is obtained as follows:

I1 =
N∗1

(
1− 1

R1

)
1 + C N∗1

(
1− 1

R1

)
exp(−β1

(
1− 1

R1

)
t)
,

if R1 > 1 then

lim
t→∞

I1(t) = I∗1

In this case, equation (3.6) is asymptotically autonomous to

İ2 =

[
β2 −

β2 I2

N∗2
− d2 − γ2

]
I2 + α I∗1 −

αI∗1 I2

N∗2

the above equation is equivalent to

İ2

I2
2 + AI2 +B

=
−β2

N∗2
(3.7)

where A and B are defined in (3.2). The solution of equation (3.7) is

I2 =
−A
2

+
1 + l0 exp(

−β2
√

∆t
N∗

2
)

2(1− exp(−β2
√

∆t
N∗

2
))

√
∆

hence,

lim
t→∞

I2(t) =
−A+

√
∆

2
= I∗∗2 .

Therefore, E5 is global attractive and since R2 < 1, it can be conluded that E5 is locally asymptoti-
cally stable, hence E5 is globally asymptotically stable. �
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4. Persistence of the system

In the following theorem, we show that system (2.2) is persistent. Biologically, the persistence of
a system means that all species survive and none of them will be extinct.

Definition 4.1. System (2.2) is persistent if there exist positive constants m1, m2m3,m4 and
M1,M2,M3,M4 such that every positive solution (I1(t), N1(t), I2(t), N2(t)) of system (2.2) sat-

isfies:

m1 ≤ lim inf
t→∞

I1(t) ≤ lim sup
t→∞

I1(t) ≤M1

m2 ≤ lim inf
t→∞

N1(t) ≤ lim sup
t→∞

N1(t) ≤M2

m3 ≤ lim inf
t→∞

I2(t) ≤ lim sup
t→∞

I2(t) ≤M3

m4 ≤ lim inf
t→∞

N2(t) ≤ lim sup
t→∞

N2(t) ≤M4

Theorem 4.2. let be k aK1

d2
< 1 then system (2.2) is persistent.

Proof . We consider the forth equation of system (2.2). Let be φ(t) = 1
N2(t)

, we get

dφ

φ
= [d2 − k aN1]dt.

Since N1 ≤ K1, we have

dφ

φ
≥ [d2 − k aK1]dt,

the answer of the above inequality is

N2(t) ≤ N2(0) exp[k aK1 − d2]t,

by using the inequality k aK1

d2
< 1, there is M1 > 0 such that

lim sup
t→∞

N2(t) ≤M1

Since I2 ≤ N2, the following inequality holds:

lim sup
t→∞

I2(t) ≤ lim sup
t→∞

N2(t) ≤M1

By using proposition (2.2), we have

lim sup
t→∞

N1(t) ≤ K1

Since I1 ≤ N1, the following inequality holds:

lim sup
t→∞

I1(t) ≤ lim sup
t→∞

N1(t) ≤ K1
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The first equation of system (2.2) can be written in the following inequality

İ1 =

[
β1
N1 − I1

N1

− γ1 − d1 − (1− a1)
r1N1

K1

− aN2

]
I1

≥
[
β1 − γ1 − d1 − (1− a1) r1 − aM1 −

β1 I1

N1

]
I1

≥ [−γ1 − d1 − (1− a1) r1 − aM1] I1

The solution of the above inequality is

I1(t) ≥ C exp(−γ1 − d1 − (1− a1) r1 − aM1)t

therefore, there exists a m2 > 0 such that

lim inf
t→∞

I1(t) ≥ m2

Since I1 ≤ N1, the following inequality holds:

lim inf
t→∞

N1(t) ≥ lim inf
t→∞

I1(t) ≥ m2

Now, we consider the third equation of system (2.2), we get

İ2 =

[
β2
N2 − I2

N2

− γ2 − d2

]
I2 +

α(N2 − I2)I1

N2

≥
[
β2
N2 − I2

N2

− γ2 − d2

]
I2

≥ [−γ2 − d2]I2

The solution of the above inequality is

I2(t) ≥ C1 exp(−γ2 − d2)t

therefore, there exists a m3 > 0 such that

lim inf
t→∞

I2(t) ≥ m3

Since I2 ≤ N2, the following inequality holds:

lim inf
t→∞

N2(t) ≥ lim inf
t→∞

I2(t) ≥ m3,

therefore, system (2.2) is persistent. �

5. Bifurcation

The parameter a which is the predation rate is identified as a bifurcation parameter.
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5.1. Hopf bifurcation

In this subsection, we investigate the Hopf bifurcation around the interior equilibrium point
E5. Hopf bifurcation occurs provided the Jacobian matrix J(E5) has a pair of purely imaginary
eigenvalues and the other eigenvalues have negative real parts and Re

[
dλ
da

]
|a=a0 6= 0. Assume that

the characteristic equation at the the interior equilibrium point E5 is as follows:

λ4 + A1 λ
3 + A2λ

2 + A3 λ+ A4 = 0 (5.1)

For purely imaginary eigenvalues, it is clear that coefficients of characteristic polynomial (5.1) must
satisfy the following condition:

A1A2A3 − A2
1A4 − A2

3 = 0.

Suppose ±iω is a pair of purely imaginary eigenvalues corresponding to a0. We derive from the
characteristic equation (5.1) relative to a

[4λ3 + 3A1λ
2 + 2A2λ+ A3]

dλ

da
+

(
λ3dA1

da
+ λ2dA2

da
+ λ

dA3

da
+
dA4

da

)
= 0

hence

dλ

da
= −

(
λ3 dA1

da
+ λ2 dA2

da
+ λdA3

da
+ dA4

da

4λ3 + 3A1λ2 + 2A2λ+ A3

)
(5.2)

we substitute iω in to equation (5.2), we have

dλ

da
|iω = −

(
−iω3 dA1

da
− ω2 dA2

da
+ iω dA3

da
+ dA4

da

−4iω3 − 3A1ω2 + 2A2ωi+ A3

)
hence

Re

(
dλ

da
|iω
)

= −

(
[A3 − 3A1ω

2]
[
dA4

da
− ω2 dA2

da

]
+ [2A2ω − 4ω3]

[
ω3 dA1

da
− ω dA3

da

]
[A3 − 3A1ω2]2 + [2A2ω − 4ω3]2

)

Theorem 5.1. Consider prameter a as bifurcation parameter. System (2.2) undergoes a Hopf-
bifurcation provided(

[A3 − 3A1ω
2]

[
dA4

da
− ω2dA2

da

]
+ [2A2ω − 4ω3]

[
ω3dA1

da
− ωdA3

da

])
6= 0

5.2. Transcritical bifurcation

The following theorem presents the conditions for the occurrence of transcritical bifurcation.

Theorem 5.2. Consider system (2.2)
(1) If R1 = 1 and R2 6= 1 then system (2.2) undergoes a transcritical bifurcation at the equilibrium
point E3 of system (2.2) but this system dosen’t have saddle node bifurcation when the parameter a
crosses the critical value

a∗ =
r1 d2 a1

K1 a (γ1 + d1 + r1 − β1)

(2) If R1 = 1 then system (2.2) undergoes a transcritical bifurcation at t equilibrium point E4 of
system (2.2).
(3) If R1 = 1 then system (2.2) undergoes a transcritical bifurcation at the nontrivial positive equi-
librium point E5 of system (2.2).
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Proof . To prove three parts of this theorem, we use the Sotomayor’s theorem.
(1) If R1 = 1 then the jacobian matrix J3 has a zero eigenvalue and the corresponding right and left
eigenvector of zero eigenvalue are

v =

(
1, 0, −α

β2

(
1− 1

R2

)−1

, 0

)
and w = (1, 0, 0, 0) respectively. Therefore we get

Fa(0, N
∗
1 , 0, N

∗
2 , a) =


−N2 I1

−N1N2

0
k N1N2


|(0,N∗

1 ,0,N∗
2 )

=


0

−N∗1 N∗2
0

k N∗1 N
∗
2


therefore

wT Fa(0, N
∗
1 , 0, N

∗
2 , a) = 0

and

wT (Fx a(0, N
∗
1 , 0, N

∗
2 , a).v) = −N∗2 6= 0

where x = (x1, x2, x3, x4) = (I1, N1, I2, N2) and v = (v1, v2, v3, v4).

D2F (0, N∗1 , 0, N
∗
2 , β1)(v, v) =



∑4
j1,j2=1

∂2f1(0,N∗
1 ,0,N

∗
2 ,β1)

∂xj1 ∂xj2
vj1 vj2

∑4
j1,j2=1

∂2f2(0,N∗
1 ,0,N

∗
2 ,β1)

∂xj1 ∂xj2
vj1 vj2

∑4
j1,j2=1

∂2f3(0,N∗
1 ,0,N

∗
2 ,β1)

∂xj1 ∂xj2
vj1 vj2

∑4
j1,j2=1

∂2f4(0,N∗
1 ,0,N

∗
2 ,β1)

∂xj1 ∂xj2
vj1 vj2



=


−2β1
N∗

1

0

−2β1
N∗

1

(
α

β2(1− 1
R2

)−1 + α
N∗

2

)(
α

β2(1− 1
R2

)−1

)
0


therefore

wTD2F =
−2β1

N∗1
6= 0

therefore by Sotomayor’s theorem the equilibrium point E3 is a transcritical bifurcation point.
2) We obtain wT Fa(0, N

∗
1 , I

∗
2 , N

∗
2 , a), wT (Fx a(0, N

∗
1 , I

∗
2 , N

∗
2 , a).v) and

D2F (0, N∗1 , I
∗
2 , N

∗
2 , β1)(v, v) similar to the above discussion.

wT Fa(0, N
∗
1 , 0, N

∗
2 , a) = 0,

wT (Fx a(0, N
∗
1 , 0, N

∗
2 , a).v) = −N∗2 6= 0,

wTD2F =
−2β1

N∗1
6= 0.

hence, the system (2.2) has a transcritical bifurcation in the equilibrium point E4.
3) The proof of this part is similar to the two previous parts. �
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6. Conclusion

In this article, the researchers proposed and analyzed a mathematical model which consisted of
non-linear differential equations for six different populations, namely susceptible prey S1, infected
prey I1, predator N2, prey N1, susceptible predator S2 and infected predator I2.

Having defined the system, the researchers showed that the system is well-defined, i.e. it always
has the positive solution and is bounded.

The researchers came to the conclusion that there are three epidemiological threshold quantities
for the model:

R0 =
β1

γ1 + b1 − a1r1

,

R1 =
β1

γ1 + d1 + (1− a1)r1d2/k aK1 + aN∗2
,

R2 =
β2

d2 + γ2

.

We showed that if R1 > 1 and R2 < 1, then the disease remains in the system and that it
will not disappear. In other words, we showed that the interior equilibrium point E5 is globally
asymptotically stable. We obtained similar conditions for equilibrium points of E3 and E4.

By selecting parameter a as a bifurcation parameter, a sufficient condition was obtained for
the existence of Hopf bifurcation. By using Sotomayor’s theorem, We proved that under certain
conditions, equilibrium points E3, E4 and E5 have transcritical bifurcation.

Many researchers have studied prey−predator disease models. In the present paper, infectious
disease may persist in the predator population and the predators may get the disease during the
predation process.
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