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Abstract

The aim of this paper is to investigate some new types of neutrosophic continuous mappings like,
neutrosophic α∗−continuous mapping (Nα∗ − CM), neutrosophic irresolute α∗−continuous mapping
(NIα∗ − CM), and neutrosophic strongly α∗−continuous mapping (NSα∗ − CM) are given and
some of their properties are studied. Moreover, new kind of neutrosophic contra continuous mappings
is investigated in this work, it is called neutrosophic contra α∗−continuous mapping (NCα∗ − CM).

Keywords: neutrosophic sets, neutrosophic topological space, neutrosophic α-open sets,
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1. Introduction

In 1998, the connotation of Contra continuity is investigated by Dontchev [6]. Also, the connotation
of α∗-open set (α∗ −OS) is shown [7]. The idea of neutrosophic sets is presented by Smarandache
[35], in 2014, the connotations of ”neutrosophic closed set “and” neutrosophic continuous function”
are given.

The neutrosophic set is studied in topology, algerbra and other fields. It is one of the non-classical
sets, such as soft set, fuzzy sets, nano set, permutation sets and so on, see [1, 3, 4, 6, 8, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36]. In this research,
we introduce a new types of neutrosophic mappings, they are said neutrosophic α∗-continuous and
neutrosophic contra α∗-continuous mappings. Next, we studied and discussed their basic properties.

2. Preliminaries

Here basic definitions and notations, which are used in this section are referred from the references
[2, 5, 9, 32, 34].
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Definition 2.1. Assume that Ψ 6= ∅. A neutrosophic set (NS) θ is defined as

θ = 〈α, ∂$(α), ωθ(α), `θ(α) : α ∈ Ψ〉 ,

where ∂$(α) is the degree of membership, ωθ(α) is the degree of indeterminacy and `θ(α) is the degree
of nonmembership, for all α ∈ Ψ.

Definition 2.2. We say (Ψ, τ) is a neutrosophic topological space (NTS) if and only if τ is a
collection of (NSs) in Ψ and it such that:

(1) 1N , 0N ∈ τ, where 0N = {〈α, (0, 1, 1)〉 : α ∈ Ψ} and 1N = {〈α, (1, 0, 0)〉 : α ∈ Ψ},

(2) A ∩ β ∈ τ for any θ, β ∈ τ ,

(3)
⋃
i∈I Ai ∈ τ for any arbitrary family {Ai | i ∈ I} ⊆ τ .

Moreover, any A ∈ τ is called neutrosophic open set (NOS) and we say neutrosophic closed set
(NCS) for its complement.

Definition 2.3. Assume A is a neutrosophic set in (NTS) X.

(i) The neutrosophic closure (resp., neutrosophic α-closure) of A is the intersection of all neutro-
sophic closed (resp., neutrosophic α-closed ) sets containing A and is denoted by Ncl(A) (resp.,
Nclα(A)).

(ii) The neutrosophic interior (resp., neutrosophic α-interior) of A is the union of all neutrosophic
open (resp., neutrosophic α-open ) sets are contained in A and is denoted by Nint(A) (resp.,
Nintα(A)), where A is neutrosophic α-open set (Nα − OS) (resp., neutrosophic semi α-open
set (NSe α − OS), neutrosophic α∗-open set (Nα∗ −OS) if A ⊆ Nint(Ncl(Nint(A))) (resp.,
A ⊆ Ncl(Nint(Ncl(Nint(A)))) or equivalently A ⊆ Ncl(Nint(A)), A ⊆ Nintα (Ncl (Nintα(A))).
Also, their complement are called neutrosophic α-closed set (Nα − CS) (resp., neutrosophic
semi α-closed set (NSeα− CS), neutrosophic α∗− closed set (Nα∗ − CS) .

The symbols of the above neutrosophic sets and their complements are referred as Nα − O(X)
(resp., NSe α−O(X), Nα∗ −O(X)) , Nα− C(X) (resp., SNe α− C(X), Nα∗ − C(X)).

Proposition 2.4. (1) If A is (Nα∗ −OS) and B is (NOS), then A ∩B is (Nα∗ −OS).

(2) If {Gλ}λ∈Γ is a collection of (Nα∗ −OSs) , then their union is also (Nα∗ −OSs).

Theorem 2.5. Assume that X1 and X2 are two neutrosophic topological spaces (NTSs), A1 ⊆ X1

and A2 ⊆ X1. Then A1 and A2 are (Nα∗ −OSs) (resp., (Nα∗ − CSs)) in X1 and X2, respectively
if and only if A1 × A2 is (Nα∗ −OS) (resp ., (Nα∗ − CS)) in X1 ×X2.

Theorem 2.6. Assume that W is a subspace of Z satisfies G ⊆ W ⊆ Z. The following assertions
hold.

(i) If G ∈ Nα∗ −O(Z), then G ∈ Nα∗ −O(W ).

(ii) If G ∈ Nα∗ −O(W ), then G ∈ Nα∗ −O(Z), where W is a neutrosophic closed subspace of Z.

Proposition 2.7. (1) Every (NOS) (resp., Nα-open, Ncl-open) set is (Nα∗ −OS).
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(2) Every (Nα∗ −OS) is (NSeα−OS).

Definition 2.8. A (NTS) X is called a

(i) neutrosophic ultra-T2 (N-ultra-T2) if for any t 6= h ∈ Z, there are two disjoint neutrosophic
closed sets (NDCSs) T,H satisfy t ∈ T, h ∈ H.

(ii) neutrosophic ultra normal, if for all neutrosophic closed sets (NCSs) T, F with T 6= ∅ 6= F and
T ∩ F = ∅, there are two (NCSs) D,H with D ∩H = ∅ and T ⊆ D,F ⊆ H.

(ii) neutrosophic strongly closed if for any homely of (NCSs) that form a cover of X has a finite
sub-homely that form a cover of X, too.

3. The new types of neutrosophic α∗-continuity

The new types of neutrosophic α∗-continuity like; neutrosophic irresolute α∗-continuous mapping
(NIα∗ − CM) , neutrosophic stronger α∗-continuous mapping (NSα∗ − CM) and neutrosophic con-
tra α∗-continuous mapping (NCα∗ − CM) in this work are given. Furthermore, their relationships
for these our notions are shown.

Definition 3.1. Assume that W1 and W2 are NTSs and h : W1 → W2 is any map from W1 into W2.
We say h is a neutrosophic α∗-continuous mapping (Nα∗ − CM) (resp., neutrosophic irresolute α∗-
continuous mapping (NIα∗− CM), neutrosophic stronger α∗ -continuous mapping (NSα∗ − CM)
mapping if for each G (NOS) (resp. Nα∗ −OS) in W2, then h−1(G) is Nα∗ − OS (resp., (NOS))
in W1.

Lemma 3.2. (1) Every (Nα∗ − CM) is (NIα∗ − CM).

(2) Every (NIα∗ − CM) is (NSα∗ − CM).

Proof . It follows from Proposition 2.7. �

Theorem 3.3. Assume that W1 and W2 are NTSs and h : W1 → W2.

(i) If h is (Nα∗ − CM) , then h|G : G→ W2 is also, where G is (NOS) of W1.

(ii) If h is (NIα∗ − CM) , then h|G : G→ W2 is also, where G is (NOS) of W1.

(iii) If h is (NSa∗ − CM) , then h|G : G→ W2 is also, where G is (Nα∗ −OS) of W1.

Proof . (i) Assume B is an (NOS) in W2, since h is (Na∗ − CM), h−1(B) is (Nα∗ −OS) in W1,
since G is (NOS) in W1. Hence, by Proposition 2.4, we have h−1(B) ∩G is (Nα∗ −OS) in W1, but

(h|G)−1 (B) = h−1(B) ∩G.

Thus by Theorem 2.6, (h|G)−1 (B) is Nα∗− open in G.
(ii) and (iii) are similar to (i). �

Theorem 3.4. Suppose that h : W1 → W2 is any mapping and W1 = T ∪H, where T,H are disjoint
neutrosophic sets in W1. Then,
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(i) h is (Nα∗ − CM) if and only if h|T and h|H are also, where T and H are neutrosophic open
sets.

(ii) h is (NIα∗ −CM) if and only if h|T and h|H are also, where T and H are neutrosophic open
sets.

(iii) h is ( NSα∗−CM ) if and only if h|T and h|H are also, where T,H are neutrosophic α∗-open
sets.

Proof . (i) Suppose that G is (NOS) in W2, since h|T and h|H are (Nα∗ − CM) , (h|T )−1 (G)
and (h|H)−1 (G) are (Nα∗ −OS) in W1. So, their union is also, see Proposition 2.4. However,
h−1(G) = (h|T )−1 (G)∪(h|H)−1 (G) and hence h−1(G) is (Nα∗ −OS) in W1. Thus h is (Nα∗ − CM) .
Sufficiency, follows by using Theorem 3.3. The proofs of (i) and (iii) are the same way of proof (i).
�

Theorem 3.5. Suppose h : W1 → W2 is any mapping and hT : h−1(T ) → T is defined as hT (t) =
h(t), for any neutrosophic set T in W2 and t ∈ h−1(T ).

(i) If h is (Nα∗ − CM), then hT is also, where T is (NOS) in W2.

(ii) If h is (NIα∗ − CM) (resp., (NSα∗ − CM)), then hT is also, where T is neutrosophic closed
set (NCS) in W2.

Proof . We shall prove the second case. The first case is similar to (ii). Suppose that B is
(Nα∗ −OS) in T . Since T is (NCS) in W2, B is (Nα∗ −OS) in W2, see Theorem 2.6(ii). Also, since
h is (NIα∗ − CM) (resp ., (NSα∗ − CM)), h−1(B) is (Nα∗ −OS) (resp., (NOS)) in W1. Therefore,
h−1(B) is (Nα∗ −OS) (resp., (NOS)) in h−1(T ), see Theorem 2.6(i). �

Theorem 3.6. Suppose that X1, X2, X3 are three (NTSs) L : X1 → X2 and X2 ⊆ X3. If L : X1 →
X2 is (Nα∗ − CM) (resp., (NIa”-CM), (NSα∗ − CM)), then L : X1 → X3 is also.

Proof . Assume that A is(NOS) (resp., (Nα∗ −OS)) in X3, then A is (NOS) (resp., (Nα∗ −OS) in
X2, see Theorem 2.6(i) and hence L−1(A) is a neutrosophic α∗-open set (Nα∗ −OS, neutrosophicopen)
in X1, Now, we recall that the set {(x, L(x)), x ∈ X} ⊆ X × Y is called the neutrosophic graph of
the mapping L : X → Y and is denoted by NG(L). �

Theorem 3.7. Suppose that W1 and W2 are two (NTSs), h : W1 → W2 is any mapping and L :
W1 → W1 ×W2 is a neutrosophic graph mapping of h defined by L(t) = (t, h(t)), for all t ∈ W1. If
L is (Nα∗ − CM) (resp., (NI α∗ − CM), (NSα∗ − CM)) , then h is also.

Proof . Assume that K is (NOS) (resp., (Nα∗ −OS)) in W2. Since W1 is (NOS) (resp., (Na∗ −OS))
in any NTS),W1×K is (NOS) (resp., (Na∗ − oS)) inW1×W2, see Theorem 2.5. Therefore, L−1 (W1×
K) = h−1(K) is a neutrosophic a∗-open (resp., (Nα∗ −OS) , (NOS)) in W1. Hence, the proof is
complete. �

4. Neutrosophic contra α∗ -continuity:

In this section, we define a new type of neutrosophic α∗-continuity that we call it a neutrosophic
contra α∗-continuous mapping (NCα∗-CM ) and several propositions related to this new notion are
investigated.
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Definition 4.1. Assume that W1 and W2 are two (NTSs) and h : W1 → W2 is a mapping, then h
is called a neutrosophic contra α∗-continuous mapping (NCα∗ − CM). If h−1(K) is (Nα∗ − CS) in
W1, for any (NOS) K in W2.

Theorem 4.2. Let h : W1 → W2 be a mapping. The following statements are equivalent:

(i) h is (NCα∗ − CM),

(ii) for each t ∈ W1 and each (NCS) K in W2 containing h(t), there exists (Nα∗ −OS)B in W1,
such that ∈ B, h(B) ⊆ K,

(iii) for every (NCS) K of W2, h−1(K) is (Nα∗ −OS) of W1.

Proof . (i) → (ii) Assume that ∈ W1, and K is any (NCS) in W2, then Kc is (NOS) in W2. Thus
h−1 (Kc) is (Nα∗ − CS) in W1, but h−1 (Kc) = [h−1(K)]

c
. Hence h−1(K) is (Nα∗ −OS) in W1, and

t ∈ h−1(K). Put B = h−1(K), thus h(B) ⊆ K.
(ii)→(iii) Assume that K is a neutrosophic closed set in W2 and t ∈ h−1(K), then h(t) ∈ K

and hence there exists (Nα∗ −OS)B containing t, h(B) ⊆ K, thus t ∈ B = h−1(K). So h−1(K) =
∪{Bt | t ∈ h−1(K)}. Hence by Proposition 2.4(1), we get h−1(K) is (Nα∗ −OS) in W1.

(iii) → (i) Obviously holds. �

Theorem 4.3. The restriction LA of (NCα∗ − CM)L : X → Y to (Nα∗ − CS)A ⊆ X is also
(NCα∗ − CM).

Proof . Assume that B is (NOS) in Y, thus L−1(B) is (Nα∗ − CS) in X. Since A is (Nα∗ − CS) in
X, L−1(B) ∩ A is also (Nα∗ − CS) in X and hence it is also (Na∗ − CS) in A, see Theorem 2.6(i),
but (L|A)−1 (B) = L−1(B) ∩ A, hence the proof is complete. �

Theorem 4.4. If L : X → Y is (NCa∗ − CM) , then LA : L−1(A) → A is also, where A is (NCS)
in Y .

Proof . Assume that B is (NCS) in A. Since A is (NCS) in Y, B is (NCS) in Y . Then L−1(B) is
(Nα∗ −OS) in X. Since L−1(B) ⊆ L−1(A) ⊆ X, L−1(B) is (Nα∗ −OS) in L−1(A), see Theorem
2.6(i). �

Theorem 4.5. Assume that X and Y are two (NTSs), L : X → Y is a mapping and X = A ∪ B,
where A,B are disjoint (Nα∗− CSs) in X. Then L|A and L|B are (NCα∗ − CMs) if and only if
L is (NCα∗ − CM).

Proof . Necessity follows by using Theorem 4.3. Assume that G is (NCS) in Y . Since L|A and L|B
are (NCα∗ − CMs) , (L|A)−1 (G) and (L|B)−1 (G) are (Nα∗ −OS) in X. So, their union is also, see
Proposition 2.4. But L−1(G) = (L|A)−1 (G) ∪ (L|B)−1 (G) and hence the proof is complete. �

Definition 4.6. An (NTS) W is called:

(i) an N −a∗ T2 (resp., N-ultra-a∗T2) space if, for each t 6= d ∈ W , there exist two disjoint
(Nα∗ −OSs) (resp ., (Nα∗ − CSs))T,D satisfy t ∈ T, d ∈ D.

(ii) anN − α∗-ultra normal space if for each pair nonempty (NDCSs) can be separated by disjoint
Nα∗-clopen).
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� (iii) a neutrosophic α∗-compact space (Na∗C-space) if for each Nα∗-open cover of W has a
finite subcover.

Theorem 4.7. Suppose that h : W1 → W2 is injective (NCα∗ − CM) and W2 is N − T2− space.
Then W1 is N-ultra-α · T2 space.

Proof . Assume that t 6= d ∈ W1. Since h is injective, h(t) 6= h(d) in W2 and since W2 is
N −T2− space, there exist two (NDOSs) T,D satisfy h(t) ∈ T, h(d) ∈ D. Since h is (NCα∗ − CM) ,
h−1(T ), h−1(D) are (Nα∗ − CS) in W1 containing t, d and h−1(T )∩h−1(D) = ϕ = h−1(T ∩D). Hence
W1 is N-ultra-α · T2 space. �

Theorem 4.8. Suppose that L : X → Y is injective (NCα∗ − CM) and Y is an N-ultra T2-space.
Then X is an N −α∗ T2 space.

Proof . Take x 6= y in X. Since L is injective, f(x) 6= f(y) in Y . Since Y is an N-ultra T2− space,
there exist two (NDCSs) A,B satisfy L(x) ∈ A,L(y) ∈ B. Moreover, from L is (NCa∗ − CM) , we
have L−1(A), L−1(B) are (Nα∗ −OSs) in X containing x, y and L−1(A) ∩ L−1(B) = ∅. Then X is
an N − a∗T2 space. �

Theorem 4.9. Suppose that h : W1 → W2 is a neutrosophic closed injective (NCα∗ − CM) and W2

is a neutrosophic ultra normal space. Then W1 is N − α∗− is an ultra normal space.

Proof . Assume that A1, A2 are two (NCSs) in W1 with A1 ∩ A2 = ϕ. Since h is a neutrosophic
closed mapping, h (A1) , h (A2) are (NCSs) in W2. Since, W2 is a neutrosophic ultra normal space,
there exist two disjoint neutrosophic clopen sets B1, B2 in W2 satisfy h (A1) ⊆ B1, h (A2) ⊆ B2.
Hence A1 ⊆ h−1 (B1) , A2 ⊆ h−1 (B2) . From injectivity of h, we get h−1 (B1) , h−1 (B2) are disjoint
neutrosophic α∗-clopen sets. Thus W1 is a neutrosophic α∗-ultra normal space. �

Theorem 4.10. Suppose that h : W1 → W2 is a neutrosophic closed surjective (NCα∗ − CM) and
W1 is (Nα∗C− space). Then W2 is a neutrosophic strongly closed space.

Proof . Assume that {Vi | i ∈ I} is any neutrosophic closed cover of W2. Since h is (NCα∗ − CM) ,
{h−1 (Vi) | i ∈ I} is a neutrosophic α∗-open cover of W1, but W1 is (Nα∗C− space), thus W1 has finite
subcover. This means that W1 =

⋃
i∈I0

h−1 (Vi), where I0 = {1, . . . , n}. Since h is neutrosophic
surjective, we have

h(W1) = h

(
n⋃
j=1

h−1 (Vi)

)
=

n⋃
j=1

hh−1 (Vi) .

Hence, W2 =
⋃
i∈I0

Vi. Thus W2 is a neutrosophic strongly closed space. �
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