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Abstract

Lie’s theory of symmetry groups plays an important role in analyzing and solving differential equa-
tions; for instance, by decreasing the order of equation. Moreover, there are some analytic methods
to find the infinitesimal generators that span the Lie algebra of symmetries. In this paper, we first
converted the problem of finding infinitesimal generators in to the problem of solving a system of
polynomial equations in the context of computational algebraic geometry. Then, we used Gröbner
basis a novel computational tool to solve this problem. As far as we know, when a differential equa-
tion contains some parameters, there is no linear algebraic algorithm up to our knowledge to deal
with these parameters; so, we must apply the algorithms, which are based on Gröbner basis.
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1. Introduction

To gain a better understanding of the formulation of the basic laws of nature and many technological
problems, it is useful to consider them as differential equations. This leads to finding solutions such
equations are useful. Norwegian mathematician, Sophos Lie, spent most of his life on the Lie groups
theory to find solutions to differential equations through the systematic use of symmetries [13].
Today, Lie group analysis is an essential tool in many sources such as analysis, geometry, number
theory, differential equations, physics, and atomic structures, and so on. Symmetric methods are
important, especially when it comes to finding solutions to nonlinear differential equations because
most standard methods are inadequate for these cases. Texts are suggested for better and more
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complete learning of symmetric methods includes [2], [10], [15], [16] and [18]. When working
with Li groups, the most difficult step in symmetric methods is to find the symmetries (infinitesimal
generators) of the differential equations. In this paper, we presented the infinitesimal generators of
Lie symmetry group of ordinary differential equations of the form

y(n) = w(x, y, y
′
, ..., y(n−1)), n ≥ 2. (1.1)

Infinitesimal generators X = ξ(x, y)∂x+ η(x, y)∂y of differential equations, are determined by solv-
ing the linearized symmetry condition. Infinitesimal generators are useful to determine the general
solution of ODE or enable us to reduce the order of the ODE. So far, no general scheme has been devel-
oped for solving partial differential equations whose solution gives the infinitesimals of the symmetry
group. Peter Haydon stated that finding such solutions using some ansatz is easier than trying to
directly solve determining equations directly [10]. ODE tools package in Maple to find the solutions
of determining equations with an ansatz, collected by E. S. Cheb-Terrab and coworkers [4]. This
package is based on six algorithms to finds Lie point symmetries. In this paper, using an algorithm,
we found a specific type of symmetry that had polynomial ansatz. In fact, the bridge between Lie’s
theory and computational algebraic geometry is that we substitute ξ and η by their Taylor series at
the origin up to the degree equal to the order of equation, with unknown coefficients. By substituting
this taylor series into a given determining equations, we obtained a system of polynomial equations.
The Gröbner basis is one of the strongest tools for solving system of equations in computer algebra.
These bases were introduced by Bruno Buchberger [3] in 1965. He also produced the fundamental
algorithms to compute them in his Ph.D. thesis. There are many applications of Gröbner bases such
as graph coloring problems [8], robotics [7], coding theory [17], solving Diophantine equations (Pell)
[5], solving fuzzy systems [1], and so on. In fact, we found infinitesimal generators by dividing ξ and
η on Gröbner basis.
We also illustrated this method on the partial differential equations as well as the parametric dif-
ferential equations. Indeed, we intended to find a solution for a parametric polynomial system to
describe all the different behaviors of such system. The main difficulty with this process was to
analyze the parametric system to obtain infinitesimal generators. Kapur [11, 12] computed a para-
metric Gröbner basis G from prametric ideal basis in K[U, X]. Furthermore, we found infinitestimal
generators for each of the cases through applying the parametric Gröbner- based algorithms.

This paper has been structured as follows: Subsection 2.1 recalls some basic facts about point
symmetries of ODEs. Subsection 2.2 presents basic concepts of Gröbner basis and comprehensive
Gröbner systems. Finally, section 3 offers a new approch for computing infinitestimal generators for
ODE, PDE, and parametric differential equations.

2. Preliminaries

2.1. Basic facts on the point symmetries of ODEs

We begin by recalling some basic facts about point symmetries of ODEs, more details have been
given in [10]. A point symmetry of the ODE (1.1) is a smooth invertible transformation of the (x,
y) plane that maps the set of solutions of (1.1) in to itself. To facilitate this expression, we consider
a one-parameter Lie group of transformatin in the form

x̂ = x+ εξ(x, y) +O(ε2),

ŷ = y + εη(x, y) +O(ε2), (2.1)

ŷ(k) = y(k) + εη(k) +O(ε2), k ≥ 1.
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for each ε in some neighbourhood of zero. Specifically, a point symmetry is a diffeomorphism

Γ : (x, y) 7→ (x̂(x, y), ŷ(x, y)). (2.2)

This map induces the n-th prolongation map

Γ∗ : (x, y, . . . , y(n))→ (x̂, ŷ, . . . , ŷ(n)),

where ŷ(0) = ŷ and for each k = 1, . . . , n

ŷ(k) =
Dxŷ

(k−1)

Dxx̂
.

Here, Dx is the total derivative whit respect to x,

Dx = ∂x + y
′
∂y + y

′′
∂y′ + · · · . (2.3)

The symmetry condition for the ODE (1.1) is

ŷ(n) = ω(x̂, ŷ, ŷ
′
, . . . , ŷ(n−1)), (2.4)

provided that (1.1) holds. We are going now to state the general form of infinitesimal generators of
Lie symmetry group, where the infinitesimal generators X = ξ(x, y)∂x + η(x, y)∂y are determined
by solving the linearized condition (2.4). We substitute (2.1) into the symmetry condition (2.4)
and expand the result in powers of ε; by equating the the O(ε) terms yield the linearized symmetry
condition:

η(n) = ξωx + ηωy + η(1)ωy′ + ...+ η(n−1)ωy(n−1) , (2.5)

provided that (1.1) holds. This makes it easy to split the linearized symmetry condition using all
terms that are multiplied by the highest power of y(n−1), and so on, which are determining equations
for the Lie point symmetries. Lie point symmetries of PDEs are also calculated by the same procedure
as for ODEs. However, PDEs involve several independent variables.

2.2. Basic concepts of Gröbner basis and comprehensive Gröbner systems

In this section, we present briefly the basic concepts of Gröbner basis and comprehensive Gröbner
systems. For a more detailed discussion, we refer the reader to [3, 7, 19]. Using the method of
Gröbner bases, we can solve systems of polynomial equations in a very nice fashion.

Let the ring of all polynomials in x1, x2, · · · , xn, with coefficients in field K is denoted by R =
K[x1, x2, · · · , xn]. An expression of the form xi11 x

i2
2 · · ·xinn ∈ R with non-negative exponents is called

a term. In order to define Gröbner basis, we need to define the term order.
One the most important of a term order will be lexicographical order (or Lex order for short). We

now introduce that as follows:

Definition 2.1. [7] Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn>0, We say α >lex β if, in the
vector difference α−β ∈ Zn, the leftmost nonzero entry is positive. We will write xα1

1 x
α2
2 · · ·xαn

n >lex

xβ11 x
β2
2 · · ·xβnn if α >lex β.

Suppose > be an arbitrary term order on R. For any non-zero polynomial f , the maximum term
appearing in f with respect to > is denoted by LT (f), and is called the leading term of f . The
coefficient of LT (f) is the leading coefficient of f is denoted by LC(f).

Now, we can define a Gröbner basis for an ideal in R as follows:
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Definition 2.2. [7] Fix a monomial order >. A Gröbner basis of an ideal I in R with respect to
> is a finite set of polynomials G = {g1, . . . , gm} ⊂ I with the property that for every nonzero f ∈ I,
LT (f) is divisible by LT (gi) for some i. A Gröbner basis G is called a reduced Gröbner basis for I if
for any gi ∈ G, LC(gi) = 1 and no term of gi lies in the ideal generated by {LT (gj)|1 ≤ j 6= i ≤ m}.

We introduce the following theorem which are used in next section.

Theorem 2.3. Let I be an ideal in K[x], G = {g1, . . . , gt} be a Gröbner basis for I and f ∈ K[x].
Then there is a unique r ∈ K[x] with the following two properties:

1. No monomial of r is divisible by any of lm(g1), . . . , lm(gt).

2. There is g ∈ I such that f = g + r.

The remainder on division of f by G, r, is sometimes called the normal form of f .

Proof . See [7] �
Now, we describe the concept Gröbner bases for a polynomial ideal with parametric coefficients,

in this case, these are called comprehensive Gröbner bases. In general, comprehensive Gröbner bases
and comprehensive Gröbner systems are called “parametric Gröbner bases”. Let K be a field, R be
the polynomial ring K[U ] in the parameters U = u1, ..., um, and R[X] be the polynomial ring over
the parameter ring R in the variables X = x1, ..., xn and X ∩ U = ∅, i.e., X and U disjoint sets.
K[U ][X] denotes parametric polynomial ring over K, where consisted of the set of all parametric
polynomial as

t∑
i=1

piX
αi

where pi ∈ K[U ] is a polynomial on U with a coefficients in K, for each i. Assume that K is an
algebraically closed filed containing K. A specialization σa corresponding to a where a ∈ K

m
of

K[U ][X] is a ring-homomorphism

σa : K[U ][X]→ K[X]

f → f(a)

where f ∈ K[U ][X]. The comprehensive Gröbner systems has been defined by Weispfenning [19]
as follows; if we take the parameter space P and its set of parametric polynomials G from a com-
prehensive Gröbner systems for a parametric polynomial ideal I, then σ(G) constitutes a Gröbner
basis of the ideal generated by σ(I) under the specialization σ with respect to the parameter space
P of the parameters. Comprehensive Gröbner systems are also important parts for solving problem
of parametric polynomials.

Definition 2.4. [12] Let I ⊂ K[U ][X] be a parametric ideal and ≺ be a monomial ordering on X.
Then the set

ζ(I) = {(Ei, Ni, Gi)|i = 1, ..., l} ⊂ K[U ]×K[U ]×K[U ][X]

is said a comprehensive Gröbner system for I if for each (λ1, ..., λt) ∈ K
m

and each specialization

σ(λ1,...,λm) : K[U ][X]→ K[X]
t∑
i=1

piX
αi 7→

t∑
i=1

pi(λ1, ..., λm)Xαi
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there exists an 1 6 i 6 l such that (λ1, ..., λm) ∈ V (Ei) \ V (Ni) and σ(λ1,...,λm)(Gi) is a Gröbner basis
for σ(λ1,...,λm)(I) with respect to ≺. Because of simplicity, we call Ei and Ni the null and non-null
conditions respectively.

We refer the reader to [12] for more details. For instance, let F = {f1 = (a − 1)x + y2, f2 =
ay+a} ⊂ Q[a][x, y], x, y variables, a parameter. Choosing the lexicographic ordering x � y, we have
the following Gröbner systems:

Gi Ni Ei
{−x+ y2} {} {a}
{1} {a} {a− 1}

{(a− 1)x+ y2, ay + a} {a, a− 1} {}

For instanse, σa=1(Gi) = {1} is also a Gröbner basis of σa=1(f1, f2) = {y2, y + 1}.

3. Computing infinitesimal generators

When the Lie groups studied infinitesimal generators seen. In this section, we look for infinitesimal
generator of a given ordinary differential equation of order two or greater. Roughly speaking, X is
infinitesimal generator of form X = ξ(x, y)∂x+η(x, y)∂y for point symmetries from ODEs. Here, an
algorithm is presented to find all the infinitesimal generator that has polynomial ansatz. The main
bridge between Lie theory and computational algebraic geometry in the topic of this paper is to
substitute the functions ξ(x, y) and η(x, y) by their Taylor series at the origin up to the degree equal
to the order of equation, with unknown coefficients. The main algorithm used to help us achieve our
aim is presented below:

Algorithm 1 (Main Algorithm)

Input: ODEs of order n ≥ 2.
Output: Computing infinitesimal generators.

� 1. Apply linearized symmetry condition on given ODE.

� 2. Extract coefficients of all terms that are multiplied by the highest power of y(n−1), which
are the system of PDEs.

� 3. Substitute the functions ξ(x, y) and η(x, y) by their Taylor series at the origin up to the
degree equal to the order of equation, with unknown coefficients.

� 4. Substitute ξ(x, y) and η(x, y) into determining equations gained from step 2.

� 5. Compute Gröbner basis for the ideal generated by these systems of linear equations from
previous step with respect to lex order.

� 6. Find all the infinitesimal generator by dividing ξ(x, y) and η(x, y) on Gröbner basis.

Below, we illustrate the algorithm with an example:
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Example 3.1. [10] Consider the simplest second-order ODE,

y′′ = 0. (3.1)

The linearized symmetry condition for this ODE is

η(2) = 0,

proided that (3.1) holds. From (3.21) [10],

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy′3 = 0.

By reding off all terms that are multiplied by a particular power of y
′
, the linearized symmetry

condition splits into the following system of determining equations:

ηxx = 0, 2ηxy − ξxx = 0, ηyy − 2ξxy = 0, ξyy = 0. (3.2)

Now, let’s consider the functions ξ(x, y) and η(x, y) by their Taylor series at the origin up to a degree
equal to the order of differential equation that is two. Then, general solution of the (3.2) as

η(x, y) := c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy;

ξ(x, y) := d0 + d1x+ d2y + d3x
2 + d4y

2 + d5xy;

for arbitrary constants ci and dj, i,j=0,...,5. After substitution these ξ and η into (3.2) and doing
some simplifications, we receive to the following system of equations:

f1 = 2d3 = 0
f2 = 2d5 − 2c3 = 0
f3 = 2d4 − 2c5 = 0
f4 = 2c4 = 0.

(3.3)

Let I be the ideal generated by f1, f2, f3, f4. By computing a Gröbner basis for I with respect to lex
order we receive to

G := {c4, d5 − c3, d4 − c5, d3}.
To find all the infinitesimal generator, we divide ξ and η on Gröbner basis.

a := NormalForm(xi(x,y), G, T),

b := NormalForm(eta(x,y), G, T),

X := a*Rx+b*Ry.

For this example,

X := (c0 + c1x+ c2y + d5x
2 + d4xy)∂x + (d0 + d1x+ d2y + d4y

2 + d5xy)∂y. (3.4)

If in (3.4), we put one of the coefficients ci or dj, i,j=0,...,5 one respectively and the rest coefficients
zero. We obtained infinitesimal generator

∂x, x∂y, y∂y, ∂x, x∂x, y∂x, xy∂y + x2∂x, y
2∂y + xy∂x.

Theorem 3.2. The main algorithm finds the infinitesimal generators from the given differential
equation.

Proof . Suppose that I is the ideal generated by these determining equations replaced by Taylor series
instead of ξ and η. Variety of the mentioned ideal equal variety of Gröbner basis. The coefficients
ci or dj which are zero in ξ and η. Now the remainder of the division of ξ and η on Gröbner basis is
the coefficients ci or dj which are not zero. Infact, which are the same as infinitesimal generators. �
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3.1. ODE examples

In such subsection, three ODE examples are given to illustrate the performance of computinging
infinitesimal generators by the proposed method. PDE and parametric examples are given in further
subsections.

Example 3.3. [10] In studing the ODE

y
′′

=
y
′2

y
− y2, (3.5)

the linearized symmetry condition is

η(2) = η(−y
′2

y2
− 2y) + η(1)(

2y
′

y
), when (3.5) holds.

That is from (3.20) and (3.21) [10],

ηxx + (2ηxy − ξxx)y
′
+ (ηyy − 2ξxy)y

′2 − ξyyy
′3 + (ηy − 2ξx − 3ξyy

′
)(
y
′2

y
− y2) =

η(−y
′2

y2
− 2y) + (ηx + (ηy − ξx)y

′ − ξyy
′2)(

2y
′

y
).

By comparing powers of y
′
, we obtain the determining equations of the form:

ξyy +
1

y
ξy = 0,

ηyy − 2ξxy −
1

y
ηy +

1

y2
η = 0, (3.6)

2ηxy − ξxx + 3y2ξy −
2

y
ηx = 0,

ηxx − y2(ηy − 2ξx) + 2yη = 0.

We consider the general solution of the (3.6) is

ξ(x, y) := c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy;

η(x, y) := d0 + d1x+ d2y + d3x
2 + d4y

2 + d5xy;

for arbitrary constants ci and dj, i,j=0,...,5. We substitute this ξ and η into (3.6). Let I be the ideal
generated by this substitution and simplification

f1 = 4c4y + c2 + c5x
f2 = d4y

2 − 2c5y
2 + d0 + d1x+ d3x

2

f3 = −2c3y + 3c2y
3 + 6c4y

4 + 3c5y
3x− 2d1 − 4d3x

f4 = 2d3 + d2y
2 + d5y

2x+ 2c1y
2 + 4c3y

2x+ 2c5y
3 + 2d0y + 2d1yx+ 2d3yx

2.

(3.7)

Then by computing Gröbner basis w.r.t. ci ≺lex dj for I, we have the following:

G := {c5, c4, c3, c2, d5, d4, d3, d2 + 2c1, d1, d0}.
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Hence by dividing ξ and η on Gröbner basis, the general solution of the linearized symmetry condition
is

ξ(x, y) := c0 + c1x,

η(x, y) := −2c1y,

where (as usual) c0, c1 are constants. We obtained infinitesimal generator

∂x, x∂x − 2y∂y.

Example 3.4. [10] Consider the following ODE:

y
′′′

= y−3. (3.8)

The linearized symmetry condition for this ODE is

η(3) = −3y−4η

proided that (3.8) holds. That is from (3.22) [10],

ηxxx + (3ηxxy − ξxxx)y
′
+ 3(ηxyy − ξxxy)y

′2 + (ηyyy − 3ξxyy)y
′3 − ξyyyy

′4

+3(ηxy − ξxx + (ηyy − 3ξxy)y
′ − 2ξyyy

′2)y
′′ − 3ξyy

′′2 + (ηy − 3ξx − 4ξyy
′
)y−3 = −3y−4η. (3.9)

By comparing powers of y
′′
, y
′
y
′′
, y
′
, we obtain the determining equations:

y4ηxxx + 3η + ηyy − 3ξxy = 0,

y4(3ηxxy − ξxxx)− 4ξyy = 0,

y4(ηxyy − ξxxy) = 0,

y4(ηyyy − 3ξxyy) = 0, (3.10)

y4ξyyy = 0,

y4(ηxy − 3ξxx) = 0,

y4(ηyy − 3ξxy) = 0,

y4ξyy = 0,

y4ξy = 0.

Our assumption for the solution of the (3.10) is

ξ(x, y) := c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy + c6x
3 + c7y

3 + c8x
2y + c9xy

2;

η(x, y) := d0 + d1x+ d2y + d3x
2 + d4y

2 + d5xy + d6x
3 + d7y

3 + d8x
2y + d9xy

2;

for arbitrary constants ci and dj, i,j=0,...,9. [In this example, if we put η(x, y) := c0 + c1x+ c2y and
ξ(x, y) := d0 + d1x + d2y, we get the same results]. We substitute this ξ and η into (3.10). Let I be
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the ideal generated by the product this placement and simplification

f1 = 6d6y
4 + 3d0 + 3d1x+ 4d2y + 3d3x

2 + 5d4y
2 + 4d5xy + 3d6x

3+
6d7y

3 + 4d8x
2y + 5d9xy

2 − 3c1y − 6c3yx− 3c5y
2 − 9c6yx

2 − 6c8xy
2 − 3c9y

3

f2 = 6d8y
4 − 6c6y

4 − 4c2y − 8c4y
2 − 4c5xy − 12c7y

3 − 4c8x
2y − 8c9xy

2

f3 = 2(d9 − c8)y4
f4 = 6(d7 − c9)y4
f5 = 6c7y

4

f6 = (d5 + 2d8x+ 2d9y − 2c3 − 6c6x− 2c8y)y4

f7 = (2d4 + 6d7y + 2d9x− 3c5 − 6c8x− 6c9y)y4

f8 = 2(c4 + 3c7y + c9x)y4

f9 = (c2 + 2c4y + c5x+ 3c7y
2 + c8x

2 + 2c9xy)y4.

(3.11)

Then by computing Gröbner basis w.r.t. ci ≺lex dj for I, we have the following:

G := {c9, c8, c7, c6, c5, c4, c3, c2, d9, d8, d7, d6, d5, d4, d3, 4d2 − 3c1, d1, d0}.

From by dividing the ξ and η on Gröbner basis, the tangant vector field is

ξ(x, y) := c0 + c1x,

η(x, y) :=
3

4
c1y,

where (as usual) c0, c1 are constants. Like before

X := (c0 + c1x)∂x + (
3

4
c1y)∂y. (3.12)

By placement one of the coefficients x and y one and the rest coefficients zero in (3.12), respectively.
We obtained infinitesimal generator:

∂x, x∂x+
3

4
y∂y.

Example 3.5. [10]Consider the Blasius equation,

y
′′′

= −yy′′ . (3.13)

The linearized symmetry condition for this ODE is

η(3) = −ηy′′ − η2y when (3.13) holds.

That is from (3.21) and (3.22) [10],

ηxxx + (3ηxxy − ξxxx)y
′
+ 3(ηxyy − ξxxy)y

′2 + (ηyyy − 3ξxyy)y
′3 − ξyyyy

′4

+3(ηxy − ξxx + (ηyy − 3ξxy)y
′ − 2ξyyy

′2)y
′′ − 3ξyy

′′2 + (ηy − 3ξx − 4ξyy
′
)(−yy′′) (3.14)

= −ηy′′ − y[ηxx + (2ηxy − ξxx)y
′
+ (ηyy − 2ξxy)y

′2 − ξyyy
′3 + (ηy − 2ξx − 3ξyy

′
)y
′′
].

By comparing powers of y
′′
, y
′
y
′′
, y
′
, we obtain the determining equations:
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ηxxx + yηxx = 0,

3ηxxy − ξxxx + y(2ηxy − ξxx) = 0,

3(ηxyy − ξxxy) + y(ηyy − 2ξxy) = 0,

ηyyy − 3ξxyy − yξyy = 0, (3.15)

ξyyy = 0,

3(ηxy − ξxx)− y(ηy − 3ξx) + η + y(ηy − 2ξx) = 0,

3(ηyy − 3ξxy) + yξy = 0,

ξyy = 0,

ξy = 0.

We consider the tangant vector field of the form

ξ(x, y) := c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy + c6x
3 + c7y

3 + c8x
2y + c9xy

2;

η(x, y) := d0 + d1x+ d2y + d3x
2 + d4y

2 + d5xy + d6x
3 + d7y

3 + d8x
2y + d9xy

2;

for arbitrary constants ci and dj, i,j=0,...,9. We substitute this ξ and η into (3.15). Let I be the
ideal generated by

f1 = 6d6 + 2d3y + 6d6yx+ 2d8y
2

f2 = 6d8 − 6c6 + 2d5y + 4d8xy + 4d9y
2 − 2c3y − 6c6yx− 2c8y

2

f3 = 6d9 − 6c8 + 2d4y + 6d7y
2 + 2d9xy − 2c5y − 4c8xy − 4c9y

2

f4 = 6d7 − 6c9 − 2c4y − 6c7y
2 − 2c9xy

f5 = 6c7
f6 = d0 + 3d5 − 6c3 + d1x+ d2y + yc1 + d5xy + d8x

2y + d9xy
2

+3c6yx
2 + 2c8xy

2 + 2c3yx+ c5y
2 + c9y

3 − 18c6x+ 6d9y + d3x
2 + d4y

2 + d6x
3

+d7y
3 + 6d8x− 6c8y

f7 = 6d4 + 18d7y + 6d9x− 9c5 − 18c8x− 18c9y + c2y + 2c4y
2 + c5xy

+3c7y
3 + c8x

2y + 2c9xy
2

f8 = 2c4 + 6c7y + 2c9x
f9 = c2 + 2c4y + c5x+ 3c7y

2 + c8x
2 + 2c9xy.

(3.16)

Then by computing Gröbner basis w.r.t. ci ≺lex dj for I, we have the following:

G := {c9, c8, c7, c6, c5, c4, c3, c2, d9, d8, d7, d6, d5, d4, d3, d2 + c1, d1, d0}.

By dividing the ξ and η on Gröbner basis like before

X := (c0 + c1x)∂x + (−c1y)∂y. (3.17)

By placement one of the coefficients x and y one and the rest coefficients zero in (3.17), respectively.
We obtained infinitesimal generator:

∂x,− y∂y + x∂x.
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3.2. PDE example

The technique taken to carry out Lie point symmetry for PDEs is essentially the same as for ODEs,
however, there are more calculations for PDEs because they have several independent variables. This
algorithm works to calculate the infinitesimal generators of the PDEs with finite Lie algebras with
some changes, which we explain with an example.

Example 3.6. [10] To better understand the implementation of the algorithm, consider the following
PDE:

ut + uux = uxx. (3.18)

The linearized symmetry condition is

ηt + uηx + uxη = ηxx when (3.18) holds. (3.19)

That is from (8.29) to (8.31) [10], using (3.18) to eliminate uxx, we see the highest-order derivative
terms in (3.19) have a factor uxt in the following:

0 = −2τxuxt − 2τuuxuxt.

This leads to

τx = τu = 0.

By removing this terms from the linearized symmetry condition; the remaining terms are

ηt − ξtux + (ηu − τt)ut − ξuuxut + u(ηx + (ηu − ξx)ux − ξuu2x) + uxη =

ηxx + (2ηxu − ξxx)ux + (ηuu − 2ξxu)u
2
x − ξuuu3x + (ηu − 2ξx − 3ξuux)(ut + uux).

By reding off all terms that are multiplied by a particular power of ux and uxut, the linearized
symmetry condition splits into the following system of determining equations:

ηxx − ηt − uηx = 0

2ηxu − ξxx − ξxu− η + ξt = 0

ηuu − 2ξxu − 2uξu = 0

ξuu = 0

−2ξx + τt = 0

ξu = 0

τx = 0

τu = 0.

We consider the functions ξ(x, t, u), τ(x, t, u) and η(x, t, u) by their Taylor series at the origin up to
the degree equal to the order of partial differential equation that is two,

ξ(x, t, u) := c0 + c1x+ c2t+ c3u+ c4x
2 + c5t

2 + c6u
2 + c7xt+ c8xu+ c9tu;

τ(x, t, u) := d0 + d1x+ d2t+ d3u+ d4x
2 + d5t

2 + d6u
2 + d7xt+ d8xu+ d9tu;

η(x, t, u) := e0 + e1x+ e2t+ e3u+ e4x
2 + e5t

2 + e6u
2 + e7xt+ e8xu+ e9tu,
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for arbitrary constants ci, dj and ek, i,j,k=0,...,9. After replacing the above Taylor series in deter-
mining equations and simplifying, we have a system of linear equations in the following:

f1 = −2e4ux− e7tu− e8u2 − e1u− 2e5t− e7x− e9u− e2 + 2e4 = 0
f2 = −2c4ux− c7tu− c8u2 − e4x2 − e5t2 − e6u2 − e7tx− e8ux− e9tu− c1u
+2c5t+ c7x+ c9u− e1x− e2t− e3u+ c2 − 2c4 − e0 + 2e8 = 0
f3 = −4c6u

2 − 2c8ux− 2c9tu− 2c3u− 2c8 + 2e6 = 0
f4 = 2c6 = 0
f5 = 4c4x+ 2c7t+ 2c8u− 2d5t− d7x− d9u+ 2c1 − d2 = 0
f6 = 2c6u+ c8x+ c9t+ c3 = 0
f7 = 2d4x+ d7t+ d8u+ d1 = 0
f8 = 2d6u+ d8x+ d9t+ d3 = 0.

(3.20)

Let I be the ideal generated by f1, . . . , f8. Then by computing Gröbner basis w.r.t. ci ≺lex dj ≺lex ek
for I, we have the following:

G := {c9, c8, c6, c5, c4, c3, d9, d8, d7, d6,−c7 + d5, d4, d3,−2c1 + d2,

d1, c7 + e9, e8, e7, e6, e5, e4, c1 + e3, e2,−c7 + e1,−c2 + e0}.

By dividing the ξ, τ and η on Gröbner basis, we have

ξ(x, t, u) = c7tx+ c1x+ c2t+ c0,

τ(x, t, u) = c7t
2 + 2c1t+ d0,

η(x, t, u) = c7(x− ut)− c1u+ c2.

For this example,

X := (c7tx+ c1x+ c2t+ c0)∂x + (c7t
2 + 2c1t+ d0)∂t + (c7(−tu+ x)− c1u+ c2)∂u. (3.21)

In (3.21) the coefficients ci and dj once one and we set the rest to zero. Therefore, the infinitesimal
generator is as follows:

∂x, ∂t, t∂x + ∂u, x∂x + 2t∂t − u∂u, xt∂x + t2∂t + (x− ut)∂u,

3.3. parametric example

Many engineering problems are parameterized and then solved for different parameter values.
The person is also interested for what parameters to find the structure of the solution space. In the
following, we present a new approch for computing infinitestimal generators in parametric ODE. For
the sake of simplicity, we consider parametric ODE of the form

yn = w(x, y, y
′
, ..., yn−1, u1, ..., um), (3.22)

that ui are parameters. Similar to the previous algorithm, the linearized symmetry condition on given
parametric ODE splits into the system of determining equations. By taking the appropriate ansatz
for ξ and η and placement in determining equations, we arise systems of parametric polynomials
ideals. Kapur (2010) computed a parametric Gröbner basis G from prametric ideal basis in K[U,
X] [11, 12]. We found infinitestimal generators by dividing on parametric Gröbner basis for each of
the cases. We give now an example to illustrate what described above.
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Example 3.7. Consider the parametric equation [14]

y
′′′

= 2yy
′′ − βy′2, (3.23)

where β is arbitrary parameter. The linearized symmetry condition is

η(3) = 2y
′′
η − 2βy

′
η(1) + 2yη(2) when (3.23) holds.

By reding off all terms that are multiplied by a particular power of y
′′
, y
′
y
′′
, the linearized symmetry

condition splits into the following system of determining equations:

ηxxx − 2yηxx = 0,

3(ηxxy − ξxxx)− 2y(2ηxy − ξxx) + 2βηx = 0,

3(ηxyy − ξxxy)− 2y(ηyy − 2ξxy) + βηy + βξx = 0,

ηyyy − 3ξxyy + 2yξyy + 2βξy = 0, (3.24)

ξyyy = 0,

3(ηxy − ξxx) + 2y(ηy − 3ξx)− 2η − 2y(ηy − 2ξx) = 0,

ηyy − 3ξxy − 8yξy = 0,

ξyy = 0,

ξy = 0

We consider the functions ξ(x, y) and η(x, y) by their Taylor series at the origin up to the degree
equal to the order of differential equation that is three,

ξ(x, y) := c0 + c1x+ c2y + c3x
2 + c4y

2 + c5xy + c6x
3 + c7y

3 + c8x
2y + c9xy

2;

η(x, y) := d0 + d1x+ d2y + d3x
2 + d4y

2 + d5xy + d6x
3 + d7y

3 + d8x
2y + d9xy

2;

for arbitrary constants ci and dj, i,j=0,...,9. After replacing the above Taylor series in determining
equations and simplifying, we have a system of linear parametric equations in the following:

f1 = −12d6xy − 4d8y
2 − 4d3y + 6d6

f2 = 6βd6x
2 + 4βd8xy + 2βd9y

2 + 4βd3x+ 2βd5y − 8d8xy − 8d9y
2 + 12c6xy

+4c8y
2 + 2βd1 − 4d5y + 4c3y + 6d8 − 18c6

f3 = 3βd7y
2 + βd8x

2 + 2βd9xy + 3βc6x
2 + 2βc8xy + βc9y

2 + 2βd4y + βd5x
+2βc3x+ βc5y − 12d7y

2 − 4d9xy + 8c8xy + 8c9y
2 + βd2 + βc1 − 4d4y + 4c5y + 6d9 − 6c8

f4 = 6βc7y
2 + 2βc8x

2 + 4βc9xy + 4βc4y + 2βc5x+ 12c7y
2 + 4c9xy + 2βc2

+4c4y + 6d7 − 6c9
f5 = 6c7
f6 = −2d6x

3 − 2d7y
3 − 2d8x

2y − 2d9xy
2 − 6c6x

2y − 4c8xy
2 − 2c9y

3 − 2d3x
2

−2d4y
2 − 2d5xy − 4c3xy − 2c5y

2 − 2d1x− 2d2y + 6d8x+ 6d9y − 2d1y − 18c6x
−6c8y − 2d0 + 3d5 − 6c3
f7 = −24c7y

3 − 8c8x
2y − 16c9xy

2 − 16c4y
2 − 8c5xy + 6d7y + 2d9x− 8c2y − 6c8x

−6c9y + 2d4 − 3c5
f8 = 6c5y + 2c9x+ 2c4
f9 = 3c7y

2 + c8x
2 + 2c9xy + 2c4y + c5x+ c2.

(3.25)

We consider F = {f1, . . . , f9} ⊂ K[β][x, y], where β parameter, x,y variables and � the lexicographic
order such that x � y. Then a comprehensive Gröbner system for < F > with respect to � is
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Like the previous, for obtaining infinitestimal generators for every line of the table, we divide ξ and
η on parametric Gröbner basis.

Gi Ni Ei

{c9, c8, c7, c6, c5, c4, c2, d9, d8, d7, d6, d5 + 2 ∗ c3, d4, d3, c1 + d2, d1, 6 ∗
c3 + d0}

{} {β − 3}

{c9, c8, c7, c6, c5, c4, c3 ∗ (β − 3), c2, d9, d8, d7, d6, d5, d4, d3, c1 +
d2, d1, d0}

{β − 3} {}

When is β = 3, this equation is known as the Chazy equation, more complete discussion of the
Chazy equation and its symmetries can be found in [6]

ξ(x, y) = c3x
2 + c1x+ c0,

η(x, y) = (−2xy − 6)c3 − yc1.

So, infinitestimal generators are

∂x, x∂x − y∂y, x2∂x − (2xy + 6)∂y.

When is β 6= 3

ξ(x, y) = c1x+ c0,

η(x, y) = −yc1.

We have the infinitestimal generators in the following:

∂x, x∂x − y∂y.

4. Conclusion

As we saw in the above examples, all polynomials in the appeared system are linear and so one
can solve it by linear algebra techniques. However, there are two important reasons that we prefer
to use Gröbner basis for this purpose:

� This is shown in some scientific papers (see [9]) that Gröbner basis has better algorithmic
performance in comparison by linear algebra techniques to solve systems of linear equations.

� When the differential equation contains some parameters, the system of equations will also
contain these parameters and so, we must analyse a parametric system. In this case, there is
no linear algebraic algorithm up to our knowledge to deal with parameters and so we must
apply the algorithms which are based on Gröbner basis.
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Gröbner basis, Inf. Sci. 220 (2013) 541–558.

[2] G. W. Bluman and S. Kumei, Symmetries and differential equations, Springer-Verlag, New York, 1989.
[3] B. Buchberger, Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimen-

sionalen polynomideal, PhD Thesis, Innsbruck, 1965.
[4] E. S. Cheb-Terrab, L.G.S. Duarte and L. A. C. P. da Mota, Computer algebra solving of second order ODEs using

symmetry methods, Comp. Phy. Commun. (1997) 1–25.
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