
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,911 |
تعداد دریافت فایل اصل مقاله | 7,656,367 |
The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 30، دوره 8، شماره 1، مهر 2017، صفحه 389-404 اصل مقاله (438.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2016.493 | ||
نویسندگان | ||
Maliheh Mayghani1؛ Davood Alimohammadi* 2 | ||
1Department of Mathematics, Payame Noor University, Tehran, 19359-3697, Iran | ||
2Department of Mathematics, Faculty of Science, Arak University, Arak, Iran | ||
تاریخ دریافت: 27 اسفند 1394، تاریخ بازنگری: 13 اردیبهشت 1395، تاریخ پذیرش: 19 شهریور 1395 | ||
چکیده | ||
Let $(X,d)$ be a compact metric space and let $K$ be a nonempty compact subset of $X$. Let $\alpha \in (0, 1]$ and let ${\rm Lip}(X,K,d^ \alpha)$ denote the Banach algebra of all continuous complex-valued functions $f$ on $X$ for which $$p_{(K,d^\alpha)}(f)=\sup\{\frac{|f(x)-f(y)|}{d^\alpha(x,y)} : x,y\in K , x\neq y\}<\infty$$ when it is equipped with the algebra norm $||f||_{{\rm Lip}(X, K, d^ {\alpha})}= ||f||_X+ p_{(K,d^{\alpha})}(f)$, where $||f||_X=\sup\{|f(x)|:~x\in X \}$. In this paper we first study the structure of certain ideals of ${\rm Lip}(X,K,d^\alpha)$. Next we show that if $K$ is infinite and ${\rm int}(K)$ contains a limit point of $K$ then ${\rm Lip}(X,K,d^\alpha)$ has at least a nonzero continuous point derivation and applying this fact we prove that ${\rm Lip}(X,K,d^\alpha)$ is not weakly amenable and amenable. | ||
کلیدواژهها | ||
Amenability؛ Banach function algebra؛ extended Lipschitz algebra؛ point derivation؛ weak amenability | ||
آمار تعداد مشاهده مقاله: 15,844 تعداد دریافت فایل اصل مقاله: 2,529 |